
1

SCHOOL OF COMPUTING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

UNIT-III Compiler Design – SCS1303

2

III. INTERMEDIATE CODE GENERATION

Syntax directed translation scheme - Three Address Code – Representation of three address code

- Intermediate code generation for: assignment statements - Boolean statements - switch case

statement –Procedure call - Symbol Table Generation.

Syntax Directed Translation:

Semantic Analysis computes additional information related to the meaning of the program once

the syntactic structure is known. Semantic analysis involves adding information to the symbol

table and performing type checking. It needs both representation and implementation

mechanism.

The Principle of Syntax Directed Translation states that the meaning of an input sentence is

related to its syntactic structure, i.e., to its Parse-Tree.

We associate Attributes to the grammar symbols representing the language constructs. Values for

attributes are computed by Semantic Rules associated with grammar productions

Evaluation of Semantic Rules may:

• Generate Code;

• Insert information into the Symbol Table;

• Perform Semantic Check;

• Issue error messages;

There are two notations for attaching semantic rules:

 1. Syntax Directed Definitions. High-level specification hiding many

implementation details (also called Attribute Grammars).

 2.Translation Schemes. More implementation oriented: Indicate the order in which semantic

rules are to be evaluated

Syntax Directed Definitions are a generalization of context-free grammars in which:

 1. Grammar symbols have an associated set of Attributes;

 2. Productions are associated with Semantic Rules for computing the values of attributes.

Annotated Parse-Trees where each node of the tree is a record with a field for each attribute (e.g.,

X.a indicates the attribute a of the grammar symbol X).

The value of an attribute of a grammar symbol at a given parse-tree node is defined by a

semantic rule associated with the production used at that node.

3

There are two kinds of attributes:

1. Synthesized Attributes: They are computed from the values of the attributes of

the children nodes.

2. Inherited Attributes: They are computed from the values of the attributes of

both the siblings and the parent nodes

Example: Let us consider the Grammar for arithmetic expressions (DESK CALCULATOR)

The Syntax Directed Definition associates to each non terminal a synthesized attribute called val.

Definition: An S-Attributed Definition is a Syntax Directed Definition that uses only synthesized

attributes.

Evaluation Order: Semantic rules in a S-Attributed Definition can be evaluated by a bottom-up,

or Post Order, traversal of the parse-tree.

The annotated parse-tree for the input 3*5+4n is:

Fig 3.1 Annotated Parse Tree

4

Implementation of SDT for Desk Calculator:

Use an extra fields in the parser stack entries corresponding to the grammar symbols. These

fields hold the values of the corresponding translations.

The grammar and corresponding Semantic action is shown below:

The Annotated parse tree for the expression 23*4+5 is depicted in Fig 3.2.

Fig 3.1 Annotated Parse Tree for 23*4+5$

5

The method of implementing the desk calculator is given using the program fragment represents

the stack implementation to evaluate a given expression.

The sequences of moves to implement the evaluation of an expression are shown in Fig 3.3.

Fig 3.3 Sequence of moves

6

Intermediate Code Representation:

In the analysis-synthesis model of a compiler, the front end of a compiler translates a source

program into an independent intermediate code, then the back end of the compiler uses this

intermediate code to generate the target code (which can be understood by the machine).

The benefits of using machine independent intermediate code are:

1. Intermediate code eliminates the need of a new full compiler for every unique machine by

keeping the analysis portion same for all the compilers.

2. The second part of compiler, synthesis, is changed according to the target machine.

3. It becomes easier to apply the source code modifications to improve code performance by

applying code optimization techniques on the intermediate code.

Intermediate codes can be represented in a variety of ways and they have their own benefits.

1. High Level IR - High-level intermediate code representation is very close to the source

language itself. They can be easily generated from the source code and we can easily

apply code modifications to enhance performance. But for target machine optimization, it

is less preferred.

2. Low Level IR - This one is close to the target machine, which makes it suitable for register

and memory allocation, instruction set selection, etc. It is good for machine-dependent

optimizations.

Intermediate code can be either language specific (e.g., Byte Code for Java) or language

independent (three-address code).

• During the translation of a source program into the object code for a target machine, a

compiler may generate a middle-level language code, which is known as intermediate

code or intermediate text.

• The complexity of this code lies between the source language code and the object code.

• The intermediate code can be represented in the form of:

– Postfix notation,

– Syntax tree,

– Three-address code.

Postfix Notation:

The ordinary (infix) way of writing the sum of a and b is with operator in the middle : a + b. The

postfix notation for the same expression places the operator at the right end as ab +. In general, if

7

e1 and e2 are any postfix expressions, and + is any binary operator, the postfix notation is:

 e1e2 +

No parentheses are needed in postfix notation because the position and arity (number of

arguments) of the operators permit only one way to decode a postfix expression.

The postfix representation of the expressions:

1. (a+b)*c → ab+c*

2. a*(b+c) → abc+*

3. (a+b)*(c+d) → ab+cd+*

4. (a – b) * (c + d) + (a – b) → ab - cd + *ab - +

 Let us introduce a 3-ary (ternary) operator ,the conditional expression. Consider if e then x else

y ,whose value is

Using ? as a ternary postfix operator, we can represent this expression as: exy?

Evaluation of Postfix Expression:

Consider the postfix expression ab+c*.Suppose a,b and c have values 1,3 and 5 respectively. To

evaluate 13+5*,perform the following:

1. Stack 1

2. Stack 3

3. Add the two topmost elements; pop them off stack and the stack the result 4.

4. Stack 5

5. Multiply the two topmost elements, pop them off stack and the stack the result 20.

The value on top of the stack at the end is the value of the entire expression.

Syntax Directed Translation for Postfix:

E.Code is a string-valued translation. The value of the translation E.code for the first production

is the concatenation of E(1).code , E(2).code and the symbol op

Fig 3.3 SDT for postfix

=

0,

0,

eify

eifx

8

Processing the input a+b*c ,a syntax-directed translator based on an LR parser, has the following

sequence of moves and generates the postfix abc*+.

1. Shift a

2. Reduce by E→ id and print a

3. Shift +

4. Shift b

5. Reduce by E→ id and print b

6. Shift *

7. Shift c

8. Reduce by E→ id and print c

9. Reduce by E→ E op E and print *

10. Reduce by E→ E op E and print +

Syntax tree:

Syntax tree is nothing more than condensed form of a parse tree. The operator and keyword

nodes of the parse tree are moved to their parents and a chain of single productions is replaced by

single link in syntax tree the internal nodes are operators and child nodes are operands. To form

syntax tree put parentheses in the expression, this way it's easy to recognize which operand

should come first.

Example:

The syntax tree for the expression a*(b+c)/d is as shown in the figure.

The syntax tree for the statement if a=b then a=c+d else b=c-d

9

Syntax Directed Translation for syntax tree:

Fig 3.4 SDT for syntax tree

Three Address Code:

Three address code is a sequence of statements of the general form x =y op z where x, y, and z

are names, constants, or compiler-generated temporaries;

• op stands for any operator such as a fixed- or floating-point arithmetic operator or a

logical operator on Boolean valued data.

Note that no built-up arithmetic expressions are permitted, as there is only one operator on the

right side of a statement.Thus a source language expression like x+ y * z might be translated into

a sequence t1= y * z t2=x + t1 where t1, and t2 are compiler-generated temporary names.

Types of Three Address Statements:

Three-address Statements are akin to assembly code. Statements can have symbolic labels and

there are statements for flow of control. A symbolic label represents the index of three-address

statement in the array holding intermediate code.

Here are the common three address statements used :

1. Assignment statements of the form x=y op z ,where op is a binary arithmetic or logical

operation.

2. Assignment instructions of the form x = op y. where op is a unary operation. Essential unary

operations include unary minus. Logical negation,shift operators and conversion operators that,

for example. convert fixed-point number to a floating-pointnumber.

3. Copy statement of the form x=y where the value of y is assigned tox.

4. The unconditional jump goto L. The three-address statement with label L is the next to be

executed.

10

5. Conditional jumps such as If x relop y goto L. This instruction applies a relational

operator(,>=,etc.) to x and y. and executes, the statement with label L next if x stands in relation

relop to y. If not, the three-address statement following if x relop y goto L is executed next,, as is

the usual sequence.

6. Param x and call p, n for procedure calls and return y. where y representing a returned value

is optional Their typical use it as the sequence of three.address statements.

param x1

param x2

….

Param xn

call p,n

generated as part of a call of the procedure p(x1,x2,….xn)

7. Indexed assignments of the form x=y[i] and x[i]=y. The first of these sets x to the value in the

location i memory units beyond location y. The stat[i]=y sets the contents of the location I

units beyond x to the value of y. In both these instructions, x, y. and i refer to data objects.

8. Address and pointer assignments of the form x=&y, x=*y and*x=y

Implementation of Three Address Statements:

A three-address statement is an abstract form of intermediate code.In a compiler, these

statements can be implemented as records with fields for the operator and the operands.Three

such representations are quadruples, triples, and indirect triples.

Quadruples:

A quadruple is a record structure with four fields, which we call op,. arg1, arg 2, and result. The

op field contains an internal code for the operator. The three-address statement x =y op z is

represented by placing y in arg1, z in arg2, and x in result. Statements with unary operators like x

= -y or x= y do not use arg2. Operators like param use neither arg2 nor result. Conditional and

unconditional jumps put the target label in result.

Example : Consider expression a = b * – c + b * – c.

The three address code is:

t1 = uminus c

t2 = b * t1

t3 = uminus c

11

t4 = b * t3

t5 = t2 + t4

a = t5

Triples:

To avoid entering temporary names into the symbol table, we might refer to a temporary value

by the position of the statement that computes it. Doing so ,the three address statements can be

represented by records with only three fields :op,arg1,arg2.

The contents of fields arg1,arg 2, and result are normally pointers to the symbol-table entries for

the names represented by these fields. If so, temporary names must be entered into the symbol

table as they are created. Triples for conditional and unconditional statements are shown in Fig

3.5.

12

Fig 3.5 Triples

Triples for indexed assignment statements are shown in Fig 3.6.

Fig 3.6 Triples for indexed assignment statements

Indirect Triples:

Another implementation of three address code that has been considered is that of listing pointers

to triples, rather than listing the triples themselves. This implementation is called indirect triples.

A triple and their indirect triple representation ins shown below.

13

Syntax Directed Translation for Assignment Statements :

In the syntax directed translation, assignment statement is mainly deals with expressions.

The expression can be of type real, integer, array…

Consider the grammar:

S → id := E

E → E1 + E2

E → E1 * E2

E → (E1)

E → id

The m=non-terminal E has two attributes:

• E.place, a name that will hold the value of E, and

• E.code, the sequence of three-address statements evaluating E.

A function gen(…) to produce sequence of three address statements .The statements themselves

are kept in some data structure, e.g. list – SDD operations described using pseudo code. The

syntax directed translation for assignment statement is given as below;

14

The sequence of moves in generating the three address code for an assignment statement is given

by the following example.

Example: Generate the three address code for the assignment statement A= − B*(C+D)

Assignment Statement with mixed types:

The constants and variables would be of different types, hence the compiler must either reject

certain mixed-mode operations or generate appropriate coercion (mode conversion) instructions.

Consider two modes:

REAL

INTEGER, with integer converted to real when necessary.

An additional field in translation for E is E.MODE whose value is either REAL or INTEGER.

The semantic rule for E.MODE associated with the production E → E1 + E2 is:

E → E1 + E2 {if E1.MODE = INTEGER and E2.MODE = INTEGER then E.MODE =

 INTEGER else E.MODE = REAL }

When necessary the three address code

15

 A=inttoreal B is generated,

 whose effect is to convert integer B to a real of equal value called A.

Example: Consider the assignment statement

 X=Y+I*J

Assume X and Y to be REAL and I and J have mode INTEGER.

Three-addresss code:

 T1=I int * J

 T2= inttoreal T1

 T3=Y real +T2

 X=T3

The semantic rule uses two translation fields E.PLACE and E.MODE for the non-terminal E

The semantic rule for E → E1 op E2 is given as below:

SDT for Boolean Expression:

Boolean expressions have two primary purposes.

16

1. They are used for computing the logical values.

2. They are also used as conditional expression that alter the flow of control, such

as if-then-else or while-do.

Boolean expression are composed of the boolean operators(and ,or, and not) applied to elements

that are boolean variables or relational expressions. Relational expressions are of the form

E1 relop E2 , where E1 and E2 are arithmetic expressions.

Consider the grammar

E → E or E

E → E and E

E → not E

E → (E)

E → id relop id

E → TRUE E → id

E → FALSE

The relop is any of <,≤,=, ≠, >, or ≥.. We assume that or and and are left associative. or has

lowest precedence ,then and ,then not.

Methods of Translating Boolean Expressions:

There are two methods of representing the value of a Boolean.

1.To encode true or false numerically

• 1 is used to denote true.

• 0 is used to denote false.

 2.To evaluate a boolean expression analogously to an arithmetic expression.

• Flow of control –representing the value of a boolean expression by a position reached

in a program.

• Used in flow of control statements such as if-then-else or while-do statements.

Numerical Representation of Boolean Expressions:

First consider the implementation of boolean expressions using 1 to denote TRUE and 0 to

denote FALSE. Expressions will be evaluated from left to right.

Example 1:

A or B and C

Three address sequence:

17

T1 = B and C

T2 = A or T1

Example 2:

A relational expression A< B is equivalent to the conditional statement.

if A < B then 1 else 0

Three address sequence:

 (1) if A < B goto (4)

 (2) T=0

 (3) goto (5)

 (4) T=1

 (5) ---

Semantic Rules for Boolean Expression:

The Semantic rules for Boolean expression are given as below:

Example: Code for a < b or c < d and e <f

100: if a < b goto 103

101: t1 = 0

102: goto 104

18

103: t1 = 1

104: if c < d goto 107

105: t2 =0

106: goto 108

107: t2 = 1

108: if e < f goto 111

109: t3 =0

110: goto 112

111: t3 = 1

112: t4 = t2 and t3

113: t5 = t1 or t4

Control Flow Representation:

Short Circuit Evaluation of Boolean Expressions:

Flow of control statements with the jump method.

Consider the following : (short circuit code)

 S → if E then S | if E then S1 else S2

 S → while E do S1

Fig 3.7 Attributes used for if E then S1 else S2

E is associated with two attributes:

1. E.true: label which controls if E is true

2. E.false :label which controls if E is false

S.next - is a label that is attached to the first three address instruction to be executed after the

code for S (S1 or S2)

19

The Semantic rule for flow of control statements is given by:

SDT for Switch Case statement:

Switch and case statement is available in a variety of languages. The syntax of case statement is

as follows: Syntax for switch case statement

switch E

begin

case V1: S1

case V2: S2

…

case Vn-1: Sn-1

default: Sn

end

When switch keyword is seen then a new temporary t and two new labels test and next are

generated. When the case keyword occurs then for each case keyword, a new label Li is

created and entered into the symbol table. The value of Vi of each case constant and a pointer

20

to this symbol-table entry are placed on a stack.

SDT for Procedure Call:

Procedure is an important and frequently used programming construct for a compiler. It is used

to generate good code for procedure calls and returns.

Calling sequence:

The translation for a call includes a sequence of actions taken on entry and exit from each

procedure. Following actions take place in a calling sequence:

• When a procedure call occurs then space is allocated for activation record

• Evaluate the argument of the called procedure.

• Save the state of the calling procedure so that it can resume execution after the call.

• Also save the return address. It is the address of the location to which the called routine

must transfer after it is finished.

• Finally generate a jump to the beginning of the code for the called procedure.

Consider the grammar for a simple procedure call statement,

 (1) S→ call id(Elist)

 (2) Elist → Elist,E

 (3) Elist → E

21

Syntax-Directed Translation for Procedure call is given as:

QUEUE is used to store the list of parameters in the procedure call.

Symbol Table Generation:

Symbol table is an important data structure created and maintained by compilers in order to store

information about the occurrence of various entities such as variable names, function names,

objects, classes, interfaces,etc. Symbol table is used by both the analysis and the synthesis parts

of a compiler. It is built in lexical and syntax analysis phases.

The information is collected by the analysis phases of compiler and is used by synthesis phases

of compiler to generate code. It is used by compiler to achieve compile time efficiency. It is used

by various phases of compiler as follows:-

Lexical Analysis: Creates new table entries in the table, example like entries about token.

Syntax Analysis: Adds information regarding attribute type, scope, dimension, line of reference,

use, etc in the table.

Semantic Analysis: Uses available information in the table to check for semantics i.e. to verify

that expressions and assignments are semantically correct (type checking) and updates it

accordingly.

Intermediate Code generation: Refers symbol table for knowing how much and what type of

run-time is allocated and table helps in adding temporary variable information.

Code Optimization: Uses information present in symbol table for machine dependent

optimization.

Target Code generation: Generates code by using address information of identifier present in

the table.

A symbol table is simply a table which can be either linear or a hash table. It maintains an entry

22

for each name in the following format:

<Symbol Name, Type, Attribute>

For example, if a symbol table has to store information about the following variable declaration:

static int interest;

Then it should store the entry such as:

<interest, int, static>

The attribute clause contains the entries related to the name.

Items stored in Symbol table:

• Variable names and constants

• Procedure and function names

• Literal constants and strings

• Compiler generated temporaries

• Labels in source languages

Information used by compiler from Symbol table:

• Data type and name

• Declaring procedures

• Offset in storage

• If structure or record then, pointer to structure table.

• For parameters, whether parameter passing by value or by reference

• Number and type of arguments passed to function

• Base Address

Operations of Symbol table – The basic operations defined on a symbol table includes:

Operations Functions

Allocate To allocate a new empty symbol table

Free To remove all entries and free the storage of symbol table

Lookup To search for a name and return pointer to its entry

Insert To insert name in a symbol table and return a pointer to its

entry

Set_Attribute To associate an attribute with a given entry

Get_Attribute To get an attribute associated with a given entry

23

Implementation of Symbol table – Following are commonly used data structure for

implementing symbol table:-

List:

❖ In this method, an array is used to store names and associated information.

❖ A pointer “available” is maintained at end of all stored records and new names

are added in the order as they arrive

❖ To search for a name we start from beginning of list till available pointer and if

not found we get an error “use of undeclared name”

❖ While inserting a new name we must ensure that it is not already present

otherwise error occurs i.e. “Multiple defined name”

❖ Insertion is fast O(1), but lookup is slow for large tables – O(n) on average

❖ Advantage is that it takes minimum amount of space.

Linked List:

❖ This implementation is using linked list. A link field is added to each record.

❖ Searching of names is done in order pointed by link of link field.

❖ A pointer “First” is maintained to point to first record of symbol table.

❖ Insertion is fast O(1), but lookup is slow for large tables – O(n) on average

Hash Table:

❖ In hashing scheme two tables are maintained – a hash table and symbol table

and is the most commonly used method to implement symbol tables..

❖ A hash table is an array with index range: 0 to table size – 1.These entries are

pointer pointing to names of symbol table.

❖ To search for a name we use hash function that will result in any integer

between 0 to table size –1.

❖ Insertion and lookup can be made very fast –O(1).

❖ Advantage is that search is possible and disadvantage is that hashing is

complicated to implement.

Binary Search Tree:

❖ Another approach to implement symbol table is to use binary search tree i.e. we

add two link fields i.e. left and right child.

❖ All names are created as child of root node that always follows the property of

https://www.geeksforgeeks.org/data-structures/linked-list/
https://www.geeksforgeeks.org/hashing-data-structure/
https://www.geeksforgeeks.org/binary-search-tree-data-structure/

24

binary search tree.

❖ Insertion and lookup are O(log2 n) on average.

Scope Management:

❖ A compiler maintains two types of symbol tables: a global symbol table which

can be accessed by all the procedures and scope symbol tables that are created for

each scope in the program.

❖ To determine the scope of a name, symbol tables are arranged in hierarchical

structure consider the example as shown below:

The above program can be represented in a hierarchical structure of symbol tables:

The global symbol table contains one global variable and two procedure names. The name

mentioned in the sum_num table is not available for sum_id and its child tables.

