

UNIT - IV

Advanced Data Structures – SCSA1304

2

Weight of an edge: Weight of an edge is just of the value of the edge or the cost of the edge.

For example, a graph representing cities, has the distance between two cites as the edge cost or

its weight.

Network: A graph with weighted edges is called a network.

Spanning Tree: Any tree consisting of edges in the graph G and including all vertices in G is

called a spanning tree.

UNIT 4 ADVANCED GRAPH CONCEPTS

4.1 MINIMUM SPANNING TREES

Given a network, we should try to connect all the nodes in the nodes in the graph with

minimum number of edges, such that the total weight is minimized. To solve this problem, we

shall devise an algorithm that converts a network into to tree structures called the minimum

spanning tree of the network.

Given a network, the edges for the minimum spanning tree are chosen in such a way that:

(1) Every node in the network must be included in the spanning tree.

(2) The overall edge weight of the spanning tree is the minimum possible that

 will allow the existence of a path between any 2 nodes in the tree.

The two algorithms which are used for finding the minimum spanning tree for a graph are:

1. Kruskal’s Algorithm

2. Prim’s Algorithm

3. Sollin’s Algorithm

4.1.1 KRUSKAL’S ALGORITHM

The Kruskal’s algorithm follows greedy approach. At every stage of the solution, it

takes that edge which has the minimum cost and builds the minimum spanning tree.

Example:

Figure.4.1.1.1 Sample Graph

3

Consider the above graph. Now let us apply the Kruskal’s algorithm to construct a

minimum spanning tree.

Step 1:

Construct a queue with the cost of edges, such that the edges are placed in the

queue in the ascending order of the cost as shown.

Queue of edge costs

10 12 14 16 18 22 24 26 28

Step 2:

 Create N sets each consisting one node. N is the number of nodes in the graph. Then

for the above problem, the sets which will created as:

 S1 = {1}

S2 = {2}

S3 = {3}

S4 = {4}

S5 = {5}

S6 = {6}

S7 = {7}

Step 3:

 Delete a cost from the queue. Let the nodes associated with that edge be (u,v).

Now, 10 is deleted first from the queue. The nodes associated with 10 is (u,v) = (1,6).

Check if u and v belong to the same set or different set. If they belong to the different set

then enter that into the output matrix as shown. Since 1 belongs to S1 and 6 belong to S6,

they can be entered into the T matrix. If the nodes belong to the same set, then entering

them into the matrix will give an output which may form a cycle. Hence that is avoided.

The T matrix has n-1 rows and 2 columns.

T matrix

 u v

1 1 6

2

3

4

5

6

After entering them in the T matrix, the sets S1 and S6 are merged.

 S8 = {1, 6}

4

The above process in step 3 is repeated till the queue becomes empty. The solution is

derived as shown.

 Queue of edge costs

12 14 16 18 22 24 26 28

Delete 12 from the queue. The nodes associated with 12 are (u,v) = (3,4). The

node 3 belongs to S3 and node 4 belongs to S4. As they are in different sets, they are

entered in the T matrix.

T matrix

 u v

1 1 6

2 3 4

3

4

5

6

The sets S3 and S4 are merged.

S9 = {3, 4}

Queue of edge costs

Delete 14 from the queue. The (u,v) = (2,7). 2 belong to S2 and 7 belong to S7. As they

belong to different sets, they are entered into the T matrix and the sets S2 and S7 are

merged.

T matrix

 u v

1 1 6

2 3 4

3 2 7

4

5

6

S10 = {2, 7}

14 16 18 22 24 26 28

5

Queue of edge costs

16 18 22 24 26 28

Delete 16 from the queue. The (u,v) = (2,3). 2 belong to S10 and 3 belong to S9. As

they are from different sets, they are entered into the T matrix. The sets S9 and S10 are

merged.

T matrix

 u v

1 1 6

2 3 4

3 2 7

4 2 3

5

6

S11 = {2, 3, 4, 7}

Queue of edge costs

18 22 24 26 28

Delete 18. The (u, v) = (4, 7). 4 and 7 belong to same set S11. Hence, they are not

entered into the T matrix.

Queue of edge costs

22 24 26 28

Delete 22. The (u,v) = (4, 5). 4 belong to S11 and 5 belong to S5. As they belong to

different set, they are entered into the T matrix. The sets S11 and S5 are merged.

T matrix

 u v

1 1 6

2 3 4

3 2 7

4 2 3

5 4 5

6

S12 = {2, 3, 4, 5, 7}

6

Queue of edge costs

24 26 28

Delete 24. (u, v) = (5, 7). Both 5 and 7 belong to S12. Hence, they are not entered into

the T matrix.

Delete 26. (u, v) = (5, 6). 5 belong to S12 and 6 belong to S8. As they are from different

set, they are entered into the T matrix.

 u v

1 1 6

2 3 4

3 2 7

4 2 3

5 4 5

6 5 6

S13 = {1, 2, 3, 4, 5, 6, 7}

As all T matrix is completely filled, the algorithm comes to an end.

Step 4:

Using the edges in the T matrix connect the nodes of the graph. The resulting tree is

the required minimum spanning tree.

28 26

7

KRUSKAL (E, cost, n, t)

Construct a queue with edge costs such that they are in ascending order

i = 0, mincost = 0

while i < n – 1 and queue is not empty

 Figure.4.1.1.2 Minimum Spanning Tree with Kruskal’s Procedure

 ALGORITHM:

Delete minimum cost edge (u, v) from queue

j = Find(u), k = Find(v)

If j ≠ k

i = i + 1

t[i, 1] = u, t[i, 2] = v

mincost = mincost + cost[u, v]

Union(j, k)

End if

End while

If i ≠ n – 1

Print “No spanning tree”

Else

Return mincost

End if

End KRUSKAL

8

4.1.2 PRIM’S ALGORITHM

The other popular algorithm used for constructing the minimum spanning tree is

the Prim’s algorithm, which also follows the greedy approach. We can consider the same

example as above and solve it using Prim’s algorithm.

Example:

Figure.4.1.2.1 Sample Graph

Cost Matrix is:

1 2 3 4 5 6 7

1

2

3

4

5

6

7

Step 1:

 Select the least cost edge from the graph and enter into the T matrix. The least cost

 edges is (1, 6) with cost 10.

 T matrix

 u v

1 1 6

2

3

4

5

6

0 28 ∞ ∞ ∞ 10 ∞

28 0 16 ∞ ∞ ∞ 14

∞ 16 0 12 ∞ ∞ ∞

 ∞ ∞ 12 0 22 ∞ 18

∞ ∞ ∞ 22 0 26 24

10 26 ∞ ∞ ∞ 0 ∞

∞ 14 ∞ 18 24 ∞ 0

9

If cost[i, l] < cost[i, k]

Near[i] = l

Else

Near[i] = k

Let us consider an array NEAR[], which is filled as follows:

In the first iteration i = 1 and (k, l) = (1, 6). Using the above condition the NEAR array

is filled as follows.

NEAR

1

2

3

4

5

6

7

Step 2:

Make the entries in the NEAR array corresponding to 1 and 6 as 0. For all non-zero

entries in the near array, find out the cost[j][near[j]]. Select the minimum among these

costs and enter the corresponding nodes into the T matrix.

NEAR

1

2 28

3 ∞

4 ∞

5 26

6

7 ∞

Among the costs, 26 is minimum. Hence (5, 6) is entered into the T matrix. The

corresponding entry into the NEAR array is made 0.

0

1

1

1

6

0

1

1

1

1

1

6

6

1

10

If Near[k] ≠ 0 and cost [k, Near[k]] > cost [k, j]

Near[k] = j

T matrix

 u v

1 1 6

2 5 6

3

4

5

6

Step 3:

 Now in every iteration the NEAR array is updated using the following condition

and procedure in step 2 is followed to fill up the T matrix. The solution is as follows:

Updated NEAR

1

2 28

3 ∞

4 22

 J=5

 6

 7 24

Among the cost computed, 22 is minimum and hence (4,5) is selected as the minimum

edge.

T matrix

 u v

1

2

3

4

5

6

0

1

1

5

0

0

5

1 6

5 6

4 5

11

Updated NEAR

1

2 28

3 12

 J=4

 5

6

7 18

Among the cost computed, 12 is minimum and hence (3, 4) is selected as the

minimum edge. T matrix

 u v

1 1 6

2 5 6

3 4 5

4 3 4

5

6

Updated NEAR

1

2 16

 J=3

 4

5

6

7 18

Among the cost computed, 16 is minimum and hence (2, 3) is selected as the minimum

edge.

0

1

4

0

0

0

4

0

3

0

0

0

0

4

12

T matrix

 u v

 1

2

3

4

5

6

Updated NEAR

1

 J=2

 3

4

5

6

7 14

The last edge (7, 2) is selected and entered into the T

matrix.

T matrix

 u v

1 1 6

2 5 6

3 4 5

4 3 4

5 2 3

6 7 2

Step 4:

 Now using the edges in the T matrix connect the nodes in the graph. The resulting tree

 is the minimum spanning tree.

1 6

5 6

4 5

3 4

2 3

0

0

0

0

0

0

2

13

Figure.4.1.2.2 Minimum Spanning Tree with Prim’s Procedure

Algorithm

PRIM (E, cost, n, t)

Let (k, L) be an edge of minimum cost in E

 mincost = Cost [k, L]

 T [1, 1] = k;

 T [1, 2] =L;

for i = 1 to n

if Cost [i, L] < Cost [i, k]

Near[i] = L;

else

Near[i] = k;

end if

 end for

Near[k] = Near[L] = 0 ;

14

for i = 2 to n -1

Let j be an index such that Near[j] ≠ 0 and Cost [j,

Near[j]] is minimum T[i, 1] = j, T[i, 2] = Near[j]

mincost = mincost + Cost [j, Near[j]]

Near[j] = 0;

for k = 1 to n

if Near[k] ≠ 0 and cost [k, Near[k]] > cost [k, j] then

 Near[k] = j;

 end if

end for

end for

Return mincost

end PRIM

4.1.3 SOLLIN’S ALGORITHM

A minimum spanning tree (MST) of a weighted graph G is a spanning tree of G

whose edges sum to minimum weight. In other words, a minimum spanning tree is a tree

formed from a subset of the edges in a given undirected graph, with two properties:

(1) it spans the graph, i.e., it includes every vertex in the graph, and

(2) it is a minimum, i.e., the total weight of all the edges is as low as possible.

Sollin’s algorithm selects several edges at each stage. At the start of a stage, the

selected edges, together with all n graph vertices, form a spanning forest. During a stage

we select one edge for each tree in this forest. The edge is a minimum-cost edge that has

exactly one vertex in the tree. These selected edges are added to the spanning tree being

constructed. Note that it is possible for two trees in the forest to select the same edge. So,

multiple copies of the same edge are to be eliminated. Also, when the graph has several

edges with the same cost, it is possible for two trees to select two different edges that

connect them together. At the start of the first stage, the set of selected edges is empty.

The algorithm terminates when there is only one tree at the end of a stage or when no

edges remain to be selected.

The Sollin’s Algorithm based on two basic operations:

 Nearest Neighbor – This operation takes a an input a tree spanning the nodes Nk

and determines an arc (ik , jk) with the minimum cost among all arcs emanating

from Nk.

15

 Merge (ik jk) – This operation takes as an input two nodes ik and jk,and if the two

nodes belong to two different trees, then merge these two trees into a single tree

Algorithm

Sollin’s Algorithm

{

Form a forest consisting of the nodes of the graph while the forest has

more than one tree for each tree in the forest

Choose the cheapest edge

Form a vertex in the tree to a vertex not in the tree

Merge trees with common vertices

}

This algorithm keeps a forest of minimum spanning trees which it continuously connects

via the least cost arc live in each tree. To begin each node is made its minimum spanning

tree from here the shortest path live in each tree (which doesn’t connect to a node already

belonging to the current tree) is added along the minimum spanning tree it connects to.

This continues until exit a single spanning tree.

Example:

Figure.4.1.3.1 Minimum Spanning Tree construction with Sollin’s Procedure (a) Initial Graph

(b) Initial Configuration with Zero selected edges

16

Figure.4.1.3.1 Minimum Spanning Tree construction with Sollin’s Procedure

(c) Adding selected edges (d) Resultant spanning Tree

Figures shows the stages in Sollin’s algorithm when it begins with the graph of fig (a).

The initial configuration of zero selected edges is the same as that shows in fig(b). Each

tree in this spanning forest is a single vertex. The edges selected by vertices 0, 1 ,……, 6

are, respectively , (0,5),(1,6),(2,3),(3,2),(4,3),(5,0), and (6,1). The distinct edges in this

selection are (0,5), (1,6), (2,3), and (4,3). Adding these to the set of selected edges results

in the configuration of fig(c). In the next stage, the tree with vertex set {0,5} selects the

edge (5,4), and the remaining two trees select the edge (1,2). Following the addition of

these two edges to the set of selected edges, construction of the spanning tree is

complete. The resulting spanning tree is shown in fig (d).

4.2 SINGLE SOURCE SHORTEST PATH ALGORITHM

4.2.1 DJIKSTRA’S ALGORITHM

The Dijkstra’s algorithm finds out the shortest path between the single source and

every other node in the graph. For example, consider the following graph. Let the node

5 be the source. Let solve this using Djiksta’s algorithm to find the shortest paths between

5 and every other node in the graph.

Figure.4.2.1.1 Sample Graph

17

 A Distance array Dist[] is initially filled with infinity. The entry corresponding to

the source node 5 alone is made 0. Now find out the adjacent nodes of 5 and update their

values using the cost matrix.

 In the next iteration the node with minimum distance is the vertex selected and

again the above process is repeated. The Column S shows the set of vertices already

selected. In every iteration the node with minimum distance and which is not yet selected

is taken as the new vertex. The solution is obtained as follows:

Table 4.2.1.1 Distance Array using Djikstra’s

Iteration S
Vertex

Selected

Dist []

1 2 3 4 5 6 7 8

Initial - - ∞ ∞ ∞ 1500 0 250 ∞ ∞

 5 6 ∞ ∞ ∞ 1250 0 250 1150 1650

 5,6 7 ∞ ∞ ∞ 1250 0 250 1150 1650

 5,6,7 4 ∞ ∞ 2450 1250 0 250 1150 1650

 5,6,7,4 8 3350 ∞ 2450 1250 0 250 1150 1650

 5,6,7,4,8 3 3350 3250 2450 1250 0 250 1150 1650

 5,6,7,4,8,3 2 3350 3250 2450 1250 0 250 1150 1650

Now we can see that the values in the last row, gives the distance of the shortest path

between the source node 5 and every other node in the graph.

The shortest paths corresponding to this can also be generated. The paths are represented

using linked lists. Whenever a value in the distance array is updated, the shortest path

linked lists are also adjusted.

18

The shortest paths are represented using linked lists as shown.

Figure.4.2.1.2 Shortest Path from Source Vertex to all other vertices

Algorithm

DJIKSTRA’s (v, cost, dist, n)

for i = 1 to n

 S[i] = false

 Dist[i] = ∞

endfor

S[v] = true Dist[v] = 0

Create n lists each beginning with v

for num = 1 to n – 1

Choose u from among those vertices not in S such that dis[u] is minimum

S[u] = true

19

for each w adjacent to u with s[w] = false

 if Dist[w] > Dist[u] + cost [u, w]

Dist[w] = Dist[u] + cost [u, w]

List[w] = List[u] + w

 end if

end for

end for

4.2.2 BELLMAN-FORD SHORTEST PATH ALGORITHM

Given a weighted graph G and a source vertex s, Bellman-Ford algorithm finds

the shortest (minimum cost) path from s to every other vertex in G. The weighted path

length (cost) is the sum of the weights of all links on the path.

 Figure.4.2.2.1 Single Source Shortest Path – Bellman-Ford Algorithm

20

Figure.4.2.2.2 Iterations of BELLMAN-FORD (V, E, w, s)

The order of edges examined in each pass:

(t, x), (t, z), (x, t), (y, x), (y, t), (y, z), (z, x), (z, s), (s, t), (s, y)

Algorithm

Bellman-Ford (G, w, s)

 Initialize-Single-Source (V, s)

for i: = 1 to | V | - 1 do

 for each edge (u, v) E do

 Relax (u, v, w)

 end for

 end for

 for each vertex (u, v) E do

 if d[v] > d[u] + w (u, v) then

 return False // there is a negative cycle

 end if

 return True

 end for

Detecting Negative Edges: (Perform extra test after V-1 iterations)

for each edge (u, v) E do

 if d[v] > d[u] + w (u, v) then

 return FALSE

 endif

 return TRUE

end for

21

A[i, j] = min(A[i, j], A[i, k] + A[k, j])

4.2.2.1 Difference between Dijkstra’s and Bellman Ford Algorithm

Table 4.2.2.1 Djikstra’s Vs Bellman Ford Algorithm

Sl. No Djikstra’s Algorithm

 Bellman Ford Algorithm

1

It doesn’t work for

Negative Link weight.

It works for Negative Link

weight

2

Can’t be implemented in a
distributed way.

Can be easily implemented in
a distributed way

3

It has less time complexity.

It has higher time complexity.

4.3 ALL PAIRS SHORTEST PATH ALGORITHM

4.3.1 FLOYD WARSHALL ALGORITHM

The All pairs shortest path algorithm is used to find the shortest path between every pair

of nodes in the graph. Consider the following example.

We will use the following condition solve the problem

Solution is derived as follows using the above condition.

 Figure.4.3.1.1 Sample Graph

22

Cost Matrix

1 2 3 4 5

1

2

3

4

5

 Iteration 1 Iteration 2

1 2 3 4 5 1 2 3 4 5

1 0 20 ∞ 5 5 1 0 20 30 5 5

2 20 0 10 ∞ 10 2 20 0 10 ∞ 10

3 20 10 0 15 10 3 30 10 0 15 10

4 5 25 15 0 5 4 5 25 15 0 5

5 5 10 10 5 0 5 5 10 10 5 0

Iteration 3

1 2

3

4

5

Iteration 4

 1

2

3

4

5

1 0 0 20 30 5 5 1 0 20 20 5 5
2 20 20 0 10 25 10 2 20 0 10 25 10
3 30 30 10 0 15 10 3 20 10 0 15 10

4 5 5 25 15 0 5 4 5 25 15 0 5

5 5 5 10 10 5 0 5 5 10 10 5 0

Iteration 5

 1 2

3

4

5

Output :

 1

2

3

4

5

1 0 0 15 15 5 5 1 0 15 15 5 5
2 20 15 0 10 15 10 2 15 0 10 15 10
3 30 15 10 0 15 10 3 15 10 0 15 10

4 5 5 15 15 0 5 4 5 15 15 0 5

5 5 5 10 10 5 0 5 5 10 10 5 0

The output matrix gives the shortest path distance between all pairs of nodes.

0 20 ∞ 5 5

20 0 10 ∞ 10

 ∞ 10 0 15 10

5 ∞ 15 0 5

5 10 10 5 0

23

Algorithm

 ALLPAIRSHORTESTPATH (cost, A, n)

for i = 1 to n

for j = 1 to n

A [i, j] = cost [i, j]

 end for

 end for

for k = 1 to n

for i = 1 to n

for j = 1 to n

 A [i, j] = min (A [i, j], A [i, k] + A [k, j])

 end for

end for

 end for

	4.1.1 KRUSKAL’S ALGORITHM
	Example:
	Step 1:
	Step 2:
	Step 3:
	Step 4:
	Example: (1)
	Step 1: (1)
	Step 2: (1)
	Step 3: (1)
	Step 4: (1)
	Algorithm
	4.2.1 DJIKSTRA’S ALGORITHM
	Figure.4.2.1.2 Shortest Path from Source Vertex to all other vertices
	Algorithm (1)
	Algorithm (2)
	Detecting Negative Edges: (Perform extra test after V-1 iterations)
	for each edge (u, v) (E do
	if d[v] > d[u] + w (u, v) then
	return FALSE
	endif
	return TRUE
	end for
	4.2.2.1 Difference between Dijkstra’s and Bellman Ford Algorithm
	Cost Matrix

	Algorithm (3)
