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ADVANCED TREE CONCEPTS 

 

THREADED BINARY TREE 

A binary tree is represented using array representation or linked list representation. When a 

binary tree is represented using linked list representation, if any node is not having a child, 

we use NULL pointer in that position. In any binary tree linked list representation, there are a 

greater number of NULL pointers than actual pointers. Generally, in any binary tree linked 

list representation, if there are 2N number of reference fields, then N+1 number of reference 

fields are filled with NULL (N+1 is NULL out of 2N). This NULL pointer does not play any 

role except indicating there is no link (no child). 

A. J. Perlis and C. Thornton have proposed new binary tree called "Threaded Binary Tree", 

which make use of NULL pointer to improve its traversal processes. In threaded binary tree, 

NULL pointers are replaced by references to other nodes in the tree, called threads. 

A threaded binary tree is defined as follows: 

"A binary tree is threaded by making all right child pointers that would normally be null point 

to the inorder successor of the node (if it exists), and all left child pointers that would 

normally be null point to the inorder predecessor of the node." 

Why do we need Threaded Binary Tree? 

Binary trees have a lot of wasted space: the leaf nodes each have 2 null pointers. We can use 

these pointers to help us in inorder traversals. Threaded binary tree makes the tree traversal 

faster since we do not need stack or recursion for traversal. 

Types of threaded binary trees: 

Single Threaded: Each node is threaded towards either the in-order predecessor or successor 

(left or right) means all right null pointers will point to inordersuccessor OR all left null 

pointers will point to inorderpredecessor. 

 

Double threaded: each node is threaded towards both the in-order predecessor and successor 

(left and right) means all right null pointers will point to inorder successor AND all left null 

pointers will point to inorderpredecessor. 

 

 

 

 

 

 

 

 

 Fig 1. Single and Double threaded binary tree 
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Implementation: 

Let’s see how the Node structure will look like 

 

Fig 2. Node Structure of a threaded binary tree 

 

class Node{ 

Nodeleft; 

Node right; 

int data; 

boolean rightThread;  

public Node(int data) 

{ 

this.data = data; 

 rightThread = false; 

} 

} 

In normal BST node we have left and right references and data but in threaded binary tree we 

have boolean another field called “rightThreaded”. This field will tell whether node’s right 

pointer is pointing to its inordersuccessor, but how, we will see it further. 

Operations: 

Insert node into tree Print or traverse the tree.  

 

Insert(): 

The insert operation will be quite similar to Insert operation in Binary search tree with few 

modifications.To insert a node, our first task is to find the place to insert the node. 

•Take current = root. 

•Start from the current and compare root.data with n. 

•Always keep track of parent node while moving left or right. 

•If currentdata is greater than n that means we go to the left of the root, if after moving to left, 

the current = null then we have found the place where we will insert the new node. Add the 

new node to the left of parent node and make the right pointer points to parent node and 

rightThread = true for new node. 
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Fig 3. Inserting a node in a single threaded binary tree 

 If current.data is smaller than n, we need to go to the right of the root, while 
going into the right sub tree, check rightThread for current node, it points to the in order 
successor, if rightThread = false then and current reaches to null, just insert the new 
node else if rightThread = true then we need to detach the right pointer (store the 
reference, new node right reference will be point to it)of current node and make it point 
to the new node and make the right reference point to storedreference. 
 

                                     Fig 4. Inserting node 15 into threaded binary tree  

Traverse(): 

Traversing the threaded binary tree will be quite easy, no need of any recursion or any stack 

for storing the node. Just go to the left most node and start traversing the tree using right 

pointer and whenever rightThread = false again go to the left most node in right sub- tree. 

 

 

 

 

 

 

 

                           Fig 5. Traversal of single threaded binary tree 
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Node leftmost (Node n){ 

Node ans =n; 

if (ans == null)  

{returnnull;} 

while (ans.left != null) { 

ans = ans.left; 

} 

return ans; 

} 

void inOrder(Node n) { 

Node cur = 

leftmost(n); while 

(cur != null) { 

print(cur); 

if (cur.rightThread) 

{cur = cur.right; 

} else  

{ 

cur = leftmost(cur.right); 

} 

} 

} 

 

HEIGHT BALANCED TREES (AVL TREES) 

The Height balanced trees were developed by researchers Adelson-Velskii and Landis. Hence 

these trees are also called AVL trees. Height balancing attempts to maintain the balance 

factor of the nodes within limit. 

 

Height of the tree: Height of a tree is the number of nodes visited in traversing a branch that 

leads to a leaf node at the deepest level of the tree. 

Balance factor: The balance factor of a node is defined to be the difference between the 

height of the node’s left subtree and the height of the node’s right subtree. 

Consider the following tree. The left height of the tree is 5, because there are 5 nodes (45, 40, 

35, 37 and 36) visited in traversing the branch that leads to a leaf node at the deepest level of 

this tree. 

In the following tree the balance factor for each and every node is calculated and shown. For 

example, the balance factor of node 35 is (0 – 2) = - 2. 

 

The tree which is shown below is a binary search tree. The purpose of going for a binary 

search tree is to make the searching efficient. But when the elements are added to the binary 

search tree in such a way that one side of the tree becomes heavier, then the searching 

becomes inefficient. The very purpose of going for a binary search tree is not served. Hence, 

we try to adjust this unbalanced tree to have nodes equally distributed on both sides. This is 
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achieved by rotating the tree using standard algorithms called the AVL rotations. After 

applying AVL rotation, the tree becomes balanced and is called the AVL tree or the height 

balanced tree. 

 

 

 

 

 

 

 

 

 

                                          Fig. 6 Binary search tree 

 

The tree is said to be balanced if each node consists of a balance factor either -1 or 0 or 1. If 

even one node has a balance factor deviated from these values, then the tree is said to be 

unbalanced. There are four types of rotations. They are: 

1.Left-of-Left rotation. 

2.Right-of-Right rotation. 

3.Right-of-Left rotation. 

4.Left-of-Right rotation. 

Left-of-Left Rotation 

Consider the following tree. Initially the tree is balanced. Now a new node 5 is added. This 

addition of the new node makes the tree unbalanced as the root node has a balance factor 2. 

Since this is the node which is disturbing the balance, it is called the pivot node for our 

rotation. It is observed that the new node was added as the left child to the left subtree of the 

pivot node. The pointers P and Q are created and made to point to the proper nodes as 

described by the algorithm. Then the next two steps rotate the tree.The last two steps in the 

algorithm calculates the new balance factors for the nodes and is seen that the tree has 

become a balanced tree 
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                                                     Fig 7. Left of left rotation  

 

 

 

Algorithm 
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Right-of- Right Rotation 

In this case, the pivot element is fixed as before. The new node is found to be added as the 

right child to the right subtree of the pivot element. The first two steps in the algorithm sets 

the pointer P and Q to the correct positions. The next two steps rotate the tree to balance it. 

The last two steps calculate the new balance factor of the nodes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                     Fig 8. Right of right rotation 

Algorithm 

LEFT-OF-LEFT (pivot) 

P = left(pivot) 

Q = right(P) 

Root = P 

Right(P) = pivot 

Left(pivot) = Q 

Bal(pivot) =0 

Bal(right(pivot)) = 0 

End LEFT-OF-LEFT 
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RIGHT-OF-RIGHT(pivot) 

P = right(pivot) 

Q = left(P) 

Root = P 

Left(P) = pivot 

Right(pivot) = Q 

Bal(pivot) = 0 

Bal(left(pivot)) = 0 

End RIGHT-OF-RIGHT  

Right-of-Left Rotation 

In this following tree, a new node 19 is added. This is added as the right child to the left 

subtree of the pivot node. The node 20 fixed as the pivot node, as it disturbs the balance of 

the tree. In the first two steps the pointers P and Q are positioned. In the next four steps, tree 

is rotated. In the remaining steps, the new balance factors are calculated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                            Fig 9. Right of left rotation 

Algorithm 
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RIGHT-OF-LEFT(pivot) 

P = left(pivot) 

Q = right(P) 

Root = Q 

Left(Q) = P 

Right(Q) = Pivot 

Left(pivot) = right(Q) 

Right(P) = left(Q) 

If Bal(pivot) = 0 

Bal(left(pivot)) = 0 

Bal(right(pivot)) = 0 

Else 

If Bal(pivot) = 1 

Bal(pivot) = 0 

Bal(left(pivot)) = 0 

Bal(right(pivot)) = -1 

Else 

Bal(pivot) = 0 

Bal(left(pivot)) = 1 

Bal(right(pivot)) = 0 

End if 

End if 

 

End RIGHT-OF-LEFT  

 

Left-of-Right 

In the following tree, a new node 21 is added. The tree becomes unbalanced and the node 20 

is the node which has a deviated balance factor and hence fixed as the pivot node. In the first 

two steps of the algorithm, the pointers P and Q are positioned. In the next 4 steps the tree is 

rotated to make it balanced. The remaining steps calculate the new balance factors for the 

nodes in the tree. 

 

 

 

 

 

 

 

 

                       Fig 10. New node 21 makes the tree unbalanced 
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                                            Fig 11. Left of right rotation 

Algorithm 

 

 

B – TREES 

Multiway search tree (m-way search tree): Multiway search tree of order n is a tree in which 

any node may contain maximum n-1 values and can have maximum n children. 
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Consider the following tree. Every node in the tree has one or more than one values stored in 

it. The tree shown is of order 3. Hence this tree can have maximum 3 children and each node 

can have maximum 2 values. Hence it is an m-way search tree. 

 

 

 

 

 

 

 

                                                 Fig 12. B-Tree of order 3 

 

 

Consider the following tree. Clearly, it is a m-way search tree of order 3. Let us check 

whether the above conditions are satisfied. It can be seen that root node has 3 children and 

therefore has only 2 values stored in it. Also, it is seen that the elements in the first child (3, 

17) are lesser than the value of the first element (23) of the root node. The value of the 

elements in the second child (31) is greater than the value of the first element of the root node 

(23) and less than the value of the second element (39) in the root node. The value of the 

elements in the rightmost child (43, 65) is greater than the value of the rightmost element in 

the root node. All the three leaf nodes are at the same level (level 2). Hence all the conditions 

specified above is found to be satisfied by the given m-way search tree. Therefore, it is a B-

Tree. 
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                                                 Fig 13. B-tree of order 3 

Search Operation in a B-Tree 

Let us say the number to be searched is k = 64. A temporary pointer temp is made to initially 

point to the root node. The value k = 64 is now compared with each element in the node 

pointed by temp. If the value is found then the address of the node where it is found is 

returned using the temp pointer. If the value k is greater than ith element of the node, then the 

temp is moved to the i+1th node and the search process is repeated. If the k value is lesser 

than the first value in the node, then the temp is moved to the first child. If the k value is 

greater than the last value of the node, then temp is moved to the rightmost child of the node 

and the search process is repeated. 

After the particular node where the value is found is located (now pointed by temp), then a 

variable LOC is initialized to 0, indicating the position of the value to be searched within that 

node. The value k is compared with each and every element of the node. When the value of 

the k is found within the node, then the search comes to an end position where it is found is 

stored in LOC. If not found the value of LOC is zero indicating that the value is not found. 

 

 

                                           

Fig 14. Search operation 

 

Algorithm 

Temp = ROOT, i = 1, pos = 0 

While i ≤ count(temp) and child[i](temp) ≠ NULL 

If k = info(temp[i]) 

Pos = i Return 

temp 
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Else 

If k < info(temp[i]) 

SEARCH(child[i](temp), k) 

Else 

If i = count(temp) 

Par = temp 

Temp = child[i+1](temp) 

Else 

i = i + 1 

End if 

End if 

End if 

End While 

While i ≤ count(temp) 

If k = info(temp[i]) 

Pos = i  

Return temp 

End if  

End while 

End SEARCH 

 

Insert Operation in a B-Tree 

One of the conditions in the B-Tree is that, the maximum number of values that can be 

present in the node of a tree is n – 1, where n is the order of the tree. Hence, it should be 

taken care that, even after insertion, this condition is satisfied. There are two cases:  In the 

first case, the element is inserted into a node which already had less than   n- 1 values, and the 

in the second case, the element is inserted into a node which already had exactly n-1 values. 

The first case is a simple one. The insertion into the node does not violate any condition of 

the tree. But in the second case, if the insertion is done, then after insertion, the number 

values exceeds the limit in that node. 

Let us take the first case. In both the cases, the insertion is done by searching for that element 

in the tree which will give the node where it is to be inserted. While searching, if the value is 

already found, then no insertion is done as B-Tree is used for storing the key values and keys 

do not have duplicates. Now the value given is inserted into the node. Consider the figure 

which shows how value 37 is inserted into correct place. 
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                                               Fig 15. Insertion of value 37 in the B-Tree 

In the second case, insertion is done as explained above. But now, it is found that, the number 

of values in the node after insertion exceeds the maximum limit. Considerthe same tree 

shown above. Let us insert a value 19 into it. After insertion of the value 19, the number of 

values (2, 13, 19, 22) in that node has become 4. But it is a B-Tree of order 4 in which there 

should be only maximum 3 values per node. Hence the node is split into two nodes, the first 

node containing the numbers starting from the first value to the value just before the middle 

value (first node: 2). The second node will contain the numbers starting just after the mid 

value till the last value (second node: 19, 22). The mid value 13 is pushed into the parent. 

Now the adjusted B-Tree appears as shown. 

 

 

 

 

 

 

 

Fig 16. Insertion of value 19 in the B-Tree 
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Algorithm 

 

 

Delete Operation in B-Tree 

When the delete operation is performed, we should take care that even after deletion, the 

node has minimum n/2 value in it, where n is the order of the tree. 

There are three cases: 

Case 1: The node from which the value is deleted has minimum n/2 values even after 

deletion. Let us consider the following B-Tree of order 5. A value 64 is to be deleted. Even 

after the deletion of the value 64, the node has minimum n/2 values (i.e., 2 values). Hence the 

rules of the B-Tree are not violated. 

 

Fig 17. B-Tree 
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Fig 

18. 

Deletion of value 64 from the B-Tree 

Case 2: In the second case, after the deletion the node has less than minimum n/2 values. Let 

us say we delete 92 from the tree. After 92 is deleted, the node has only one value83. But 

a node adjacent to it consist 3 values (i.e., there are extra values in the adjacent node). Then 

the last value in that node 71 is pushed to its parent and the first value in the parent namely 79 

is pushed into the node which has values less than minimum limit.  Now the node has 

obtained the minimum required values. 

 

             Fig 19. B-Tree 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 

20. B-Tree after deleting 92 
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Case 3: In the previous case, there was an adjacent node with extra elements and hence the 

adjustment was made easily. But if all the nodes have exactly the minimum required, and if 

now a value is deleted from a node in this, then no value can be borrowed from any of the 

adjacent nodes. Hence as before a value from the parent is pushed into the node (in this case 

32 is pushed down). Then the nodes are merged together. But we see that the parent node has 

insufficient number of values. Hence same process of merging takes place recursively till the 

entire tree is adjusted. 

 

 

Fig 21. Deletion of value 42 from the B-Tree 

 

 

 

 

 

 

Algorithm 
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Splay trees 

A splay tree is a self-adjusting binary search tree with the additional property that recently 

accessed elements are quick to access again. It performs basic operations such as insertion, 

look-up and removal in O(log n) time. 

Tree Splaying 

All normal operations on a binary search tree are combined with one basic operation, 

called splaying. Splaying the tree for a certain element rearranges the tree so that the element 

is placed at the root of the tree. One way to do this is to first perform a standard binary tree 

search for the element in question, and then use tree rotations in a specific fashion to bring 

the element to the top.  

https://en.wikipedia.org/wiki/Binary_search_tree
https://en.wikipedia.org/wiki/Big_O_notation
https://en.wikipedia.org/wiki/Tree_rotation
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Advantages: 

Good performance for a splay tree depends on the fact that it is self-optimizing, in that 

frequently accessed nodes will move nearer to the root where they can be accessed more 

quickly. 

Tree rotations 

To bring the recently accessed node closer to the tree root, a splay tree uses tree rotations. 

There are six types of tree rotations, three of which are symmetric to the other three. These 

are as follows: 

 Left and right rotations 

 Zig-zig left-left and zig-zig right-right rotations 

 Zig-zag left-right and zig-zag right-left rotations 

The first type of rotations, either left or right, is always a terminal rotation. In other words, 

the splaying is complete when we finish a left or right rotation. 

Deciding which rotation to use 

The decision to choose one of the above rotations depends on three things: 

 Does the node we are trying to rotate have a grand-parent? 

 Is the node left or right child of the parent? 

 Is the parent left or right child of the grand-parent? 

If the node does not have a grand-parent, we carry out a left rotation if it is the right child of 

the parent; otherwise, we carry out a right rotation. 

If the node has a grand-parent, we have four cases to choose from: 

If node is left of parent and parent is left of grand-parent, we do a zig-zig right-right rotation. 

If node is left of parent but parent is right of grand-parent, we do a zig-zag right-left rotation. 

If node is right of parent and parent is right of grand-parent, we do a zig-zig left-left rotation. 

Finally, if node is right of parent but parent is left or grand-parent, we do a zig-zag left-

right rotation. 

The actual rotations are described in the following sections. 

Left and right rotations 

The following shows the intermediate steps in understanding a right rotation. The left rotation 

is symmetric to this. 
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Fig 22. Splay tree Right Rotation 

As we can see, each of the left or right rotations requires five pointer updates: 

if (current == parent->left) { 

    /* right rotate */ 

    parent->left = current->right; 

    if (current->right) 

        current->right->parent = parent; 

    parent->parent = current; 

    current->right = parent; 

} else { 

    /* left rotate */ 

    parent->right = current->left; 

    if (current->left) 

        current->left->parent = parent; 

    parent->parent = current; 

    current->left = parent; 

} 

current->parent = 0; 
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Zig-zig right-right and left-left rotations 

The following shows the intermediate steps in understanding a zig-zig right-right rotation. 

The zig-zig left-left rotation is symmetric to this. Note in the following that with zig-zig 

rotations, we first do a right or left rotation on the parent, before doing a right or left rotation 

on the node. 

 

Fig 23. Splay tree Zig-zig right-right and left-left rotations 
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As we can see, zig-zig right-right rotation requires nine pointer updates. 

/* zig-zig right-right rotations */ 

if (current->right) 

    current->right->parent = parent; 

if (parent->right) 

    parent->right->parent = grandParent; 

current->parent = grandParent->parent; 

grandParent->parent = parent; 

parent->parent = current; 

grandParent->left = parent->right; 

parent->right = grandParent; 

parent->left = current->right; 

current->right = parent; 

The same number of pointer updates for zig-zig left-left rotation. 

/* zig-zig left-left rotations */ 

if (current->left) 

    current->left->parent = parent; 

if (parent->left) 

    parent->left->parent = grandParent; 

current->parent = grandParent->parent; 

grandParent->parent = parent; 

parent->parent = current; 

grandParent->right = parent->left; 

parent->left = grandParent; 

parent->right = current->left; 

current->left = parent; 

Zig-zag left-right and right-left rotations 

The following shows the intermediate steps in understanding a zig-zag left-right rotation. The 

zig-zag right-left rotation is symmetric to this. Note in the following that with zig-zag 

rotations, we do both rotations on the node, in contrast to zig-zig rotations. 
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Fig 24. Splay tree Zig-zag left-right and right-left rotations 
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As we can see, zig-zag left-right rotation requires nine pointer updates. 

/* zig-zag right-left rotations */ 

if (current->left) 

    current->left->parent = grandParent; 

if (current->right) 

    current->right->parent = parent; 

current->parent = grandParent->parent; 

grandParent->parent = current; 

parent->parent = current; 

grandParent->right = current->left; 

parent->left = current->right; 

current->right = parent; 

current->left = grandParent; 

The same number of pointer updates for zig-zag right-left rotation. 

/* zig-zag left-right rotations */ 

if (current->left) 

    current->left->parent = parent; 

if (current->right) 

    current->right->parent = grandParent; 

current->parent = grandParent->parent; 

grandParent->parent = current; 

parent->parent = current; 

grandParent->left = current->right; 

parent->right = current->left; 

current->left = parent; 

current->right = grandParent; 
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Heap Trees 

Heap is a special case of balanced binary tree data structure where root-node value is 

compared with its children and arranged accordingly. Heap trees are of two types- Max heap 

and Min heap. 

For Input → 35 33 42 10 14 19 27 44 26 31 

Min-Heap − where the value of root node is less than or equal to either of its children. 

 

Fig 25.Min Heap 

Max-Heap − where the value of root node is greater than or equal to either of its children. 

 

Fig 26.Max Heap 

If a given node is in position I then the position of the left child and the right child can be 

calculated using Left (L) = 2I and Right (R) = 2I + 1.  To check whether the right child 

exists or not, use the condition R ≤ N.  If true, Right child exists otherwise not.The last node 

of the tree is N/2.  After this position tree has only leaves. 

Procedure HEAPIFY(A,N) 

// A is the list of elements 

//N is the number of elements 
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For ( I = N/2 to 1) 

     WALKDOWN (A,I,N) 

END FOR 

End Procedure 

Procedure WALKDOWN(A, I,N) 

//A is the list of unsorted elements 

//N is the number of elements in the array 

//I is the position of the node where the walkdown procedure is to be applied. 

While I ≤ N/2 

    L  2I, R  2I + 1 

If A[L] > A[I] Then 

M  L 

Else 

M  I 

End If 

If A[R] > A[M] and R ≤ N Then 

              M  R 

End If 

If M ≠ I Then 

              A[I]  A[M] 

 I M 

 Else 

       Return 

End If 

End While 

End WALKDOWN 

Example: 

Given a list A with 8 elements: 

35 38 10 14 43 16 3 
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The given list is first converted into a binary tree as shown. 

 

Fig 27.Binary tree 

 

Then they are heapified , starting from the lowest parent. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 28.Steps to convert Binary tree into a Max heap 

 

 
The obtained tree is a Max heap tree. 

 



29 
 

TRIES 

-Also called digital tree or radix tree or prefix tree. 

-Tries are an excellent data structure for strings. 

-Tries is a tree data structure used for storing collections of strings. 

-Tries came from the word retrieval. 

-Nodes store associative keys (strings) and values. 

Tries Structure 

Let us consider the case of a tries tree of order 3.Let the key value in this tries is constituted 

from three letters namely a, b and c. Each node has the following structure: 

 

 

Fig 29.Node structure of a Trie 

// Trie node 

struct TrieNode 

{ 

     struct TrieNode *children[ALPHABET_SIZE]; 

     // isLeaf is true if the node represents 

     // end of a word 

     bool isLeaf; 

}; 

Here 3 link fields’ points to three nodes in the next level and the last field are called the 

information field. The information field has the value either TRUE or FALSE. If the value is 

TRUE then traversing from the root node to this node yields some information. A tries of 

order 3 is given below: 

https://en.wikipedia.org/wiki/Tree_(data_structure)
https://en.wikipedia.org/wiki/Data_structure
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Fig 30.Traversal in a Trie 

For example, let us assume the key value ‘bab’. Starting from the root node, and branching 

based on each letter, traversal will be 0-2-7-14 and in node 14, the information field TRUE 

implies that ‘bab’ is a word. 

NOTE: 

 Tries indexing is suitable for maintaining variable sized key values. 

 Actual key value is never stored but key values are implied through links. 

 If English alphabets are used, then a trie of order 26 can maintain whole English 

dictionary. 

Operations on Trie 

Searching  

Searching for a key begins at the root node, compare the characters and move down. The 

search can terminate due to end of string or lack of key in tries. In the former case, if the 

value field of last node is non-zero then the key exists in tries. In the second case, the search 

terminates without examining all the characters of key, since the key is not present in trie. 

PSEUDOCODE. The search algorithm involves the following steps: 

 1. For each character in the string, see if there is a child node with that character as the 

content.  
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2. If that character does not exist, return false.  

3. If that character exist, repeat step 1.  

4. Do the above steps until the end of string is reached.  

5. When end of string is reached and if the marker (NotLeaf) of the current Node is set to 

false, return true, else return false. 

Insertion  

Inserting a key into trie is simple approach. Every character of input key is inserted as an 

individual trie node. Note that the children are an array of pointers to next level trie nodes. 

The key character acts as an index into the array children. If the input key is new or an 

extension of existing key, we need to construct non-existing nodes of the key, and mark leaf 

node. If the input key is prefix of existing key in trie, we simply mark the last node of key as 

leaf. The key length determines trie depth. 

PSEUDOCODE: Any insertion would ideally be following the below algorithm: 

1. Find the place of the item by following bits. 

2. If there is nothing, just insert the item there as a leaf node. 

3. If there is something on the leaf node, it becomes a new internal node. Build a new 

sub tree to that inner node depending how the item to be inserted and the item that 

was in the leaf node differs. 

4. Create new leaf nodes where you store the item that was to be inserted and the item 

that was originally in the leaf node. 

Deletion  

Deletion procedure is same as searching and insertion with some modification. To delete a 

key from a trie, trace down the path corresponding to the key to be deleted, and when we 

reach the appropriate node, set the TAG field of this node as FALSE. If all the field entries of 

this node are NULL, then return this node to the pool of free storage. To do so, maintain a 

stack of PATH to store all the pointers of nodes on the path from the root to the last node 

reached. 

Application of Tries 

 Retrieval operation of lexicographic words in a dictionary. 

 Word processing packages to support the spelling check. 

 Useful for storing a predictive text for auto complete. 

 

 


