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I. Graph 

 

A graph G is a defined as a set of objects called nodes and edges. G= (V, E) , Where V is a finite 

and non-empty set at vertices. E is a set of pairs of vertices called edges. Each edge ‘e’ in E is 

identified with a unique pair (a, b) of nodes in V, denoted by e = [a, b]. 

 

Fig. 1.1. Graph 

Consider the above graph ‘G’. Then the vertex V and edge E can be represented as: Vertex V = 

{v1, v2, v3, v4, v5, v6} 

E = {e1, e2, e3, e4, e5, e6} 

E = {(v1, v2) (v2, v3) (v1, v3) (v3, v4), (v3, v5) (v5, v6)}. 

There are six edges and vertex in the graph. 

Node: A node is a data element of the graph.  

Edge: An edge is a path between two nodes. 

Table. 1.1. DIFFERENCE BETWEEN TREE AND GRAPH 

TREE GRAPH 

 Only one path between two nodes  More than one path is allowed 

between two nodes 

 Starting node will be available  No starting node 

 Does not have any loop ( Uni 

directional) 

 Have loop 

 Hierarchy  Network 

 All trees are graph  All graphs are not tree 

 No cycle   Cycle  
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ALL TREES ARE GRAPH BUT ALL GRAPHS ARE NOT TREE 

A connected acyclic graph is called a tree. In other words, a connected graph with no cycles is 

called a tree. 

Trees Comes into the category DAG – Directed Acyclic Graph is a kind of directed graph with 

no cycle. 

 

Fig. 1.2. Tree 

Graph can be either cyclic or acyclic 

 

Fig. 1.3. Undirected and Directed Graph 

 

 

II. Types of Graph 

 Directed Graph 

 Undirected Graph 

 Weighted Graph 

 Unweighted Graph 

 

 Directed Graph: (Diagraph) 

A directed graph is graph, i.e., a set of objects (called vertices or nodes) that are 

connected together, where all the edges are directed from one vertex to another. 

A directed graph is sometimes called a digraph or a directed network. 
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Fig. 2.1. Directed Graph 

 

 Undirected Graph: (Bidirectional) 

An undirected graph is graph, i.e., a set of objects (called vertices or nodes) that are 

connected together, where all the edges are bidirectional. An undirected graph is 

sometimes called an undirected network. In contrast, a graph where the edges point in a 

direction is called a directed graph. 

 
Fig. 2.2. Undirected Graph 

 

 Weighted Graph:  

A weighted graph refers to one where weights are assigned to each edge.  

Weighted graphs can be represented in two ways:  

i) Directed graphs where the edges have arrows that show path direction.  

ii) Undirected graphs where edges are bi-directional and have no arrows. 

 
 

Fig. 2.3 Weighted Graph 

Example:  

Distance between: 
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a) A to C in Undirected graph is 5 

b) E to D in Directed graph is 2 

 

 Unweighted Graph:  

 If the edges do not have weights, the graph is said to be unweighted. Edges simply show 

connections. 

 

 

 

Reachable: If there is a path from u to v then v is reachable from u   

 

 (i.e) v -> u  = 2 -> 3  

 

 
Fig. 2.4. Directed graph (Reachable) 

 

Table 2.1. Difference between Stron 
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STRONGLY CONNECTED 

GRAPH 

WEAKLY CONNECTED 

GRAPH 

UNILATERALLY 

CONNECTED GRAPH 

 In directed graph, a 

graph is said to be 

strongly connected if 

every vertex is 

reachable from every 

other vertex 

 

 A graph is said to 

be weakly connected if 

there doesn’t exist any 

path between any two 

pairs of vertices.  

 

 If it contains a 

directed path from 

u to v or v to u for 

every pair of 

vertices u,v. 

 

 Every pairs of point are 

mutually reachable 

 

 A directed graph is 

weakly connected if it is 

underlying graph 

(means graph without 

direction) is connected 

 

 At least for any 

pair of vertices, 

one vertex should 

be reachable form 

the other 

 

 
 

 

 

 

  

 

III. BASIC TERMINOLOGIES 

Arc: The directed edge in a directed graph is called an arc. 

Strongly connected graph: A directed graph is called strongly connected if there is a directed 

path from any vertex to any other vertex. 

Example: 

 

 

 

 

Fig. 3.1 Directed Graph – Strongly Connected 

In the above graph we have path from any vertex to any other vertex 

Weakly connected graph: A Directed graph is called a weakly connected graph if for any two 

nodes I and J, there is a directed path from I to J or from J to I. 
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Example: 

Fig. 3.2. Directed Graph – Weakly Connected 

Out degree: The number of arcs exiting from the node is called out degree of that node. 

In degree: The number of arcs entering the node is called in degree of that 

node. Example: 

Fig. 3.3 Directed Graph – (Indegree and Outdegree) 

 

 

Table. 3.1: Degree of Graph 
Nodes Indegree Outdegree 

A 0 3 

B 1 1 

C 1 1 

D 3 0 

 

Source node: A node where the indegree is 0 but has a positive value for outdegree is called a 

source node. That is there are only outgoing arcs to the node and no incoming arcs to the node. 

Example: 

  Node ‘A’ is the source node in the above graph fig. 3.3 

Sink node: A node where the outdegree is 0 and has a positive value for indegree is called the 

sink node. That is there is only incoming arcs to the node and no outgoing arcs the node. 

Example: 

  Node ‘D’ is the Sink node in the above graph fig. 3.3 
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Cycle: A cycle in a directed graph is a directed path that originates and terminates at the same 

node i.e., some number of vertices connected in a closed chain. 

Example: 

 

 

 

 

 

 

Fig. 3.4. Directed with cyclic graph 

This graph contains three cycles 0->2->0, 0->1->2->0, 1->2->0->1 and 3->3, 

Degree  of a node: In an undirected graph, the degree of a node is the number of edges 

connected directly to the node. 

Length of the path: The length of the path between node I and K is the number of edges 

between them in a path from I to K. 

Degree: The degree of the node B in the undirected graph shown above is 3. 

 

IV. REPRESENTATION OF GRAPHS 

 

There are two possible ways by which the graph can be represented. 

 

1. Matrix representation (Array Representation) 

2. Linked representation 

The graphs can be represented using Adjacency matrix or otherwise called the 

incidence matrix. Since the matrix is so sparse it is also called as sparse matrix.
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The adjacency matrix is a N X N matrix where N is the number of nodes in the graph. Each 

entry (I, J) in the matrix has either 1 or 0. An entry 1 indicates that there is a direct connection 

from I to J. An entry 0 indicates that there is no direct connection from I to J. 

Fig. 4.1. Undirected Graph 

 

If an adjacency matrix is written for the above directed graph as shown: 

 

Adjacency Matrix Representation 

Since the matrix is so sparse in nature the second method of representation will be  

preferred if the number of edges is very less compared to the number of vertices. 

Adjacency List: 

An array of linked lists is used. Size of the array is equal to number of vertices. Let the array 

be array[]. An entry array[i] represents the linked list of vertices adjacent to the ith vertex. 

This representation can also be used to represent a weighted graph. The weights of edges can 

be stored in nodes of linked lists. Following is adjacency list representation of the above graph. 

Adjacency List Representation of the above Graph 

V. GRAPH TRAVERSALS 

There are two methods for traversing through the nodes of the graph. They are: 

(1) Breadth First Search Traversal (BFS) 

(2) Depth First Search Traversal (DFS) 
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Breadth First Search Traversal (BFS) 

As the name implies, this method traverses the nodes of the graph by searching 

through the nodes breadth-wise. Initially let the first node of the graph be visited. This node 

is now considered as node u. Now find out all the nodes which are adjacent to this node. Let 

all the adjacent nodes be called as w. Add the node u to a queue. Now every time an adjacent 

node w is visited, it is added to the queue. One by one all the adjacent nodes w are visited and 

added to the queue. When all the unvisited adjacent nodes are visited, then the node u is 

deleted from the queue and hence the next element in the queue now becomes the new node 

u. The process is repeated on this new node u. This is continued till all the nodes are visited. 

The Breadth First Traversal (BFT) algorithm calls the BFS algorithm on all the nodes. 

Algorithm 

 

BFT(G, n) 

Repeat for i = 1 to n 

Visited[i] = 

0 End Repeat 

Repeat for i = 1 to n 

If visited[i] = 0 

BFS(i) 

End 

if End 

Repeat 

BFS(v) 

u = v 

visited[v] = 

1 

Repeat while(true) 

Repeat for all vertices w adjacent 

to u If visited[w] = 0 

Add w to 

queue 

Visited[w] = 1 

End 

if End 

Repeat 

If queue is empty 

Return 

End if 

Delete u from 

queue End while 

End BFS 
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Now the following diagrams illustrate the BFS on a directed graph. 
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Depth First Search Traversal (DFS) 

In the Depth First Search Traversal, as the name implies the nodes of the graph are  

traversed by searching through all the nodes by first going to the depth of the graph. The first 

node is visited first. Let this be node u. Find out all the adjacent nodes of u.  Let that be w.  

Apply the DFS on the first adjacent node recursively. Since a recursive approach is followed,  

the nodes are traversed by going to the depth of the graph first. The DFT algorithm calls the  

DFS algorithm repeatedly for all the nodes in the graph. 
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Algorithm 

 

 

 

 

 

 

DFT(G, n) 

Repeat for i = 1 to n 

Visited[i] = 

0 End Repeat 

Repeat for i = 1 to n 

If visited[i] = 0 

DFS(i) 

End 

if End 

Repeat 
DFS(v) 

Visited[v] = 1 

Repeat for each vertex w adjacent 

from v If visited[w] = 0 

DFS(w) 

End 

if End for 
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Now the following diagrams illustrate the DFS on a directed graph. 
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Applications of depth First Traversal 

Depth-first search (DFS) is an algorithm (or technique) for traversing a graph. 

1) For an unweighted graph, DFS traversal of the graph produces the minimum spanning 

tree and all pair shortest path tree. 

2) Detecting cycle in a graph: A graph has cycle if and only if we see a back edge during 

DFS. So, we can run DFS for the graph and check for back edges. 

3) Path Finding: 

We can specialize the DFS algorithm to find a path between two given vertices u and z. 

i) Call DFS (G, u) with u as the start vertex. 

ii) Use a stack S to keep track of the path between the start vertex and the current vertex. 

iii) As soon as destination vertex z is encountered, return the path as

 the contents of the stack 

4) Topological Sorting 

Topological Sorting is mainly used for scheduling jobs from the given dependencies among 

jobs. In computer science, applications of this type arise in instruction scheduling, ordering 

of formula cell evaluation when recomputing formula values in spreadsheets, logic synthesis, 

determining the order of compilation tasks to perform in make files, data serialization, and 

resolving symbol dependencies in linkers. 

5) Finding Strongly Connected Components of a graph A directed graph is called strongly 

connected if there is a path from each vertex in the graph to every other vertex. 

6) Solving puzzles with only one solution, such as mazes. DFS can be adapted to find all 

solutions to a maze by only including nodes on the current path in the visited set. 

Applications of Breadth First Traversal 

1) Shortest Path and Minimum Spanning Tree for unweighted graph In unweighted graph, 

the shortest path is the path with least number of edges. With Breadth First, we always reach 

a vertex from given source using minimum number of edges. Also, in case of unweighted 

graphs, any spanning tree is Minimum Spanning Tree and we can use either Depth or 

Breadth first traversal for finding a spanning tree. 

2) Peer to Peer Networks. In Peer to Peer Networks like BitTorrent, Breadth First Search is 

used to find all neighbour nodes. 

3) Crawlers in Search Engines: Crawlers build index using Breadth First. The idea is to start 

from source page and follow all links from source and keep doing same. Depth First 

Traversal can also be used for crawlers, but the advantage with Breadth First Traversal is, 

depth or levels of built tree can be limited. 

4) Social Networking Websites: In social networks, we can find people within a given 

distance ‘k’ from a person using Breadth First Search till ‘k’ levels. 

5) GPS Navigation systems: Breadth First Search is used to find all neighbouring locations. 

6) Broadcasting in Network: In networks, a broadcasted packet follows Breadth First Search 

to reach all nodes. 
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7) In Garbage Collection: Breadth First Search is used in copying garbage collection 

using Cheney’s algorithm. Breadth First Search is preferred over Depth First Search 

because of better locality of reference: 

8) Cycle detection in undirected graph: In undirected graphs, either Breadth First 

Search or Depth First Search can be used to detect cycle. In directed graph, only 

depth first search can be used. 

9) Ford–Fulkerson algorithm In Ford-Fulkerson algorithm, we can either use 

Breadth First or Depth First Traversal to find the maximum flow. Breadth First 

Traversal is preferred as it reduces worst case time complexity to O(VE2). 

10) To test if a graph is Bipartite, We can either use Breadth First or Depth First 

Traversal. 

11) Path Finding, We can either use Breadth First or Depth First Traversal to find 

if there is a path between two vertices. 

12) Finding all nodes within one connected component: We can either use Breadth 

First or Depth First Traversal to find all nodes reachable from a given node. Many 

algorithms like Prim’s Minimum Spanning Tree and Dijkstra’s Single Source 

Shortest Path use structure similar to Breadth first search. 
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