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Weight of an edge:  Weight of an edge is just of the value of the edge or the cost of the edge.  

For example, a graph representing cities, has the distance between two cites as the edge cost or 

its weight. 

Network: A graph with weighted edges is called a network. 

Spanning Tree: Any tree consisting of edges in the graph G and including all vertices in G is 

called a spanning tree. 

UNIT 4 ADVANCED GRAPH CONCEPTS 
 

4.1 MINIMUM SPANNING TREES 

 

 
Given a network, we should try to connect all the nodes in the nodes in the graph with 

minimum number of edges, such that the total weight is minimized. To solve this problem, we 

shall devise an algorithm that converts a network into to tree structures called the minimum 

spanning tree of the network. 

Given a network, the edges for the minimum spanning tree are chosen in such a way that: 

(1) Every node in the network must be included in the spanning tree. 

(2) The overall edge weight of the spanning tree is the minimum possible that   

               will allow the existence of a path between any 2 nodes in the tree. 

The two algorithms which are used for finding the minimum spanning tree for a graph are: 

1. Kruskal’s Algorithm 

2. Prim’s Algorithm 

3. Sollin’s Algorithm 

 

4.1.1 KRUSKAL’S ALGORITHM 

 
The Kruskal’s algorithm follows greedy approach. At every stage of the solution, it 

takes that edge which has the minimum cost and builds the minimum spanning tree. 

Example: 

 

 

 

 

 

 

 

 

 
 

Figure.4.1.1.1 Sample Graph  
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Consider the above graph. Now let us apply the Kruskal’s algorithm to construct a 

minimum spanning tree. 

Step 1: 

Construct a queue with the cost of edges, such that the edges are placed in the 

queue in the ascending order of the cost as shown. 

Queue of edge costs 

10 12 14 16 18 22 24 26 28 

 

Step 2: 

          Create N sets each consisting one node. N is the number of nodes in the graph. Then 

for the above problem, the sets which will created as:  

             S1 = {1} 

S2 = {2} 

S3 = {3} 

S4 = {4} 

S5 = {5} 

S6 = {6} 

S7 = {7} 

Step 3: 

          Delete a cost from the queue. Let the nodes associated with that edge be (u,v). 

Now, 10 is deleted first from the queue. The nodes associated with 10 is (u,v) = (1,6). 

Check if u and v belong to the same set or different set. If they belong to the different set 

then enter that into the output matrix as shown. Since 1 belongs to S1 and 6 belong to S6, 

they can be entered into the T matrix. If the nodes belong to the same set, then entering 

them into the matrix will give an output which may form a cycle. Hence that is avoided. 

The T matrix has n-1 rows and 2 columns. 

 

T matrix 
 

 u v 

1 1 6 

2   

3   

4   

5   

6   

 
After entering them in the T matrix, the sets S1 and S6 are merged.  

    S8 = {1, 6} 
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The above process in step 3 is repeated till the queue becomes empty. The solution is 

derived as shown. 

          Queue of edge costs 

12 14 16 18 22 24 26 28 

 

Delete 12 from the queue. The nodes associated with 12 are (u,v) = (3,4). The 

node 3 belongs to S3 and node 4 belongs to S4. As they are in different sets, they are 

entered in the T matrix. 

 

T matrix 
 

 u v 

1 1 6 

2 3 4 

3   

4   

5   

6   

 

The sets S3 and S4 are merged.  

S9 = {3, 4} 

 

Queue of edge costs 
 
 

 

Delete 14 from the queue. The (u,v) = (2,7). 2 belong to S2 and 7 belong to S7.  As they 

belong to different sets, they are entered into the T matrix and the sets S2 and S7 are 

merged. 

T matrix 
 

 u v 

1 1 6 

2 3 4 

3 2 7 

4   

5   

6   

S10 = {2, 7} 

 

 

14 16 18 22 24 26 28 
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Queue of edge costs 

16 18 22 24 26 28 

 
Delete 16 from the queue. The (u,v) = (2,3). 2 belong to S10 and 3 belong to S9. As 

they are from different sets, they are entered into the T matrix. The sets S9 and S10 are 

merged. 

T matrix 

 

 u v 

1 1 6 

2 3 4 

3 2 7 

4       2      3 

5   

6   

S11 = {2, 3, 4, 7} 

 

Queue of edge costs 

18 22 24 26 28 

 

Delete 18. The (u, v) = (4, 7). 4 and 7 belong to same set S11. Hence, they are not 

entered into the T matrix. 

 

Queue of edge costs 

22 24 26 28 

 

Delete 22. The (u,v) = (4, 5). 4 belong to S11 and 5 belong to S5.  As they belong to 

different set, they are entered into the T matrix. The sets S11 and S5 are merged. 

T matrix 
 

 u v 

1 1 6 

2 3 4 

3 2 7 

4 2 3 

5 4 5 

6   

S12 = {2, 3, 4, 5, 7} 
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Queue of edge costs 

24 26 28 

 

Delete 24. (u, v) = (5, 7). Both 5 and 7 belong to S12. Hence, they are not entered into 

the T matrix. 

               
 

Delete 26. (u, v) = (5, 6). 5 belong to S12 and 6 belong to S8. As they are from different 

set, they are entered into the T matrix. 

 
 u v 

1 1 6 

2 3 4 

3 2 7 

4 2 3 

5 4 5 

6      5           6 

 

S13 = {1, 2, 3, 4, 5, 6, 7} 
 

As all T matrix is completely filled, the algorithm comes to an end. 

 

Step 4: 

Using the edges in the T matrix connect the nodes of the graph. The resulting tree is 

the required minimum spanning tree. 

 
 

 

28 26 
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KRUSKAL (E, cost, n, t) 

Construct a queue with edge costs such that they are in ascending order 

i = 0, mincost = 0 

while i < n – 1 and queue is not empty 

 

     Figure.4.1.1.2 Minimum Spanning Tree with Kruskal’s Procedure 

 
 

 

 ALGORITHM:  

 

 
 

 

Delete minimum cost edge (u, v) from queue 

j = Find(u), k = Find(v) 

If j ≠ k 

i = i + 1 

t[i, 1] = u, t[i, 2] = v 

mincost = mincost + cost[u, v] 

Union(j, k) 

End if 

End while 

If i ≠ n – 1 

Print “No spanning tree” 

Else 

Return mincost 

End if 

End KRUSKAL 
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4.1.2   PRIM’S ALGORITHM 

The other popular algorithm used for constructing the minimum spanning tree is 

the Prim’s algorithm, which also follows the greedy approach. We can consider the same 

example as above and solve it using Prim’s algorithm. 

Example: 

 

 

 

 

 

 

 

 

 

 
Figure.4.1.2.1 Sample Graph  

 

Cost Matrix is: 

1 2 3 4 5 6 7 

1 

2 

3 

4 

5 

6 

7 

 

Step 1: 

              Select the least cost edge from the graph and enter into the T matrix. The least cost         

              edges is (1, 6) with cost 10.  

            T matrix 

 u v 

1 1 6 

2   

3   

4   

5   

6   

 

0 28 ∞ ∞ ∞ 10 ∞ 

28 0 16 ∞ ∞ ∞ 14 

∞ 16 0 12 ∞ ∞ ∞ 

 ∞ ∞ 12 0 22 ∞ 18 

∞ ∞ ∞ 22 0 26 24 

10 26 ∞ ∞ ∞ 0 ∞ 

∞ 14 ∞ 18 24 ∞ 0 
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If cost[i, l] < cost[i, k] 

Near[i] = l 

Else 

Near[i] = k 

Let us consider an array NEAR[ ], which is filled as follows: 

 

In the first iteration i = 1 and (k, l) = (1, 6). Using the above condition the NEAR array 

is filled as follows. 

 

NEAR 

 
1 

2 

3 

4 

5 

6 

7 

 

Step 2: 

Make the entries in the NEAR array corresponding to 1 and 6 as 0. For all non-zero 

entries in the near array, find out the cost[j][near[j]]. Select the minimum among these 

costs and enter the corresponding nodes into the T matrix. 

 

NEAR 

 

1 

2  28 

3  ∞ 

4 ∞ 

5  26 

6 

7 ∞ 

 

Among the costs, 26 is minimum. Hence (5, 6) is entered into the T matrix. The 

corresponding entry into the NEAR array is made 0. 

 

0 

1 

1 

1 

6 

0 

1 

1 

1 

1 

1 

6 

6 

1 
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If Near[k] ≠ 0 and cost [k, Near[k]] > cost [k, j] 

Near[k] = j 

 

 

T matrix 
 

 u v 

1 1 6 

2 5 6 

3   

4   

5   

6   

 

Step 3: 

            Now in every iteration the NEAR array is updated using the following condition 

and procedure in step 2 is followed to fill up the T matrix. The solution is as follows: 

 
Updated NEAR 

 

1 

2 28 

3 ∞ 

4 22 

  J=5                 

     6                

      7 24 

Among the cost computed, 22 is minimum and hence (4,5) is selected as the minimum 

edge. 

T matrix 

  u     v 

1 

2 

3 

4 

5 

6 

 

0 

1 

1 

5 

0 

0 

5 

 

1 6 

5 6 

4 5 
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Updated NEAR 

 

1 

2  28 

3  12 

     J=4  

         5 

6 

7 18 

 

Among the cost computed, 12 is minimum and hence (3, 4) is selected as the 

minimum edge. T matrix 

 u v 

1 1 6 

2 5 6 

3 4 5 

4 3 4 

5   

6   

 

Updated NEAR 

 

1 

2 16 

    J=3  

         4 

5 

6 

7 18 

 

 

Among the cost computed, 16 is minimum and hence (2, 3) is selected as the minimum 

edge. 

 

 

 

 

0 

1 

4 

0 

0 

0 

4 

 

0 

3 

0 

0 

0 

0 

4 

 



12 

 

 

T matrix 

   u    v 

 1 

2 

3 

4 

5 

6 

 
Updated NEAR 

 

1 

     J=2  

          3 

4 

5 

6 

7 14 

 

The last edge (7, 2) is selected and entered into the T 

matrix.  

T matrix 

 u v 

1 1 6 

2 5 6 

3 4 5 

4 3 4 

5 2 3 

6 7 2 

 

Step 4: 

               Now using the edges in the T matrix connect the nodes in the graph. The resulting tree  

        is the minimum spanning tree. 

1 6 

5 6 

4 5 

3 4 

2 3 

  

 

0 

0 

0 

0 

0 

0 

2 
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Figure.4.1.2.2 Minimum Spanning Tree with Prim’s Procedure 

Algorithm 
 

PRIM (E, cost, n, t) 

Let (k, L) be an edge of minimum cost in E  

    mincost = Cost [k, L] 

    T [1, 1] = k; 

    T [1, 2] =L; 

for i = 1 to n 

if Cost [i, L] < Cost [i, k] 

Near[i] = L; 

else 

Near[i] = k; 

end if  

         end for 

Near[k] = Near[L] = 0 ; 
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for i = 2 to n -1 

Let j be an index such that Near[j] ≠ 0 and Cost [j, 

Near[j]] is minimum T[i, 1] = j, T[i, 2] = Near[j] 

mincost = mincost + Cost [j, Near[j]]  

Near[j] = 0; 

for k = 1 to n 

if Near[k] ≠ 0 and cost [k, Near[k]] > cost [k, j] then 

        Near[k] = j; 

          end if  

end for 

end for 

Return mincost  

end PRIM 

 
 

 

4.1.3  SOLLIN’S ALGORITHM 

 
A minimum spanning tree (MST) of a weighted graph G is a spanning tree of G 

whose edges sum to minimum weight. In other words, a minimum spanning tree is a tree 

formed from a subset of the edges in a given undirected graph, with two properties:  

(1) it spans the graph, i.e., it includes every vertex in the graph, and  

(2) it is a minimum, i.e., the total weight of all the edges is as low as possible. 

 
Sollin’s algorithm selects several edges at each stage. At the start of a stage, the 

selected edges, together with all n graph vertices, form a spanning forest. During a stage 

we select one edge for each tree in this forest. The edge is a minimum-cost edge that has 

exactly one vertex in the tree. These selected edges are added to the spanning tree being 

constructed. Note that it is possible for two trees in the forest to select the same edge. So, 

multiple copies of the same edge are to be eliminated. Also, when the graph has several 

edges with the same cost, it is possible for two trees to select two different edges that 

connect them together. At the start of the first stage, the set of selected edges is empty. 

The algorithm terminates when there is only one tree at the end of a stage or when no 

edges remain to be selected. 

The Sollin’s Algorithm based on two basic operations: 

 
 Nearest Neighbor – This operation takes a an input a tree spanning the nodes Nk 

and determines an arc (ik , jk) with the minimum cost among all arcs emanating 

from Nk. 
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 Merge (ik jk) – This operation takes as an input two nodes ik and jk,and if the two 

nodes belong to two different trees, then merge these two trees into a single tree 

 

 

Algorithm 

Sollin’s Algorithm 

{ 

Form a forest consisting of the nodes of the graph while the forest has 

more than one tree for each tree in the forest 

Choose the cheapest edge 

Form a vertex in the tree to a vertex not in the tree  

Merge trees with common vertices 

} 

This algorithm keeps a forest of minimum spanning trees which it continuously connects 

via the least cost arc live in each tree. To begin each node is made its minimum spanning 

tree from here the shortest path live in each tree (which doesn’t connect to a node already 

belonging to the current tree) is added along the minimum spanning tree it connects to. 

This continues until exit a single spanning tree. 

 

Example: 

             
Figure.4.1.3.1 Minimum Spanning Tree construction with Sollin’s Procedure (a) Initial Graph   

(b) Initial Configuration with Zero selected edges 
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Figure.4.1.3.1 Minimum Spanning Tree construction with Sollin’s Procedure                                                              

(c) Adding selected edges   (d) Resultant spanning Tree 
 

Figures shows the stages in Sollin’s algorithm when it begins with the graph of fig (a). 

The initial configuration of zero selected edges is the same as that shows in fig(b). Each 

tree in this spanning forest is a single vertex. The edges selected by vertices 0, 1 ,……, 6 

are, respectively , (0,5),(1,6),(2,3),(3,2),(4,3),(5,0), and (6,1). The distinct edges in this 

selection are (0,5), (1,6), (2,3), and (4,3). Adding these to the set of selected edges results 

in the configuration of fig(c). In the next stage, the tree with vertex set {0,5} selects the 

edge (5,4), and the remaining two trees select the edge (1,2). Following the addition of 

these two edges to the set of selected edges, construction of the spanning tree is 

complete. The resulting spanning tree is shown in fig (d). 

 

4.2   SINGLE SOURCE SHORTEST PATH ALGORITHM 

 

4.2.1 DJIKSTRA’S ALGORITHM 
 

The Dijkstra’s algorithm finds out the shortest path between the single source and 

every other node in the graph.  For example, consider the following graph.  Let the node 

5 be the source. Let solve this using Djiksta’s algorithm to find the shortest paths between 

5 and every other node in the graph. 

 

 

Figure.4.2.1.1 Sample Graph 
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         A Distance array Dist[] is initially filled with infinity. The entry corresponding to 

the source node 5 alone is made 0. Now find out the adjacent nodes of 5 and update their 

values using the cost matrix.  

            In the next iteration the node with minimum distance is the vertex selected and 

again the above process is repeated. The Column S shows the set of vertices already 

selected. In every iteration the node with minimum distance and which is not yet selected 

is taken as the new vertex. The solution is obtained as follows: 

 
Table 4.2.1.1 Distance Array using Djikstra’s 

 

Iteration S 
Vertex 

Selected 

Dist [ ] 

1 2 3 4 5 6 7 8 

Initial - - ∞ ∞ ∞ 1500 0 250 ∞ ∞ 

 5 6 ∞ ∞ ∞ 1250 0 250 1150 1650 

 5,6 7 ∞ ∞ ∞ 1250 0 250 1150 1650 

 5,6,7 4 ∞ ∞ 2450 1250 0 250 1150 1650 

 5,6,7,4 8 3350 ∞ 2450 1250 0 250 1150 1650 

 5,6,7,4,8 3 3350 3250 2450 1250 0 250 1150 1650 

 5,6,7,4,8,3 2 3350 3250 2450 1250 0 250 1150 1650 

 

 

Now we can see that the values in the last row, gives the distance of the shortest path 

between the source node 5 and every other node in the graph. 

 

The shortest paths corresponding to this can also be generated. The paths are represented 

using linked lists. Whenever a value in the distance array is updated, the shortest path 

linked lists are also adjusted. 
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The shortest paths are represented using linked lists as shown. 

Figure.4.2.1.2 Shortest Path from Source Vertex to all other vertices 

Algorithm 

 

DJIKSTRA’s (v, cost, dist, n) 

 

for i = 1 to n 

      S[i] = false  

      Dist[i] = ∞ 

endfor  

 

S[v] = true Dist[v] = 0 

Create n lists each beginning with v  

 

for num = 1 to n – 1 

Choose u from among those vertices not in S such that dis[u] is minimum 

S[u] = true 
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for each w adjacent to u with s[w] = false  

               if Dist[w] > Dist[u] + cost [u, w] 

Dist[w] = Dist[u] + cost [u, w]  

List[w] = List[u] + w 

                      end if 

end for 

end for 
 

 

4.2.2   BELLMAN-FORD SHORTEST PATH ALGORITHM 
 

Given a weighted graph G and a source vertex s, Bellman-Ford algorithm finds 

the shortest (minimum cost) path from s to every other vertex in G. The weighted path 

length (cost) is the sum of the weights of all links on the path. 

 
    Figure.4.2.2.1 Single Source Shortest Path – Bellman-Ford Algorithm 
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Figure.4.2.2.2 Iterations of BELLMAN-FORD (V, E, w, s) 

 

The order of edges examined in each pass: 

(t, x), (t, z), (x, t), (y, x), (y, t), (y, z), (z, x), (z, s), (s, t), (s, y) 

 

 

Algorithm 
 

Bellman-Ford (G, w, s) 

      Initialize-Single-Source (V, s) 

for i: = 1 to | V | - 1 do 

  for each edge  (u, v)  E do 

                      Relax (u, v, w) 

                        end for 

            end for 

 for each vertex (u, v)   E do 

        if d[v] > d[u] + w (u, v) then 

    return False // there is a negative cycle 

                   end if 

      return True 

                                    end for 
 

Detecting Negative Edges: (Perform extra test after V-1 iterations) 

for each edge (u, v)  E do 

         if d[v] > d[u] + w (u, v) then 

                  return FALSE 

         endif 

    return TRUE 

end for 
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A[i, j] = min(A[i, j], A[i, k] + A[k, j]) 

 

4.2.2.1 Difference between Dijkstra’s and Bellman Ford Algorithm 
 

Table 4.2.2.1 Djikstra’s Vs Bellman Ford Algorithm 
 

Sl. No         Djikstra’s Algorithm 
        
  Bellman Ford Algorithm 
 

1 

 

It doesn’t work for 

Negative Link weight. 

 

It works for Negative Link 

weight 

2 

 
Can’t be implemented in a 
distributed way. 
 

Can be easily implemented in 
a distributed way 

3 
 
It has less time complexity. 
 

 
It has higher time complexity. 
 

 

4.3 ALL PAIRS SHORTEST PATH ALGORITHM 
 

4.3.1 FLOYD WARSHALL ALGORITHM 
 

The All pairs shortest path algorithm is used to find the shortest path between every pair 

of nodes in the graph. Consider the following example. 

 

We will use the following condition solve the problem 
 

 

Solution is derived as follows using the above condition. 
 
  

 
              

 

                   Figure.4.3.1.1 Sample Graph 
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Cost Matrix 
 

1 2 3 4 5 

1 

2 

3 

4 

5 
 

          Iteration 1                                                                  Iteration 2 
 

1 2 3 4 5 1 2 3 4 5 

1 0 20 ∞ 5 5  1 0 20 30 5 5 

2 20 0 10 ∞ 10  2 20 0 10 ∞ 10 

3 20 10 0 15 10  3 30 10 0 15 10 

4 5 25 15 0 5  4 5 25 15 0 5 

5 5 10 10 5 0  5 5 10 10 5 0 

 

Iteration 3 

 

1 2 

 

 
 

3 

 

 
 

4 

 

 
 

5 

 

 
 
Iteration 4 

            1 

 

 

2 

 

 

3 

 

 

4 

 

 

5 

1 0 0 20 30 5 5  1 0 20 20 5 5 
2 20 20 0 10 25 10  2 20 0 10 25 10 
3 30 30 10 0 15 10  3 20 10 0 15 10 

4 5 5 25 15 0 5  4 5 25 15 0 5 

5 5 5 10 10 5 0  5 5 10 10 5 0 

 
 

 

 

Iteration 5 
 
 
  1     2 

 

 
 

3 

 

 
 

4 

 

 
 

5 

 

 

Output : 
 

            1 

 

 

2 

 

 

3 

 

 

4 

 

 

5 

1 0 0 15 15 5 5  1 0 15 15 5 5 
2 20 15 0 10 15 10  2 15 0 10 15 10 
3 30 15 10 0 15 10  3 15 10 0 15 10 

4 5 5 15 15 0 5  4 5 15 15 0 5 

5 5 5 10 10 5 0  5 5 10 10 5 0 

 

The output matrix gives the shortest path distance between all pairs of nodes. 

 

 

0 20 ∞ 5 5 

20 0 10 ∞ 10 

 ∞ 10 0 15 10 

5 ∞ 15 0 5 

5 10 10 5 0 
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Algorithm 

 
         ALLPAIRSHORTESTPATH (cost, A, n) 

 

for i = 1 to n 

for j = 1 to n 

A [i, j] = cost [i, j]  

                                    end for 

                        end for 

 

for k = 1 to n 

for i = 1 to n 

for j = 1 to n 

    A [i, j] = min (A [i, j], A [i, k] + A [k, j]) 

                                                end for 

end for 

                        end for 

 

******************************************************* 
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