
UNIT 1-- LEXICAL ANALYSIS 

Structure of compiler – Functions and Roles of lexical phase – Input buffering – Representation of 

tokens using regular expression – Properties of regular expression – Finite Automata – Regular 

Expression to Finite Automata – NFA to Minimized DFA.  

 

1.STRUCTURE OF COMPILER: 

Compiler  is  a  translator  program  that reads a program written in one language -the source 

language- and translates it into an equivalent program in another language-the target language. As 

an important part  of this translation process, the compiler reports to its user the presence of errors in 

the source program. 

 

 

 

 

  

 

 

 

 

Fig. 1.1. A Compiler 

 

1.1 A LANGUAGE-PROCESSING SYSTEM: 

 

Fig. 1.2. A language-processing system 

The input to a compiler may be produced by one or more preprocessor, and further processing of the 

compiler's output may be needed before running machine code is obtained. 

Preprocessors: 

Preprocessors produce input to compilers. They may perform the following functions: 

source 

program 

target 

program 

Compiler 

error 

messages 



1. Macro processing: A preprocessor may allow a user to define macros that are shorthand for 

longer constructs. 

2. File inclusion: A preprocessor may include header files  into the program text. For example, 

the C     

3. preprocessor causes the contents of the file <stdio.h> to replace the statement  

#include<stdio.h> when it processes a file containing this statement. 

4. "Rational" preprocessors. These processors augment older languages with more modern 

flow-of-control and data-structuring facilities. For example, such a preprocessor might 

provide the user with built-in macros for constructs like while-statements or if-statements, 

where none exist in the programming language itself. 

5. Language extensions. These processors attempt to add capabilities to the language by what 

amounts to built-in-macros. 

Assemblers: 

Some compilers produce assembly code, which is passed to an assembler for producing a relocatable 

machine code that is passed directly to the loader/linker editor. The assembly code is the mnemonic 

version of machine code. A typical sequence of assembly code is: 

  MOV  a, R1 

  ADD  #2, R1 

  MOV  R1, b 

Loaders and Linker-Editors: 

• A loader program performs two functions  namely, loading and  link-editing. The 

process of  loading consists of taking  relocatable machine code ,altering the relocatable 

addresses and placing the alters  instructions and data in memory at the proper locations. 

• The link-editor allows to make a single program from several files of relocatable 

machine code. 

1.2 THE PHASES OF A COMPILER 

Analysis-Synthesis Model of Compilation: 

 There are two parts to compilation: analysis and synthesis. The analysis part breaks up the 

source program   into constituent pieces and creates an intermediate representation of the source 

program. The synthesis  

       part constructs the desired target program from the intermediate representation. The analysis 

consists of     

       three phases: 

1. Linear analysis, in which the stream of characters making up the source program is read 

from left to right and  grouped into tokens that are sequences of character having a 

collective meaning. 

2. Hierarchical analysis, in which characters or tokens are grouped hierarchically into nested 

collections with  collective meaning. 

3. Semantic analysis, in which certain checks are performed to ensure that the components of a 

program fit together meaningfully. 

 A compiler operates in phases, each of which transforms the source program from one 

representation to another. The structure of compiler is shown in Fig.1.3.The first three phases form 

the analysis portion of the compiler and rest of the phases form the synthesis phase. 

 



 
Fig. 1.3. Phases of a compiler 

Lexical Analysis: 

 In a compiler, linear analysis is called lexical analysis or scanning. For example, in lexical 

analysis the characters in the assignment statement, 

position = initial + rate * 60 

would be grouped into the following tokens: 

1. The identifier position. 

2. The assignment symbol =. 

3. The identifier initial. 

4. The plus sign. 

5. The identifier rate. 

6. The multiplication sign. 

7. The number 60. 

The blanks separating the characters of these tokens would be eliminated during this phase. 

Syntax Analysis: 

 Hierarchical analysis is called parsing or syntax analysis. It involves grouping the tokens of the 

source program into grammatical phrases that are used by the compiler to synthesize the output. The 

source program is represented by a parse tree as one shown in Fig. 1.5. 

 



 
Fig. 1.5. Parse tree for  position = initial + rate * 60 

The hierarchical structure of a program is expressed by recursive rules .i.e by context-free 

grammars.The following rules define an expression: 

1. Any identifier is an expression. i.e. E → id 

2. Any number is an expression. i.e. E → num 

3. If expression1 (E1)and expression2 (E2)are expressions ,then , 

   E → E + E | E * E | ( E ) 

Rules (1) and (2) are basic rules which are non-recursive, while rule(3) define expression in 

terms of operators applied to other expressions. 

Semantic Analysis: 

• The semantic analysis phase checks the source program for semantic errors and gathers type 

information for the subsequent code-generation phase. 

• An important component of semantic analysis is type checking. i.e .whether the operands are 

type compatible. 

• For example, a real number used to index an array. 

 
Fig. 1.6. Semantic analysis inserts a conversion from integer to real 

 

Intermediate Code Generation: 

 After semantic analysis, some compilers generate an explicit intermediate representation of  the 

source program. This representation should  be easy to produce and easy to translate into the target 

program. There are  variety of forms. 

• Three address code 

• Postfix notation 

• Syntax Tree 



The commonly used  representation  is three address format. The format consist of a sequence of 

instructions, each of which has at most three operands. The IR code for the given input is  as 

follows: 

 temp1 = inttoreal ( 60 ) 

 temp2 = id3 *  temp1 

 temp3 = id2 + temp2 

 id1 = temp3 

Code Optimization: 

• This phase attempts to improve the intermediate code, so that faster running machine code 

will result. 

• There is a better way to perform the same calculation for the above three address code ,which 

is given as follows: 

 temp1 = id3 * 60.0 

 id1 = id2 + temp1 

• There are various techniques used by most of the optimizing compilers, such as: 

1. Common sub-expression elimination 

2. Dead Code elimination 

3. Constant folding 

4. Copy propagation 

5. Induction variable elimination 

6. Code motion 

7. Reduction in strength.....etc.. 

Code Generation: 

• The final phase of the compiler is the generation of target code, consisting of relocatable 

machine code or assembly code. 

• The intermediate instructions are each  translated  into sequence of machine instructions 

that perform the same task. A crucial aspect is the assignment of variables to registers.  

• Using registers R1 and R2,the translation of the given example is: 

  MOV  id3 , R2 

  MUL  #60.0 , R2 

  MOV  id2 , R1 

  ADD  R2 , R1 

  MOV  R1 , id1 

Symbol-Table Management: 

• An essential function of a compiler is to record the identifiers used in the source program and 

collect its information. 

• A symbol table is a data structure containing a record for each identifier with fields for 

attributes.(such as, its type, its scope, if procedure names then the number and type of 

arguments etc.,) 

• The data structure allows to find the record for each  identifier and store or retrieve data from 

that record quickly. 

Error Handling and Reporting: 

• Each phase can encounter errors. After detecting an error, a phase must deal that error, so that 

compilation can proceed ,allowing further errors to be detected. 



• Lexical phase can detect error where the characters remaining in the input do not form any 

token. 

• The syntax and semantic phases handle large fraction of errors. The stream of tokens violates 

the syntax rules are determined by syntax phase. 

• During semantic, the compiler tries to detect constructs that have the right syntactic structure 

but no meaning to the operation  involved. e.g. if we try to add two identifiers ,one is an array 

name and the other a procedure name. 

 
 

Fig. 1.4. Translation of statement 



2. FUNCTIONS AND ROLES OF LEXICAL PHASE : 

• It is the first phase of a compiler. 

• Its main task is to read input characters and produce tokens. 

• "get next token "is a command sent from the parser to the lexical analyzer(LA). 

• On receipt of the command ,the LA scans the input until it determines the next token and 

returns it. 

• It skips white spaces and comments while creating these tokens. 

• If any error is present the LA will correlate that error with source file and the line number. 

 

 
Fig. 1.5. Interaction of lexical analyzer with parser 

Issues in Lexical Analysis: 

There are several reasons for separating the analysis phase of compiling into lexical and parsing: 

1. Simpler design is the most important consideration. 

2. Compiler efficiency is improved. A large amount of time is spent reading the source program 

and partitioning into  tokens. Buffering techniques are used for reading input characters and 

processing tokens that speed up the performance of the compiler. 

3. Compiler portability is enhanced. 

 

Tokens ,Patterns, Lexemes: 

• Token is a sequence of characters in the input that form a meaningful word. In most 

languages, the tokens fall into these categories:  Keywords , Operators, Identifiers , 

Constants, Literal strings and Punctuation. 

• There is a set of strings in the input for which a token is produced as output. This set is 

described a rule called pattern. 

• A lexeme is a sequence of characters in the source program that is matched by the pattern for 

a token. 

 
Fig. 1.6. Examples of tokens 



Attributes of tokens: 

• The lexical analyzer collects information about tokens into their associated attributes. The 

tokens influence parsing decisions and attributes influence the translation of tokens. 

• Usually a token has a single attribute i.e. pointer to the symbol table entry in which the 

information about the token  is kept.  

Example: The tokens and associated attribute values for the statement given , 

 
Lexical errors: 

Few errors are discernible at the lexical level alone, because a LA has a very localized view of the 

source program. A LA may be unable to proceed because none of the patterns for tokens matches a 

prefix of the remaining input.  

Error-recovery actions are: 

i. Deleting an extraneous character. 

ii. Inserting a missing character. 

iii. Replacing an incorrect character by a correct character. 

iv. Transposing two adjacent characters. 

 

 

3. INPUT BUFFERING 

 A two-buffer input scheme that is useful when look ahead on the input is necessary to identify 

tokens is discussed. Later, other techniques for speeding up the LA ,such as the use of "sentinels" to 

mark the buffer end is also discussed. 

Buffer Pairs: 

   A large amount of time is consumed in scanning characters ,specialised buffering techniques are 

developed to reduce the amount of overhead required to process an input character. A buffer divided 

into two N-character halves is shown in Fig. 1.7.Typically, N is the number of characters on one disk 

block, e.g., 1024 or 4096. 

 
 

Fig. 1.7. An input buffer in two halves. 

 



• N ,input characters are read into each half of the buffer with one system read command, 

instead of invoking a read command for each input character. 

• If fewer than N characters remain in the input, then a special character  eof  is read into buffer 

after the input characters.(eof---end of file) 

• Two pointers, forward and lexeme_beginning are maintained. The string of characters 

between the two pointers is the current lexeme. 

• If the forward pointer has moved halfway mark, then the right half is filled with  N new input 

characters. If the forward pointer is about to move the right end of the buffer, then the left 

half is filled with  N new input characters and the wraps to the beginning of the buffer. Code 

for advancing forward pointer is shown in Fig. 1.8. 

 
Fig. 1.8. Code to advance forward pointer 

 

Sentinels: 

• With the previous algorithm , we need to check each time we move the forward pointer that 

we have not moved off one half of the buffer. If so, then we must reload the other half. 

• This can be reduced ,if we extend each buffer half to hold a sentinel character at the end. 

• The new arrangement and code is shown in Fig. 1.9and 1.10.This code performs only one test 

to see whether forward points to an eof. 

 
Fig. 1.9. Sentinels at end of each buffer half. 

 
Fig. 1.10. Lookahead code with sentinels. 



 

4. REPRESENTATION OF TOKENS USING REGULAR EXPRESSION 

 Regular expression are an important notation for specifying patterns. The term alphabet or 

character class denotes any finite set of symbols. Symbols are letters and characters. The set {0,1} is 

the binary alphabet. ASCII and EBCDIC are two examples of computer alphabets. 

• A string over some alphabet is a finite sequence of symbols drawn from that alphabet. 

The length of a string s is written as |s|, is the number of occurrences of symbols in s. 

• The empty string ,denoted by Ɛ, is a special string of length zero. 

• The term language denotes any set of strings over some fixed alphabet. 

• The empty set {Ɛ}, the set containing only the empty string. 

• If x and y are strings ,then the concatenation of x and y ,written as xy ,is the string formed 

by appending y to x. 

Some common terms associated with the parts of the string are shown in Fig. 1.11. 

 
Fig. 1.11. Terms for parts of a string 

Operations on Languages 

There are several important operations that can be applied to languages. The various operation and 

their definition are shown in Fig.1.12. 

 
Fig. 1.12. Definitions of operations on languages. 

 



 Let L be the set {A,B,......,Z,a,b,......,z} consisting upper and lowercase alphabets, and D the set 

{0,1,2,.....,9} consisting  the set of ten decimal digits. Here are some examples of new languages 

created from L and  D. 

  
Regular Language 

• A regular language over an alphabet   is the one that can be obtained from the basic languages 

using the operations Union, Concatenation and Kleene *. 

• A language is said to be a regular language if there exists a Deterministic Finite Automata (DFA) 

for that language. 

• The language accepted by DFA is a regular language. 

• A regular language can be converted into a regular expression by leaving out {} or by replacing 

{} with () and by replacing U by +. 

 

Regular Expressions  

Regular expression is a formula that describes a possible set of string.  

Component of regular expression.. 

X the character x 

. any character, usually accept a new line 

[x y z] any of the characters x, y, z, ….. 

R? a R or nothing (=optionally as R)  

R* zero or more occurrences….. 

R+ one or more occurrences …… 

R1R2 an R1 followed by an R2 

R2R1 either an R1 or an R2. 

A token is either a single string or one of a collection of strings of a certain type. If we view the  set  of  

strings  in  each  token  class  as  an  language,  we  can  use  the  regular-expression notation to describe 

tokens. 

 

Consider an identifier, which is defined to be a letter followed by zero or more letters or digits. In 

regular expression notation we would write. 

 

Identifier = letter (letter | digit)* 

 

Here are the rules that define the regular expression over alphabet   . 

 



Regular expression is used to describe the structure of tokens. Formal definition is, 

1. Ɛ is said to be a regular expression. 

2.Φ is said to be a regular expression. 

3.a in ∑ is said to be regular expression. 

4.Suppose r1 and r2 are regular expressions denoting the languages L(r1) and L(r2).  Then, 

a) (r1 )| (r2)  is a regular expression denoting L(r1)Ư L(r2).   

b) (r1 ). (r2)  is a regular expression denoting L(r1). L(r2).   

c) (r1 )*  is a regular expression denoting L(r1)*.    

 

Unnecessary parentheses can be avoided in regular expressions if we adopt the conventions that:  

1. The unary operator * has the highest precedence and is left associative. 

2. concatenation has the second highest precedence and is left associative. 

3. | ,the alternate operator has the lowest precedence and is left associative. 

 

5. PROPERTIES OF REGULAR EXPRESSION 

There are a number of algebraic laws obeyed by regular expressions and these can be used to manipulate 

regular expressions into equivalent forms. Algebraic properties are shown in Fig. 1.13.  

 
Fig. 1.12. Algebraic laws of regular expression 

Regular Definitions 

 For notational convenience, we may wish to give names to regular expressions and to define 

regular expressions using these names as if they were symbols. 

 Identifiers  are  the  set  or  string  of  letters  and  digits  beginning  with  a  letter.  The following 

regular definition provides a precise specification for this class of string. 

Example-1, 

ab*|cd? Is equivalent to (a(b*)) | (c(d?)) 

Pascal identifier 

Letter - A | B | ……| Z | a | b |……| z| 

Digits - 0 | 1 | 2 | …. | 9 

Id - letter (letter / digit)* 

 

Transition Diagrams for Relational operators and identifier is shown below. 



 
 

 
 

6. FINITE AUTOMATA  

 A recognizer for a language is a program that takes as input a string  x and answer "yes" if  x is a 

sentence of  the language and "no" otherwise. The regular expression is compiled into a recognizer by 

constructing a generalized transition diagram called a finite automaton. A finite automaton can be 

deterministic or nondeterministic ,where "nondeterministic" means more than one transition out of a 

state may be possible on the same input symbol. 

Deterministic Finite Automata (NFA) 

A Finite Automata (FA) or Finite State Machine (FSM) is a 5- tuple (Q,∑,q0,A, δ) where, 

o Q is the set of finite states  

o ∑ is the set of input symbols (Finite alphabet) 

o q0 is the initial state 

o A is the set of all accepting states or final states. 

o δ is the transition function, Q×∑→ Q 

For any element q of Q and any symbol a∑, we interpret δ(q,a) as the state to which the Finite 

Automata moves, if it is in state q and receives the input ‘a’. 

How to draw a DFA? 

1. Start scanning the string from its left end. 

2. Go over the string one symbol at a time. 

3. To be ready with the answer as soon as the string is entirely scanned. 

 

Non-Deterministic Finite Automata (NFA) 

Definition: 

A NFA is defined as a 5-tuple, M=(Q, ∑,q0,A, δ) where, 

o Q is the set of finite states  



o ∑ is the set of input symbols (Finite alphabet) 

o q0 is the initial state 

o A is the set of all accepting states or final states. 

o δ is the transition function, Q×∑→ 2Q 

Regular expression to NFA: 

Thompson’s construction method 

1. R =  

 

2. R = r1 

 

3. R=r1r2 

 

4. R=r1/r2 (or) r1+r2 

 

5. R=r* 

q5 q0 

 

r1 

 q1 

 

q2 

 

q3 

 

q4 

 
r2 

 

 

 

 

 

q2 q0 

 

r1 

q1 

 

r2 

q1 q0 

 

r1 

q1 q0 

 

 



 

6. R=r+  

 

Problems 

1. Construct NFA for: (0+1)*10  

 

 

 

 

7. REGULAR EXPRESSION TO FINITE AUTOMATA – NFA TO MINIMIZED DFA 

 

Converting NFA to DFA: The Subset Construction Algorithm  

 

The algorithm for constructing a DFA from a given NFA such that it recognizes the same language is 

called subset construction. The reason is that each state of the DFA machine corresponds to a set of 

 

q6 
q1 

 

0 

 q2 

 

q3 

 

q4 

 

q5 

 
1 

 

 

 

q0 

 

q0 

 

q0 

 

q0 

 

 0 1 

 

 

 

 

 

q2 q0 

 

q1 

 

r 

q1 

 

  

 

q2 q0 

 

q1 

 

r 

q1 

 

  

 

 



states of the NFA. The DFA keeps in a particular state all possible states to which the NFA makes a 

transition on the given input symbol. In other words, after processing a sequence of input symbols the 

DFA is in a state that actually corresponds to a set of states from the NFA reachable from the starting 

symbol on the same inputs. 

 

  There are three operations that can be applied on NFA states: 

 

 Operation Definition  

  -closure( s ) set of NFA states reachable from state s on -transition 

  -closure( T ) set of NFA states reachable from some s in T on -transition 

  move( T, a ) set of NFA states to which there is transition on input a  

from some state s in the set T 

 

The staring state of the automaton is assumed to be s0. The -closure( s ) operation computes exactly all 

the states reachable from a particular state on seeing an input symbol. When such operations are defined 

the states to which our automaton can make a transition from set T on input a can be simply specified as: 

 -closure( move( T, a ) ) 

 

Subset Construction Algorithm 

 

Initialize: Let  -closure( s0 )  be the only state in Dstates ( of the DFA )  

Repeat:    while there are unmarked states  T  in  Dstates  do 

   mark T 

   for each symbol  a  do 

    U =  -closure( move( T, a ) ) 

    if  U  is not in Dstates then 

     add  U  as unmarked state in  Dstates 

    Dtran[ T, a ] = U 

   end 

   end 

 
Algorithm for Computation of -closure 

 

Initialize: Let all states from T are on the Stack, 

    and  -closure( T ) = T 

Repeat:    while  Stack  is not empty  do 

   pop  t  from the top of the  Stack 

   for each state  u  with edge from  t  to  u  labeled    do 

    if  u  is not in  -closure( T )  then 

     add  u  to -closure( T ) 

     push  u  onto the  Stack 

    end 

   end 

 
 



Example: Convert the NFA for the expression:  ( a | b )*abb  into a DFA using the subset 

construction algorithm.  

 

Step 1: Convert the above expression in to NFA using Thompson rule constructions. 

                

start
0 1

3
a

6

 





2

7


4 5
b

 


8

a
109

b b

 

 

Step 2: Convert the above NFA in to DFA. 

 

The derivation of the states and transitions of the DFA, including the computation of the -closure and 

move functions, can be demonstrated as follows: 

  

-closure({0}) = {1,2,4,7} = A 

-closure(move(A,a))= {3, 8} 

-closure( {3, 8} )={1,2,3,4,6,7,8}= B 

-closure(move(A,b))= {5} 

-closure( {5} )={1,2,4,5,6,7}= C 

 
-closure(move(B,a))=-closure( {3, 8} )= B 

-closure(move(B,b) =-closure( {5, 9} )={1,2,4,5,6,7,9}= D 

-closure(move(C,a))=-closure( {3,8} )= B 

-closure(move(C,b))=-closure( {5} )= C 

-closure(move(D,a))=-closure( {3,8} )= B 

-closure(move(D,b))=-closure( {5,10} )={1,2,4,5,6,7,10}= E 

-closure(move(E,a))=-closure( {3,8} )= B 

-closure(move(E,b))=-closure( {5} )= C 

The above procedure is repeated until no new state can be found. 

 

 

 

 

 



The transition table for DFA : 

  

  STATE a b 

A B C 

B B D 

C B C 

D B E 

E B C 

 

The DFA is: 

                     

A Bstart E
a

D
b b

b

a

a

a

bC

a

b

 
 

 

 

Minimized DFA.  

Step 3: Convert the above DFA in to minimized DFA by applying the following algorithm.  

Minimized DFA algorithm: 

Input: DFA with ‘s’ no of states 

Output: Minimized DFA with reduced no of states.  

Steps:  

1. Partition the set of states in to two groups. They are set of accepting states and non accepting states. 

2. For each group G of π do the following steps until π=π new .  

 begin 

  divide G in to as many groups as possible, such that two states s and t are in the same group only    

      when for all states s and t have transitions for all input symbols ‘s’ are in the same group itself.   

      Place newly formed group in π new. 

end  

3. Choose representative state for each group. 

4. Remove any dead state from the group. After applying minimized DFA algorithm for the regular 

expression (a|b)*abb , the transition table for the minimized DFA becomes 

 



Transition table for Minimized state DFA : 

 

STATES Input Symbol 

a b 

A  B A 

B B D 

D B E 

E B A 

 

 

Minimized DFA: 

 
 

 

Exercises: 

Convert the following regular expression in to minimized state DFA, 

1. (a|b)* 

2. (b|a)*abb(b|a)*  

3. ((a|c)*)ac(ba)* 

 

 

 

 

 


