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SYNTAX ANALYSIS 

 
Every programming language has rules that prescribe the syntactic structure of well-formed 
programs. In Pascal, for example, a program is made out of blocks, a block out of statements, a 
statement out of expressions, an expression out of tokens, and so on. The syntax of programming 
language constructs can be described by context-free grammars or BNF (Backus-Naur Form) 
notation. Grammars offer significant advantages to both language designers and compiler writers. 

 
• A grammar gives a precise, yet easy-to-understand. Syntactic specification of a programming 
language.  
• From certain classes of grammars we can automatically construct an efficient parser that 
determines if a source program is syntactically well formed. As an additional benefit, the parser 
construction process can reveal syntactic ambiguities and other difficult-to-parse constructs that 
might otherwise go undetected in the initial design phase of a language and its compiler.   
• A properly designed grammar imparts a structure to a programming language that is 
useful for the translation of source programs into correct object code and for the detection of 
errors. Tools are available for converting grammar-based descriptions of translations into 
working pro-grams.   
• Languages evolve over a period of time, acquiring new constructs and performing 
additional tasks. These new constructs can be added to a language more easily when there is an 
existing implementation based on a grammatical description of the language.  
 
ROLE OF THE PARSER :  
Parser for any grammar is program that takes as input string w (obtain set of strings tokens from 
the lexical analyzer) and produces as output either a parse tree for w , if w is a valid sentences 
of grammar or error message indicating that w is not a valid sentences of given grammar. The 
goal of the parser is to determine the syntactic validity of a source string is valid, a tree is built 
for use by the subsequent phases of the computer. The tree reflects the sequence of derivations 
or reduction used during the parser. Hence, it is called parse tree. If string is invalid, the parse 
has to issue diagnostic message identifying the nature and cause of the errors in string. Every 
elementary subtree in the parse tree corresponds to a production of the grammar. 
 
There are two ways of identifying an elementry subtree: 
 
By deriving a string from a non-terminal or 
By reducing a string of symbol to a non-terminal. 
 
The two types of parsers employed are:  
1.Top down parser: which build parse trees from top(root) to bottom(leaves) 
2.Bottom up parser: which build parse trees from leaves and work up the root. 
 
 
 



 

 
 
 

 

 

 

 

 

 

 

 

 
CONTEXT FREE GRAMMARS  
A context-free grammar (grammar for short) consists of terminals, nonterminals, a start symbol, 
and productions.  
1. Terminals are the basic symbols from which strings are formed. The word "token" is a 
synonym for "terminal" when we are talking about grammars for programming languages.   
2. Non terminals are syntactic variables that denote sets of strings. They also impose a 
hierarchical structure on the language that is useful for both syntax analysis and translation.   
3. In a grammar, one non terminal is distinguished as the start symbol, and the set of strings it 
denotes is the language defined by the grammar.   
4. The productions of a grammar specify the manner in which the terminals and non terminals 
can be combined to form strings. Each production consists of a non terminal, followed by an 
arrow, followed by a string of non terminals and terminals.  
 
 
Inherently recursive structures of a programming language are defined by a context-free 

Grammar. In a context-free grammar, we have four triples G( V,T,P,S). Here , V is finite set of 

terminals (in our case, this will be the set of tokens) T is a finite set of non-terminals (syntactic-

variables).P is a finite set of productions rules in the following form A → α where A is a non-

terminal and α is a string of terminals and non-terminals (including the empty string).S is a start 

symbol (one of the non-terminal symbol). 
 
L(G) is the language of G (the language generated by G) which is a set of sentences. 

 
A sentence of L(G) is a string of terminal symbols of G. If S is the start symbol of G then ω is a 

sentence of L(G) iff S ω where ω is a string of terminals of G. If G is a context-free grammar, 

L(G) is a context-free language. Two grammar G1 and G2 are equivalent, if they produce same 

grammar. 
 
Consider the production of the form S α, If α contains non-terminals, it is called as a sentential 

form of G. If α does not contain non-terminals, it is called as a sentence of G. 
 
Derivations 
 
In general a derivation step is αAβ αγβ is sentential form and if there is a production rule A→γ 

in our grammar. where α and β are arbitrary strings of terminal and non-terminal symbols α1 α2 

... αn (αn derives from α1 or α1 derives αn ). There are two types of derivation: 
 
1.At each derivation step, we can choose any of the non-terminal in the sentential form of G for 



the replacement.If we always choose the left-most non-terminal in each derivation step, this 

derivation is called as left-most derivation. 
 
Example: 
E → E + E | E – E | E * E | E / E  | - E | ( E ) | id 
 

Leftmost derivation : 
 

E lm E + E lm 

E * E+E lm 

id * E+E lm 

id * id+E lm 

id * id+id  

The string is derive from the grammar ,w= id*id+id, which is consists of all terminal symbols 
 
Rightmost derivation : 
 
E rm E + E 

rm E+E * E  

 

rm E+ E*id 

rm E+id*id 

rm id+id*id  

Given grammar G : E → E+E | E*E | ( E ) | - E | id Sentence to be derived : – (id+id) 

 

LEFTMOST DERIVATION RIGHTMOST DERIVATION 
 
E lm   - E E rm   - E 
 

E lm   - ( E ) E rm  - ( E ) 
 
E lm   - ( E+E ) E rm  - (E+E ) 
 
E lm   - ( id+E ) E rm   - ( E+id ) 
 
E lm   - ( id+id ) E rm   - ( id+id ) 
 
 
String that appear in leftmost derivation are called left sentinel forms.String that appear in 
rightmost derivation are called right sentinel forms. 
 
Sentinels:  
Given a grammar G with start symbol S, if S → α , where α may contain non-terminals or 

terminals, then α is called the sentinel form of G. 
 
Yield or frontier of tree:  

Each interior node of a parse tree is a non-terminal. The children of node can be a 



terminal or non-terminal of the sentinel forms that are read from left to right. The sentinel form 

in the parse tree is called yield or frontier of the tree. 

Parse Tree: 
 

 Inner nodes of a parse tree are non-terminal symbols. 


 The leaves of a parse tree are terminal symbols. 


 A parse tree can be seen as a graphical representation of a derivation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Ambiguity: 
 
A grammar that produces more than one parse tree for some sentence is said to be ambiguous 
grammar. 
 
Example : Given grammar G : E → E+E | E*E | ( E ) | - E | id 
The sentence id+id*id has the following two distinct leftmost derivations: 
 

Elm   E+ E Elm   E* E 

Elm   id + E Elm   E + E * E 

Elm   id + E * E Elm id + E * E 

Elm id + id * E Elm id + id * E 

E   lm id + id * id Elm  id + id * id 

 

The two corresponding parse trees are : 



 

 

Consider this example, 
 
G: stmt → if expr then stmt | if expr then stmt else stmt | other 
 
This grammar is ambiguous since the string if E1 then if E2 then S1 else S2 has the 

following Two parse trees for leftmost derivation : 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

To eliminate ambiguity, the following grammar may be 

used: stmt → matched_stmt | unmatched_stmt 
 

matched_stmt →if expr then matched_stmt else matched_stmt | other unmatched_stmt → if 

expr then stmt | 
 

if expr then matched_stmt else unmatched_stmt 



 
 
 
LR PARSING: INTRODUCTION 
 
The "L" is for left-to-right scanning of the input and the "R" is for constructing a rightmost 
 
derivation in reverse. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

WHY LR PARSING: 

 

LR parsers can be constructed to recognize virtually all programming-language constructs for which context-free grammars can be 

written. 





The LR parsing method is the most general non-backtracking shift-reduce parsing method known, yet it can be implemented as 

efficiently as other shift-reduce methods. 





The class of grammars that can be parsed using LR methods is a proper subset of the class of grammars that can be parsed with 

predictive parsers. 


 
 An LR parser can detect a syntactic error as soon as it is possible to do so on a left-to-right 
scan of the input.  
 The disadvantage is that it takes too much work to construct an LR parser by hand for a 
typical programming-language grammar. But there are lots of LR parser generators available to 
make this task easy. 
 
LL vs LR: 
 

LL  LR 

   
   

Does a leftmost derivation.  Does a rightmost derivation in reverse. 

   

Starts  with  the  root  nonterminal  on the Ends with the root nonterminal on the stack. 
stack.   

   



 

Ends when the stack is empty. Starts with an empty stack. 

  

Uses the stack for designating what is still Uses the stack for designating what is already 
to be expected. seen. 

  

Builds the parse tree top-down. Builds the parse tree bottom-up. 

  

Continuously  pops  a  nonterminal  off  the Tries  to  recognize  a  right  hand  side  on  the 
stack,  and  pushes  the  corresponding  right stack, pops it, and pushes the corresponding 
hand side. nonterminal. 

  

Expands the non-terminals. Reduces the non-terminals. 

  

Reads the terminals when it pops one off Reads the terminals while it pushes them on 
the stack. the stack. 

  

Pre-order traversal of the parse tree. Post-order traversal of the parse tree. 

  

 
Notational Conventions 

 
To avoid always having to state that "these are the terminals." "these are the nonterminals," and 
so on. we shall employ the following notational conventions: 
1. These symbols are terminals:  

i) Lowercase letters early in the alphabet such as a, b, c.  
ii) Operator symbols such as +, -,etc.  
iii) Punctuation symbols such as parentheses, comma. etc.  
iv) The digits 0, 1….. 9  
v) Boldface strings such as id or if  

2. These symbols are nonterminals:  
i) Upper-case letters early in the alphabet such as A,B,C.  
ii) The letter S, which, when it appears,is usually the start symbol.  
iii) Lower-case italic names such as expr or stmt.   

3. Upper-case letters late in the alphabet. such as X. Y, Z, represent grammar symbols, that is, 
either nonterminals or terminals.  

4. Lower-case letters late in the alphabet, namely u, v ……z represent strings of terminals.   
5. Lower-case Greek letters, α,β, γ, for example, represent strings of grammar symbols. Thus, a 

generic production could be written as A→α, indicating that there is a single nonterminal A 
on the left of the arrow (the left side of the production) and a string of grammar symbols α to 
the right of the arrow (the right ride of the production).  

6. If A→α1 A→α2 …………….A→αk as are all productions with A on the left (we call them 

A-productions), we may write A→α1| α2|………| αk . We call α1,α2,……… αk the 
alternatives for A.  



7. Unless otherwise stated, the left side of the first production is the start symbol. 
 

 

BOTTOM-UP PARSING  
Constructing a parse tree for an input string beginning at the leaves and going towards the root 
is called bottom-up parsing.A general type of bottom-up parser is a shift-reduce parser. 
 
SHIFT-REDUCE PARSING  
Shift-reduce parsing is a type of bottom -up parsing that attempts to construct a parse tree for an 
input string beginning at the leaves (the bottom) and working up towards the root (the top). 
 
Example: 
 
Consider the grammar: 
S → aABe 
A → Abc | b 
B → d 
The string to be recognized is abbcde. We want to reduce the string to S. 
 
Steps of reduction: 
abbcde (b,d can be reduced) 
aAbcde (leftmost b is reduced,now Ab,b,d qualified for reduction) 
aAcde (d can be reduced)  
aAcBe 
S  
Each replacement of the right side of a production by the left side in the above example is called 
reduction, which is equivalent to rightmost derivation in reverse. 
 
Handle:  

A substring which is the right side of a production such that replacement of that substring 
by the production left side leads eventually to a reduction to the start symbol, by the reverse of a 
rightmost derivation is called a handle.                   

 

Definition: A handle of a right-sentential form   is a production    and a position of   where  
    

the string  may e found and replaced by  to produce the previous right-sentential form in the  
  

rightmost derivation of   .That is,if 
 

    
  

     ,then  in the position following 
 

is     
 

 

               
a handle of .The string w to the right of the handle contains only terminal symbols. 
 
Stack Implementation of Shift-Reduce Parsing 

 
There are two problems that must be solved if we are to parse by handle pruning.The first is to locate 

the substring to be reduced in a right-sentential form, and the second is to determine what production to 

choose in case there is more than one production with that substring on the right side. 
 
A convenient way to implement a shift-reduce parser is to use a stack to hold grammar symbols and 

an input buffer to hold the string w to be parsed. We use $ to mark the bottom of the stack and also 

the right end of the input. Initially, the stack is empty, and the string w is on the input, as follows: 
 

STACK INPUT 
$ w$ 



The parser operates by shifting zero or more input symbols onto the stack until a handle is on 
top of the stack.. The parser repeats this cycle until it has detected an error or until the stack 
contains the start symbol and the input is empty: 

 
STACK INPUT  
$ S $ 

 

Example: The actions a shift-reduce parser in parsing the input string id1+id2*id3, according to 
the ambiguous grammar for arithmetic expression. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

While the primary operations of the parser are shift and reduce, there 
are actually four possible actions a shift-reduce parser can make: (1) 
shift. (2) reduce,(3) accept, and (4) error. 
1. In a shift action, the next input symbol is shifted unto the top of the stack.   
2. In a reduce action, the parser knows the right end of the handle is at the 

top of the stack. It must then locate the left end of the handle within the 
stack and decide with what nonterminal to replace the handle.   

3. In an accept action. the parser announces successful completion 
of parsing.   

4. In an error action, the parser discovers that a syntax error has 
occurred and calls an error recovery routine.  

 
 
Operator Precedence Parsing: 

 
Operator grammars have the property that no production right side is (empty) or has two 
adjacent non terminals. This property enables the implementation of efficient operator-
precedence parsers. 

 
Example:The following grammar for 
expressions E→E A E | (E) | -E | id 
A→+ | - | * | / | ^  

Is not an operator grammar, because the right side EAE has two consecutive 
nonterminals.However, if we substitute for A each of its alternate, we obtain the following 
operator grammar: 



E→E + E |E – E |E * E | E / E | ( E ) | E ^ E | - E | id 
 
These parser rely on the following three precedence relations: 
 
 
 
 
 
 
 
 
 
 
These precedence relations guide the selection of handles. These operator precedence relations 

allow delimiting the handles in the right sentential forms: <· marks the left end, =· appears in 

the interior of the handle, and ·> marks the right end. 
 
 
 
 
 
 
 
 
 
 
 
 

 

Example: The input string: id1 + id2 * id3 
 
after inserting precedence relations the string becomes: 
 
$ <· id1 ·> + <· id2 ·> * <· id3 ·> $ 
 
Having precedence relations allows to identify handles as follows: 
1. scan the string from left end until the leftmost  ·>  is encountered.  
2. Then scan backwards over any =’s until a <· is encountered.  
3. everything between the two relations <· and ·> forms the handle.  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
OPERATOR PRECEDENCE PARSING ALGORITHM 
 
Initialize: Set ip to point to the first symbol of w$ 
 
(1) repeat forever   
(2) if  only $ is on the stack and only $ is on the input then  

accept and break  
else 

 begin 
(3) Let a be the top terminal symbol on the stack, 

 and let b be the current input symbol pointed to by ip 
(4) if a <· b or a =· b then push b onto the stack 
(5) else if  a ·> b then 
(6) repeat pop the stack 
(7) until the top stack terminal is related by <· to the terminal most 

 recently popped. 
(8) else call the error correcting routine 

 end 
 
 

 

Precedence Functions  
Compilers using operator-precedence parsers need not store the table of precedence relations. In 
most cases, the table can be encoded by two precedence functions f and g that map terminal 
symbols to integers. We attempt to select land g so that, for symbols a and b. 

1. f (a) < g(b) whenever a<·b.  
2. f (a) = g(b) whenever a = b. and  
3. f(a) > g(b) whenever a ·> b.  

 
Thus precedence relation between a and b can be determined by a numerical comparison 
between f (a) and g(b).However, the error entries in the precedence matrix are obscured, since 
one of (1), (2),or (3) holds no matter what f (a) and g(b) are. The loss of error detection capabil- 



 
ity is generally not considered serious enough to prevent the using of precedence functions where 
possible; errors can still be caught when a reduction is called for and no handle can be found. 

 
Not every table of precedence relations has precedence functions to encode it. but in practical 
cases the functions usually exist. 
Example: The precedence table given above has the following pair of precedence functions 
 
 
 
 
 
 
 
For example. * <· id, and f(*) < g(id). Note that f id) > g(id) suggests that id •> id; but. in fact, 
no precedence relation holds between id and id. Other error entries are similarly replaced by 
one or another precedence relation. 

 
Algorithm: Constructing precedence functions. 
Input: An operator precedence matrix. 
Output: Precedence functions representing the input matrix, or an indication that none exist. 
Method: 

1. Create symbols f, and g, for each a that is a terminal or $.   
2. Partition the created symbols into as many groups as possible, in such a way that 

if a = b. then fa and gb, are in the same group. Note that we may have to put symbols in 
the same group even if they are not related by =. For example, if a = b and c = b, then 

fa, and fc,. must be in the same group, since they are both in the same group as gb. If,in 

addition, c = d. then fa and gd,, are in the same group even though a = d may not hold.   
3. Create a directed graph whose nodes are the groups found in (2). For any a and 
b, if a <. B, place an edge from the group of gb to the group of fa. If a .> b, place an 

edge from the group of fa, to that of gb. Note that an edge or path from ,fa to gb means 

that f (a) must exceed g(b); a path from gb to fa, means that g(b) must exceed f (a).   
4. If the graph constructed in (3) has a cycle, then no precedence functions exist. If 
there are no cycles, let f (a) be the length of the longest path beginning at the group of 

fa. let g (a) be the length of the longest path beginning at the group of ga.  
Example: Consider the below matrix ,there are no = relationship.The graph is shown below: 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
There are no cycles,so precedence function exist.As f$ and g$ have no out 

edges,f($)=g($)=0.The longest path from g+ has length 1,so g(+)=1.There is a path from gid to 

f* to g* to f+ to g+ to f$ ,so g(id)=5.The resulting precedence functions are: 
 
 
 
 
 
 
 

 

Steps in Operator Precedence Parsing: 
1. Computation of LEADING  
2. Computation of TRAILING  
3. Construction of Precedence Table  
4. Parsing of the given input string  

 
Problem 1:  
Consider the following grammar, and construct the operator precedence parsing table and 
check whether the input string (i) *id=id (ii)id*id=id are successfully parsed or not? 

 
S→L=R 
S→R 
L→*R 
L→id 
R→L 

 
Solution: 
1.Computation of LEADING:  
LEADING(S) = {=, * , id} 
LEADING(L) = {* , id} 
LEADING(R) = {* , id}  
2.Computation of TRAILING:  
TRAILING(S) = {= , * , id} 
TRAILING(L)= {* , id} 
TRAILING(R)= {* , id}  
3.Precedence Table: 

 

 

 
 



 = * id $ 
     

=  <· <· ·> 
     

* ·> <· <· ·> 
     

id ·>   ·> 
     

$ <· <· <·  
     

 
All undefined entries are error.  
4.Parsing the given input string: 

(i)  *id =id 
 

STACK INPUT STRING ACTION  
$ *id=id$ $<·* Push 

    

$* id=id$ *<·id Push 
    

$*id =id$ id·>= Pop 
    

$* =id$ *·>= Pop 
    

$ =id$ $<·= Push 
    

$= id$ =<·id Push 
    

$=id $ id·>$ Pop 
    

$= $ =·>$ Pop 
    

$ $ Accept  
    

(ii) Id*id=id 
 

STACK INPUT STRING ACTION 
   

$ id*id=id$ $<·idPush 
   

$id *id=id$ Error 
   

 
Assignment: 
Consider the following grammar:  

1) S→(L) 
S→a 
L→L,S 
L→S  

 
2) S→a 

S→↑   
S→(T) 
T→T,S 
T→S  

 
Problem 2:Check whether the following Grammar is an operator precedence grammar or 
not. E→E+E  
E→E*E 
E→id 
 
Solution: 



1.Computation of LEADING: 
LEADING(E) = {+, * , id} 

 
2.Computation of TRAILING: 
TRAILING(E) = {+, * , id} 

 
3.Precedence Table: 

 

 + * id $ 
     

+ <·/·> <·/·> <· ·> 
     

* <·/·> <·/·> <· ·> 
     

id ·> ·>  ·> 
     

$ <· <· <·  
     

 
All undefined entries are error. Since the precedence table has multiple defined entries ,the 
grammar is not an operator precedence grammar. 

 
Top-Down Parsing: 

 
Eliminating Left Recursion: 
 
A grammar is said to be left recursive if it has a non-terminal A such that there is a derivation 

A=>Aα for some string α. Top-down parsing methods cannot handle left-recursive grammars. 

Hence, left recursion can be eliminated as follows: 
 
If there is a production A → Aα | β it can be replaced with a sequence of two 
productions A → βA’  
A’ → αA’ | ε  
Without changing the set of strings derivable from A. 
 
Example : Consider the following grammar for arithmetic 

expressions: E → E+T | T 
 
T → T*F | F 

F → (E) | id 
 
First eliminate the left recursion for E 

as E → TE’ 
 
E’ → +TE’ | ε 
 
Then eliminate for T 

as T → FT’ 
 
T’→ *FT’ | ε 
 
Thus the obtained grammar after eliminating left recursion is E → 

TE’ E’ → +TE’ | ε 



T → FT’ 
 
T’ → *FT’ | ε 
 
F → (E) | id 
 
Algorithm to eliminate left recursion: 
 
2. Arrange the non-terminals in some order A1, A2 . . . An.  
 
3. for i := 1 to n do begin  
 

for j := 1 to i-1 do begin 
 

replace each production of the form Ai → Aj γ 

by the productions Ai → δ1 γ | δ2γ | . . . | δk γ. 
 

where Aj → δ1 | δ2 | . . . | δk are all the current Aj-productions; 
 

end 
 

eliminate the immediate left recursion among the Ai-

productions end 

 
Left factoring: 

 

Left factoring is a grammar transformation that is useful for producing a grammar suitable for 

predictive parsing. When it is not clear which of two alternative productions to use to expand a 

non-terminal A, we can rewrite the A-productions to defer the decision until we have seen 

enough of the input to make the right choice. 
 
If there is any production A → αβ1 | αβ2 , it can be rewritten 

as A → αA’ 
 
A’ → β1 | β2 
 
Consider the grammar , G 

: S → iEtS | iEtSeS | a 
 
E → b 
 
Left factored, this grammar 

becomes S → iEtSS’ | a 
 
S’ → eS | 

ε E → b 

 
Example for back tracking : 
 
Consider the grammar G : 
 
S → cAd 



A → ab | a 
 
and the input string w=cad. 
 
The parse tree can be constructed using the following top-down approach : 
 
Step1: 
 
Initially create a tree with single node labeled S. An input pointer points to ‘c’, the first symbol 

of w. Expand the tree with the production of S. 

 
 
 
 
 
 
 
 
 

 

Step2: 
 
The leftmost leaf ‘c’ matches the first symbol of w, so advance the input pointer to the second 

symbol of w ‘a’ and consider the next leaf ‘A’. Expand A using the first alternative. 
 
Step3: 
 
The second symbol ‘a’ of w also matches with second leaf of tree. So advance the input pointer 

to third symbol of w ‘d’. But the third leaf of tree is b which does not match with the input 

symbol d. Hence discard the chosen production and reset the pointer to second position. This is 

called backtracking. 
 
Step4: 
 
Now try the second alternative for A.Now we can halt and announce the successful completion 
of parsing. 
 
Nonrecursive Predictive Parsing  
It is possible to build a nonrecursive predictive parser by maintaining a stack explicitly, rather 
than implicitly via recursive calls. The key problem during predictive parsing is that of 
determining the production to be applied for a nonterminal. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A table-driven predictive parser has an input buffer, a stack, a parsing table, and an output 
stream. The input buffer contains the string to be parsed, followed by $, a symbol used as a 
right endmarker to indicate the end of the input string. The stack contains a sequence of 
grammar symbols with $ on the bottom, indicating the bottom of the stack. Initially. the stack 
contains the start symbol of the grammar on top of S. The parsing table is a two-dimensional 
array M[A,a],where A is a nonterminal, and a is a terminal or the symbol $.  
The program considers X, the symbol on top of the stack, and a, the current input symbol. 
These two symbols determine the action of the parser. There are three possibilities. 
1. If X = a =$,the parser halts and announces successful completion of parsing.   
2. If X =a ≠$, the parser pops X off the stack and advances the input pointer to the next input 
symbol.   
3. If X is a nonterminal, the program consults entry M[X,a] of the parsing table M. This entry 
will be either an X-production of the grammar or an error entry. If, for example, M[X,a] = {X 
→UVW}, the parser replaces X on top of the stack by WVU (with U on top).  
If M[X, a] = error, the parser calls an error recovery routine.  

 

 

Predictive parsing table construction: 
 
The construction of a predictive parser is aided by two functions associated with a grammar G : 
 
FIRST() 
 
FOLLOW() 
 
Rules for FIRST(): 
 
1. If X is terminal, then FIRST(X) is {X}.  
 
2. If X → ε is a production, then add ε to FIRST(X).  
 
3. If X is non-terminal and X → aα is a production then add a to FIRST(X).  
 
4. If X is non-terminal and X → Y 1 Y2…Yk is a production, then place a in FIRST(X) if for 
some i, a is in FIRST(Yi), and ε is in all of FIRST(Y1),…,FIRST(Yi-1); that is, Y1,….Yi-1 => ε. 

If ε is in FIRST(Yj) for all j=1,2,..,k, then add ε to FIRST(X).  
Rules for FOLLOW():  
1. If S is a start symbol, then FOLLOW(S) contains $.   
2. If there is a production A → αBβ, then everything in FIRST(β) except ε is placed in follow(B).  



3. If there is a production A → αB, or a production A → αBβ where FIRST(β) contains ε, then 
everything in FOLLOW(A) is in FOLLOW(B).  
Algorithm for construction of predictive parsing 
table: Input : Grammar G  
Output : Parsing table 
M Method : 
1. For each production A → α of the grammar, do steps 2 and 3.   
2. For each terminal a in FIRST(α), add A → α to M[A, a].   
3. If ε is in FIRST(α), add A → α to M[A, b] for each terminal b in FOLLOW(A). If ε is in 
FIRST(α) and $ is in FOLLOW(A) , add A → α to M[A, $].  
4. Make each undefined entry of M be error.  
 
Algorithm : Nonrecursive predictive parsing. 

 
Input. A string w and a parsing table M for grammar G. 

 
Output. If w is in L(G), a leftmost derivation of w; otherwise, an error . 

 
Method. Initially, the parser is in a configuration in which it has $$ on the stack with S, the 
start symbol of G on top, and w$ in the input buffer. The program that utilizes the predictive 
parsing table M to produce a parse for the input. 

 
set ip to point to the first symbol of 
w$: repeat  

let X be the top stack symbol and a the symbol pointed to 
by ip; If X is a terminal or $ then 

If X = a then 
 

pop X from the stack and 
advance ip else error()  

else /* X is a nomerminal */  
if M[X,a] =X→Y1Y2…….Yk, then 

begin pop X from the stack:  
push Yk , Yk - 1 ………..Y1 , onto the stack, with Y1 on top; 

output the production X→Y1Y2…….Yk 

end  
else error() 

until X ≠$  /* stack is empty*/ 
 
Example: 
 
Consider the following grammar : 
 
E → E+T | T 
 
T → T*F | F 
 
F → (E) | id 
 
After eliminating left-recursion the grammar is 
E → TE’ 
 
E’ → +TE’ | ε 
 
T → FT’ 
T’ → *FT’ | ε 



F → (E) | id 
 
First( ) : 
 
FIRST(E) = { ( , id} 
 
FIRST(E’) ={+ , ε } 
 
FIRST(T) = { ( , id} 
 
FIRST(T’) = {*, ε } 
 
FIRST(F) = { ( , id } 
 
Follow( ): 
 
FOLLOW(E) = { $, ) } 
 
FOLLOW(E’) = { $, ) } 
FOLLOW(T) = { +, $, ) } 
 
FOLLOW(T’) = { +, $, ) } 
 
FOLLOW(F) = {+, * , $ , ) } 



 

 
Table:Moves made by the predictive parser on the input id+id*id$ 
 
LL(1) grammars: 
 
The parsing table entries are single entries. So each location has not more than one entry. This type 
of grammar is called LL(1) grammar. 
 
Consider this following grammar: S 
→ iEtS | iEtSeS | a  
E → b 
 
After eliminating left factoring, we have S 
→ iEtSS’ | a  

S’→ eS | ε E → b 
 
To construct a parsing table, we need FIRST() and FOLLOW() for all the non-terminals. FIRST(S) = 
{ i, a }  
FIRST(S’) = {e, ε } FIRST(E) = { b} FOLLOW(S) = { $ ,e } FOLLOW(S’) = { $ ,e } FOLLOW(E) 
= {t} 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Since there are more than one production, the grammar is not LL(1) grammar. 

 

 

LR PARSERS  
An efficient bottom-up syntax analysis technique that can be used to parse a large class of 

CFG is called LR(k) parsing. The „L‟ is for left-to-right scanning of the input, the „R‟ for 

constructing a rightmost derivation in reverse, and the „k‟ for the number of input symbols. 

When „k‟ is omitted, it is assumed to be 1. 

 

Advantages of LR parsing:  
 It recognizes virtually all programming language constructs for which CFG can be 

written. 


 It is an efficient non-backtracking shift-reduce parsing method. 


 A grammar that can be parsed using LR method is a proper superset of a grammar that 

can be parsed with predictive parser. 


 It detects asyntactic error as soon as possible. 

 

Drawbacks of LR method:  
It is too  much of work to construct a LR parser by hand for a programming language 

grammar. A  specialized tool, called a LR parser generator, is needed. Example: YACC. 

 
Types of LR  parsing method:  
1. SLR- Simple  LR   

 Easiest  to implement, least powerful. 

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2. CLR- Canonical  LR   
 Most  powerful, most expensive. 



3. LALR- Look -Ahead LR   
 Intermediate  in size and cost between the other two methods. 

 
The LR parsing  algorithm: 
 
The schematic  form of an LR parser is as follows: 
 
 

 

INPUT  
a1 … 

 
ai … 

 
an $ 

 
 

       
 

              
 

Sm      LR parsing program   OUTPUT 
 

Xm 
             

 

             
 

Sm-1              
 

Xm-1              
 

…      action  goto     
 

S0              
 

 

STACK 
 
 
 
It consists of : an input, an output, a stack, a driver program, and a  parsing table that has two 

parts (action and goto). 
 
 The driver program is the same for all LR parser. 


 The parsing program reads characters from an input buffer one at a time. 


 The program uses a stack to store a string of the form s0X1s1X2s2…Xmsm, where sm is on 

top. Each Xi is a grammar symbol and each si is a state. 


 The parsing table consists of two parts : action and goto functions. 
 
Action : The parsing program determines sm, the state currently on top of stack, and ai, the 

current input symbol. It then consults action[sm,ai] in the action table which can have one of four 

values : 
 
1. shift s, where s is a state,   
2. reduce by a  grammar production A → β,   
3. accept, and   
4. error.  
 
Goto : The  function goto takes a state and grammar symbol as arguments and produces a state. 
 
LR Parsing  algorithm: 
 
Input: An input  string w and an LR parsing table with functions action and goto for grammar G. 
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Output: If w  is in L(G), a bottom-up-parse for w; otherwise, an error indication. 
 
Method: Initially,  the parser has s0 on its stack, where s0 is the initial state, and w$ in the input 

buffer. The  parser then executes the following program : 
 

set  ip to point to the first input symbol of 

w$;  repeat forever begin 

 let s be the state on top of the stack 

and a the symbol pointed to by ip;  
if action[s, a] =shift s‟ then begin push 

a then s‟ on top of the stack; 

advance ip to the next input symbol 

end  
else if action[s, a]=reduce A→β then begin 

pop 2* |β |symbols off the stack;  
let s‟ be the state now on top of the stack; 

push A then goto[s‟, A] on top of the 

stack; output the production A→ β 

end  
else if action[s, a]=accept then 

return 
else error( )  

end 
 

CONSTRUCTING SLR(1) PARSING TABLE: 
 
To perform SLR parsing, take grammar as input and do the following:  
1. Find LR(0) items.   
2. Completing the closure.   
3. Compute goto(I,X), where, I is set of items and X is grammar symbol.  
 
LR(0) items:  

An LR(0) item of a grammar G is a production of G with a dot at some position of the 

right side. For example, production A → XYZ yields the four items : 
 
A → . XYZ  
A → X . YZ  
A → XY . Z  
A → XYZ . 
 
Closure operation:  

If I is a  set of items for a grammar G, then closure(I) is the set of items constructed from 

I by the two rules: 
 
1. Initially,  every item in I is added to closure(I).   
2. If A → α .  Bβ is in closure(I) and B → γ is a production, then add the item B → . γ to I , if it is 

not already  there. We apply this rule until no more new items can be added to closure(I).  
 
Goto operation:  

Goto(I,  X) is defined to be the closure of the set of all items [A→ αX . β] such 

that [A→ α . Xβ] is  in I. 
 
Steps to construct  SLR parsing table for grammar G are: 
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1. Augment  G and produce G‟   
2. Construct  the canonical collection of set of items C for G‟   
3. Construct  the parsing action function action and goto using the following algorithm that 

requires FOLLOW(A) for each non-terminal of grammar.  

 
Algorithm for construction of SLR parsing table: 

 

Input  : An augmented grammar G‟  
Output : The SLR parsing table functions action and goto for G‟  
Method :  
1. Construct C ={I0, I1, …. In}, the collection of sets of LR(0) items for G‟.   
2. State i is constructed from Ii.. The parsing functions for state i are determined as follows:   

(a) If [A→α∙aβ] is in Ii and goto(Ii,a) = Ij, then set action[i,a] to “shift j”. Here a must be 

terminal.   
(b) If[A→α∙] is in Ii , then set action[i,a] to “reduce A→α” for all a in FOLLOW(A).   
(c) If [S‟→S.] is in Ii, then set action[i,$] to “accept”.  

 
If any conflicting actions are generated by the above rules, we say grammar is not SLR(1). 

 

3. The goto transitions for state i are constructed for all non-terminals  A using the rule: If 

goto(Ii,A)= Ij, then goto[i,A] = j.  
4. All entries not defined by rules (2) and (3) are made “error”   
5. The initial state of the parser is the one constructed from the set of items containing 

[S‟→.S].  

 
Example for SLR parsing:  
Construct SLR parsing for the following grammar :  
G : E → E + T | T  

T → T * F | F  
F→ (E) | id 

 

The given grammar is :  
G : E → E + T ------ (1) 

E →T ------ (2) 

T → T * F  ------ (3) 

T → F  ------ (4) 

F→ (E)  ------ (5) 

F→ id  ------ (6) 

 

Step 1 : Convert  given grammar into augmented grammar.  
Augmented  grammar :  

E‟ → E  
E → E + T  
E → T  
T → T * F  
T → F  
F→ (E)  
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F→ id 

 

Step 2 : Find LR (0) items. 

 

I0 : E‟ → . E  
E → . E + T   
E → . T   
T → . T * F   
T → . F   
F → . (E)   
F → . id  

 
 

GOTO ( I0 , E)   GOTO ( I4 , id ) 

I1 : E‟ → E .  I5 : F→ id . 

E → E . + T    

     

    



 

GOTO ( I0 , T)  
I2 : E → T .  

T → T . * F 

 

GOTO ( I0 , F)  
I3 : T → F . 
 
 
 

 

GOTO ( I0 , ( )  
I4 : F → ( . E)  

E → . E + T   
E → . T   
T → . T * F   
T → . F   
F → . (E)   
F → . id  

 

GOTO ( I0 , id  )  
I5 : F→ id . 

 

GOTO ( I1 , +  )  
I6 : E → E + .  T 

T → . T *  F  
T → . F  
F → . (E) 

F → . id 

 
GOTO ( I2 , *  )  
I7 : T → T * . F  

F → . (E) 

F → . id 

 
GOTO ( I4 , E )  
I8 : F→ ( E . )  

      E → E . + T 

 
GOTO ( I4 , T)  
I2 : E →T .  

T → T . * F 

 

GOTO ( I4 , F)  
I3 : T → F . 

GOTO ( I6 , T )  
I9 : E → E + T .  

T → T . * F 

 

GOTO ( I6 , F )  
I3 : T → F . 

 

GOTO ( I6 , ( )  
I4 : F→ ( . E ) 

 

GOTO ( I6 , id)  
I5 : F→ id . 

 

GOTO ( I7 , F )  
I10 : T → T * F . 

 

 GOTO ( I7 , ( )  
 I4 : F→ ( . E )  

 E → . E + T  
 E → . T  
 T → . T * F  
 T → . F  
 F → . (E)  
 F → . id 

 

 GOTO ( I7 , id )  
 I5 : F → id . 

 

 GOTO ( I8 , ) )  
 I11 : F→ ( E ) . 

 

GOTO ( I8 , + )  
I6 : E → E + . T  

T → . T * F  
T → . F  
F→ . ( E )  
F→ . id 

 

GOTO ( I9 , *)  
I7 : T → T * . F  

      F→ . ( E )  
                             F→ . id 
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GOTO ( I4 , ()  
I4 : F → ( . E)  

E → . E + T   
E → . T   
T → . T * F   
T → . F   
F → . (E)   
F → id  

 
 
E → E + T | T  
T → T * F | F 

F→ (E) | id 

 

FOLLOW (E) = { $ , ) , +}  
FOLLOW (T) = { $ , + , ) , * }  
FOOLOW (F) = { * , + , ) , $ } 
 
SLR parsing table: 
 

      ACTION        GOTO    
 

                   
 

 

 id  +  *  (  )  $ 
 

 E T F 
  

          
 

                   
 

I0  s5       s4       1  2  3  
 

                   
 

I1    s6         ACC        
 

                   
 

I2    r2   s7     r2   r2        
 

                   
 

I3    r4   r4     r4   r4        
 

                   
 

I4  s5       s4       8  2  3  
 

                   
 

I5    r6   r6     r6   r6        
 

                   
 

I6  s5       s4        9  3  
 

                   
 

I7 s5      s4          10  
 

                   
 

I8   s6      s11          
 

                   
 

I9   r1  s7    r1  r1        
 

                   
 

I10   r3  r3    r3  r3        
 

                   
 

I11   r5  r5    r5  r5        
 

                   
 

 

Blank entries are error entries. 
 
Stack implementation: 
 
Check whether the input id + id * id is valid or not. 
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STACK 
 
0 
 
0 id 5 
 
0 F 3 
 

 

0 T 2 
 

 

0 E 1 
 

 

0 E 1 + 6 
 
0 E 1 + 6 id  5 
 
0 E 1 + 6 F  3 

INPUT 
 
id + id * id $ 
 

+ id * id $  
 

+ id * id $  
 

 

+ id * id $  
 

 

+ id * id $  
 

 

id * id $ 
 

 * id $ 
 

 * id $ 

ACTION 
 
GOTO ( I0 , id ) = s5 ; shift 
 
GOTO ( I5 , + ) = r6 ; reduce by F→id 
 
GOTO ( I0 , F ) = 3  
GOTO ( I3 , + ) = r4 ; reduce by T → F 
 
GOTO ( I0 , T ) = 2  
GOTO ( I2 , + ) = r2 ; reduce by E → T 
 
GOTO ( I0 , E ) = 1  
GOTO ( I1 , + ) = s6 ; shift 
 
GOTO ( I6 , id ) = s5 ; shift 
 
 GOTO ( I5 , * ) = r6 ; reduce by F→ id 
 
 GOTO ( I6 , F ) = 3  
 GOTO ( I3 , * ) = r4 ; reduce by T → F 
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 0 E 1 + 6 T  9  * id $  GOTO ( I6 , T ) = 9  

     GOTO ( I9 , * ) = s7 ; shift  
     

 0 E 1 + 6 T  9 * 7  id $  GOTO ( I7 , id ) = s5 ; shift  
      

 

0 E 

1 

+ 6 T  9 * 7 id 

5  $  GOTO ( I5 , $ ) = r6 ; reduce by F→ id  
      

 

0 E 

1 

+ 6 T  9 * 7 F 

10  $  GOTO ( I7 , F ) = 10  

    

 GOTO ( I10 , $ ) = r3 ; reduce by T → T 

* F  
       

 

0 E 

1 + 6 T  9  $ 

 GOTO ( 

I6  , T ) = 9  

    

 GOTO ( 

I9 

 , $ ) = r1 ; reduce by E → E + 

T  
       

 

0 E 

1  $ 

GOTO ( 

I0 , E ) = 1  

    

GOTO ( 

I1 , $ ) = accept  
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