
1

UNIT - III

Advanced Data Structures – SCSA1304

2

I. Graph

A graph G is a defined as a set of objects called nodes and edges. G= (V, E) , Where V is a finite

and non-empty set at vertices. E is a set of pairs of vertices called edges. Each edge ‘e’ in E is

identified with a unique pair (a, b) of nodes in V, denoted by e = [a, b].

Fig. 1.1. Graph

Consider the above graph ‘G’. Then the vertex V and edge E can be represented as: Vertex V =

{v1, v2, v3, v4, v5, v6}

E = {e1, e2, e3, e4, e5, e6}

E = {(v1, v2) (v2, v3) (v1, v3) (v3, v4), (v3, v5) (v5, v6)}.

There are six edges and vertex in the graph.

Node: A node is a data element of the graph.

Edge: An edge is a path between two nodes.

Table. 1.1. DIFFERENCE BETWEEN TREE AND GRAPH

TREE GRAPH

 Only one path between two nodes More than one path is allowed

between two nodes

 Starting node will be available No starting node

 Does not have any loop (Uni

directional)

 Have loop

 Hierarchy Network

 All trees are graph All graphs are not tree

 No cycle Cycle

3

ALL TREES ARE GRAPH BUT ALL GRAPHS ARE NOT TREE

A connected acyclic graph is called a tree. In other words, a connected graph with no cycles is

called a tree.

Trees Comes into the category DAG – Directed Acyclic Graph is a kind of directed graph with

no cycle.

Fig. 1.2. Tree

Graph can be either cyclic or acyclic

Fig. 1.3. Undirected and Directed Graph

II. Types of Graph

 Directed Graph

 Undirected Graph

 Weighted Graph

 Unweighted Graph

 Directed Graph: (Diagraph)

A directed graph is graph, i.e., a set of objects (called vertices or nodes) that are

connected together, where all the edges are directed from one vertex to another.

A directed graph is sometimes called a digraph or a directed network.

4

Fig. 2.1. Directed Graph

 Undirected Graph: (Bidirectional)

An undirected graph is graph, i.e., a set of objects (called vertices or nodes) that are

connected together, where all the edges are bidirectional. An undirected graph is

sometimes called an undirected network. In contrast, a graph where the edges point in a

direction is called a directed graph.

Fig. 2.2. Undirected Graph

 Weighted Graph:

A weighted graph refers to one where weights are assigned to each edge.

Weighted graphs can be represented in two ways:

i) Directed graphs where the edges have arrows that show path direction.

ii) Undirected graphs where edges are bi-directional and have no arrows.

Fig. 2.3 Weighted Graph

Example:

Distance between:

5

a) A to C in Undirected graph is 5

b) E to D in Directed graph is 2

 Unweighted Graph:

 If the edges do not have weights, the graph is said to be unweighted. Edges simply show

connections.

Reachable: If there is a path from u to v then v is reachable from u

 (i.e) v -> u = 2 -> 3

Fig. 2.4. Directed graph (Reachable)

Table 2.1. Difference between Stron

6

STRONGLY CONNECTED

GRAPH

WEAKLY CONNECTED

GRAPH

UNILATERALLY

CONNECTED GRAPH

 In directed graph, a

graph is said to be

strongly connected if

every vertex is

reachable from every

other vertex

 A graph is said to

be weakly connected if

there doesn’t exist any

path between any two

pairs of vertices.

 If it contains a

directed path from

u to v or v to u for

every pair of

vertices u,v.

 Every pairs of point are

mutually reachable

 A directed graph is

weakly connected if it is

underlying graph

(means graph without

direction) is connected

 At least for any

pair of vertices,

one vertex should

be reachable form

the other

III. BASIC TERMINOLOGIES

Arc: The directed edge in a directed graph is called an arc.

Strongly connected graph: A directed graph is called strongly connected if there is a directed

path from any vertex to any other vertex.

Example:

Fig. 3.1 Directed Graph – Strongly Connected

In the above graph we have path from any vertex to any other vertex

Weakly connected graph: A Directed graph is called a weakly connected graph if for any two

nodes I and J, there is a directed path from I to J or from J to I.

7

Example:

Fig. 3.2. Directed Graph – Weakly Connected

Out degree: The number of arcs exiting from the node is called out degree of that node.

In degree: The number of arcs entering the node is called in degree of that

node. Example:

Fig. 3.3 Directed Graph – (Indegree and Outdegree)

Table. 3.1: Degree of Graph
Nodes Indegree Outdegree

A 0 3

B 1 1

C 1 1

D 3 0

Source node: A node where the indegree is 0 but has a positive value for outdegree is called a

source node. That is there are only outgoing arcs to the node and no incoming arcs to the node.

Example:

 Node ‘A’ is the source node in the above graph fig. 3.3

Sink node: A node where the outdegree is 0 and has a positive value for indegree is called the

sink node. That is there is only incoming arcs to the node and no outgoing arcs the node.

Example:

 Node ‘D’ is the Sink node in the above graph fig. 3.3

8

Cycle: A cycle in a directed graph is a directed path that originates and terminates at the same

node i.e., some number of vertices connected in a closed chain.

Example:

Fig. 3.4. Directed with cyclic graph

This graph contains three cycles 0->2->0, 0->1->2->0, 1->2->0->1 and 3->3,

Degree of a node: In an undirected graph, the degree of a node is the number of edges

connected directly to the node.

Length of the path: The length of the path between node I and K is the number of edges

between them in a path from I to K.

Degree: The degree of the node B in the undirected graph shown above is 3.

IV. REPRESENTATION OF GRAPHS

There are two possible ways by which the graph can be represented.

1. Matrix representation (Array Representation)

2. Linked representation

The graphs can be represented using Adjacency matrix or otherwise called the

incidence matrix. Since the matrix is so sparse it is also called as sparse matrix.

9

The adjacency matrix is a N X N matrix where N is the number of nodes in the graph. Each

entry (I, J) in the matrix has either 1 or 0. An entry 1 indicates that there is a direct connection

from I to J. An entry 0 indicates that there is no direct connection from I to J.

Fig. 4.1. Undirected Graph

If an adjacency matrix is written for the above directed graph as shown:

Adjacency Matrix Representation

Since the matrix is so sparse in nature the second method of representation will be

preferred if the number of edges is very less compared to the number of vertices.

Adjacency List:

An array of linked lists is used. Size of the array is equal to number of vertices. Let the array

be array[]. An entry array[i] represents the linked list of vertices adjacent to the ith vertex.

This representation can also be used to represent a weighted graph. The weights of edges can

be stored in nodes of linked lists. Following is adjacency list representation of the above graph.

Adjacency List Representation of the above Graph

V. GRAPH TRAVERSALS

There are two methods for traversing through the nodes of the graph. They are:

(1) Breadth First Search Traversal (BFS)

(2) Depth First Search Traversal (DFS)

10

Breadth First Search Traversal (BFS)

As the name implies, this method traverses the nodes of the graph by searching

through the nodes breadth-wise. Initially let the first node of the graph be visited. This node

is now considered as node u. Now find out all the nodes which are adjacent to this node. Let

all the adjacent nodes be called as w. Add the node u to a queue. Now every time an adjacent

node w is visited, it is added to the queue. One by one all the adjacent nodes w are visited and

added to the queue. When all the unvisited adjacent nodes are visited, then the node u is

deleted from the queue and hence the next element in the queue now becomes the new node

u. The process is repeated on this new node u. This is continued till all the nodes are visited.

The Breadth First Traversal (BFT) algorithm calls the BFS algorithm on all the nodes.

Algorithm

BFT(G, n)

Repeat for i = 1 to n

Visited[i] =

0 End Repeat

Repeat for i = 1 to n

If visited[i] = 0

BFS(i)

End

if End

Repeat

BFS(v)

u = v

visited[v] =

1

Repeat while(true)

Repeat for all vertices w adjacent

to u If visited[w] = 0

Add w to

queue

Visited[w] = 1

End

if End

Repeat

If queue is empty

Return

End if

Delete u from

queue End while

End BFS

11

Now the following diagrams illustrate the BFS on a directed graph.

12

Depth First Search Traversal (DFS)

In the Depth First Search Traversal, as the name implies the nodes of the graph are

traversed by searching through all the nodes by first going to the depth of the graph. The first

node is visited first. Let this be node u. Find out all the adjacent nodes of u. Let that be w.

Apply the DFS on the first adjacent node recursively. Since a recursive approach is followed,

the nodes are traversed by going to the depth of the graph first. The DFT algorithm calls the

DFS algorithm repeatedly for all the nodes in the graph.

13

Algorithm

DFT(G, n)

Repeat for i = 1 to n

Visited[i] =

0 End Repeat

Repeat for i = 1 to n

If visited[i] = 0

DFS(i)

End

if End

Repeat
DFS(v)

Visited[v] = 1

Repeat for each vertex w adjacent

from v If visited[w] = 0

DFS(w)

End

if End for

14

Now the following diagrams illustrate the DFS on a directed graph.

15

Applications of depth First Traversal

Depth-first search (DFS) is an algorithm (or technique) for traversing a graph.

1) For an unweighted graph, DFS traversal of the graph produces the minimum spanning

tree and all pair shortest path tree.

2) Detecting cycle in a graph: A graph has cycle if and only if we see a back edge during

DFS. So, we can run DFS for the graph and check for back edges.

3) Path Finding:

We can specialize the DFS algorithm to find a path between two given vertices u and z.

i) Call DFS (G, u) with u as the start vertex.

ii) Use a stack S to keep track of the path between the start vertex and the current vertex.

iii) As soon as destination vertex z is encountered, return the path as

 the contents of the stack

4) Topological Sorting

Topological Sorting is mainly used for scheduling jobs from the given dependencies among

jobs. In computer science, applications of this type arise in instruction scheduling, ordering

of formula cell evaluation when recomputing formula values in spreadsheets, logic synthesis,

determining the order of compilation tasks to perform in make files, data serialization, and

resolving symbol dependencies in linkers.

5) Finding Strongly Connected Components of a graph A directed graph is called strongly

connected if there is a path from each vertex in the graph to every other vertex.

6) Solving puzzles with only one solution, such as mazes. DFS can be adapted to find all

solutions to a maze by only including nodes on the current path in the visited set.

Applications of Breadth First Traversal

1) Shortest Path and Minimum Spanning Tree for unweighted graph In unweighted graph,

the shortest path is the path with least number of edges. With Breadth First, we always reach

a vertex from given source using minimum number of edges. Also, in case of unweighted

graphs, any spanning tree is Minimum Spanning Tree and we can use either Depth or

Breadth first traversal for finding a spanning tree.

2) Peer to Peer Networks. In Peer to Peer Networks like BitTorrent, Breadth First Search is

used to find all neighbour nodes.

3) Crawlers in Search Engines: Crawlers build index using Breadth First. The idea is to start

from source page and follow all links from source and keep doing same. Depth First

Traversal can also be used for crawlers, but the advantage with Breadth First Traversal is,

depth or levels of built tree can be limited.

4) Social Networking Websites: In social networks, we can find people within a given

distance ‘k’ from a person using Breadth First Search till ‘k’ levels.

5) GPS Navigation systems: Breadth First Search is used to find all neighbouring locations.

6) Broadcasting in Network: In networks, a broadcasted packet follows Breadth First Search

to reach all nodes.

16

7) In Garbage Collection: Breadth First Search is used in copying garbage collection

using Cheney’s algorithm. Breadth First Search is preferred over Depth First Search

because of better locality of reference:

8) Cycle detection in undirected graph: In undirected graphs, either Breadth First

Search or Depth First Search can be used to detect cycle. In directed graph, only

depth first search can be used.

9) Ford–Fulkerson algorithm In Ford-Fulkerson algorithm, we can either use

Breadth First or Depth First Traversal to find the maximum flow. Breadth First

Traversal is preferred as it reduces worst case time complexity to O(VE2).

10) To test if a graph is Bipartite, We can either use Breadth First or Depth First

Traversal.

11) Path Finding, We can either use Breadth First or Depth First Traversal to find

if there is a path between two vertices.

12) Finding all nodes within one connected component: We can either use Breadth

First or Depth First Traversal to find all nodes reachable from a given node. Many

algorithms like Prim’s Minimum Spanning Tree and Dijkstra’s Single Source

Shortest Path use structure similar to Breadth first search.

	III. BASIC TERMINOLOGIES
	IV. REPRESENTATION OF GRAPHS
	Adjacency List:
	V. GRAPH TRAVERSALS
	Breadth First Search Traversal (BFS)
	Algorithm
	Algorithm (1)
	Applications of depth First Traversal
	3) Path Finding:
	4) Topological Sorting
	Applications of Breadth First Traversal

