NUMBER SYSTEMS

SATHYABAMA

INSTITUTE OF SCIENCE AND TECHNOLOGY
(DEEMED TO BE UNIVERSITY)
Accredited “A” Grade by NAAC | 12B Status by UGC | Approved by AICTE

www.sathyabama.ac.in

SCHOOL OF COMPUTING
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

UNIT - 1 - SBS1203 - COMPUTER ARCHITECTURE

NUMBER SYSTEMS

1.1 NUMBER SYSTEM

Number systems are the technique to represent numbers in the computer system
architecture. Whatever value we are store and getting from computer memory has defined in the
number system. Computers can understand the following types of number.

1. Decimal Number - base 10

2. Binary Number — Base 2

3. Octal Number - Base 8

4. Hexadecimal Number — base 16

5. Decimal Number System

Decimal number are from 0 to 9, binary number are 0’s and 1’s. Octal number system starts
from 0 to 7. Hexadecimal Number System starts from 0 to 15. In this hexadecimal system
from 10 to 15 represented as Ato F.

Decimal Number System

Decimal number system is base 10 number system. The digits from 0 to 9.
Decimal to Binary Conversion

Steps to follow for conversion:
- Divide each digit by 2, keep track of the reminder
- Find the reminder reaches 0 LSB(Least Significant Bit)
-Eg 1010 = 10102
Decimal to Octal Conversion
Steps to follow for conversion:
-Divide eachdigit by 8, keep track of the reminder
- Find the reminder reaches 0 LSB(Least Significant Bit)
- Eg 1019 = 125
Decimal to Hexadecimal Conversion

Steps to follow for conversion:
-Divide eachdigit by 16, keep track of the reminder
- Find the reminder reaches 0 LSB(Least Significant Bit)
- Eg 2010 = Adyg

Binary Number System

Digital Computers represent all kinds of data and information in form the binary number
system.

Binary Number System consists of two digits 0 and 1. Base is 2.

Binary to Decimal Conversion

Steps to follow for conversion:

NUMBER SYSTEMS

- Multiply eachdigit by 2", where n is “weight” of the bit.
- N is the position of the bit. Starting from 0.
- Add the result.
- Eg 10102 = 1010
Binary to Octal Conversion
Steps to follow for conversion:
- Group binary digits in a 3 bits from on right side (Most Significant Bit)
- Convert to octal digits.
- E.g 101011100, =534
Binary to Hexadecimal Conversion

Steps to follow for conversion:
- Group binary digits in a 4 bits from on right side (Most Significant Bit)
- Convert to hexadecimal digits.
- Eg 1010111002 = 15C16

Octal Number System

Octal Number system is the base 8 number system. Starting from 0 to 7. The number after 7
is 10.

Octal to Decimal Conversion

Steps to follow for conversion:
-Multiply eachdigit by 8" , where nis “weight” of the bit.
- N is the position of the bit. Starting from O.
- Add the result.
- Eg 5345 =348
Octal to Binary Conversion

Steps to follow for conversion:
- Group binary digits in a 3 bits from on right side (Most Significant Bit)
- Convert to octal digits.
- E.g 5345 = 101011100,

Octal to Hexadecimal Conversion

Steps to follow for conversion:
- Convert the octal to binary.
- Group binary digits in a 4 bits from on right side (Most Significant Bit)
- Convert to octal digits.
- Eg 534g = 15C46
Hexadecimal Number System

NUMBER SYSTEMS

Octal Number system is the base 16 number system. Starting from 0 to 9. The number is 10 -
15 representsas A - F.

Hexadecimal to Decimal Conversion

Steps to follow for conversion:
-Multiply eachdigit by 16" , where nis “weight” of the bit.
- N is the position of the bit. Starting from O.
- Add the result.
- Eg 15C16 = 34810
Hexadecimal to Binary Conversion

Steps to follow for conversion:
- Group binary digits in a 4 bits from on right side (Most significant Bit)
- Convert to octal digits.
- E.g 15C46 = 101011100,

Hexadecimal to Octal Conversion

Steps to follow for conversion:
- Group binary digits in a 4 bits from on right side (Most Significant Bit)
- Convert to octal digits.
- Eg 15C16 = 5344

2. COMPLEMENTS

Complements are used in digital computers for simplifying the subtraction operation and for
logical manipulation. There are two types of complements, i.e.

a) r’s-complement
b) (r— 1)’ s-complement

1’s-Complement

To find 1’s-complement of a number replace all 0’s with 1’s and all 1’s with 0’s. The 1’s
complement of a number is always 1 less than the 2’s-complement of a number.

E.g. 1. 1’s-complement of 1011010.
- Replacing all 1’s with 0’s and all 0’s with 1’s.
- The 1’s-complement of 1011010 is 0100101.
E.g. 2. 1’s-complement of 0.0101
- Replace all 1’s with 0’s and all 0’s with 1’s.
- The 1’s-complement of 0.0101 is 0.1010.
E.g.3. Find the subtraction (1110101 —1001101), using the 2’s-complement method.

4

NUMBER SYSTEMS

Minuend = 1110101
Subtrahend = 1001101
Minuend = 1110101
I’s Complement of Subtrahend = 0110010
2’s-complement of subtrahend = 0110010 +1= 0110011
1110101 + 0110011 = 10101000
Here, an end carry occurs, hence discard it. The result of (1110101— 1001101), is
(0101000),.

3. SIGNED MAGNITUDE OF BINARY NUMBERS
A signed binary number consists of a sign, either positive or negative and magnitude. In a

signed magnitude representation of binary numbers, the most significant digit is zero for the
representation of positive binary number and one for the representation of negative binary
numbers. This most significant digits (0 or 1) represents whether the number is positive or
negative and the magnitude is the value of the numbers.

3.1. DECIMAL SIGNED NUMBERS

Decimal values of the positive and negative signed magnitude numbers can be
determined by the summation of the weights of all the magnitude bits, where there are 1’s
and ignoring all other bits, where there are zeros (0).

E.g. Express the decimal equivalent of signed binary number 10011100 expressed in its sign
magnitude form.

Solution: There are seven magnitude bits and one sign bit. Separating sign
bits and magnitude bits sign bit = 1, which means that the magnitude of the number is
negative.

Magnitude bits = 0011100, assigning the weights to the bits, we get
2022202222

0011100

Summing the weights together where 1 exists and ignoring where 0 exists, we get,
2'+22+2°=16+8+4=28

Adding sign magnitude bit to the solution for the signed magnitude binary number

(1 0011100) is (—28).

3.2. BINARY CODE

The digits 1 and O used in binary reflect the on and off states of a transistor. Each
instruction is translated into machine code - simple binary codes that activate the CPU.

NUMBER SYSTEMS

Programmers write computer codeand this is converted by a translator
into binary instructions that the processor can execute.
Different Types of Binary Code:
1. Binary Coded Decimal or 8421 Code
2. 2421 Code
3. 5211 Code
4. Gray Code (Reflected Code)
5. Error - Detection Code
Convertto BCD to Excess-3
0000 + 0011 =0011
01 0011 =0100
Convert Binary to Gray Code
BC GC
0011 0010
Most Significant Bit
Keep MSB , like 0 means 0
Both are same, like 0 and 0 means 0
like 1and 1 means 0
Difference, like 0and 1 means 1
Binary codes for the decimal digits o
Decimat (BCD) {Biquinary)
digit 8421 Excess-3 84-2-1 2421 5043210
0 0000 0011 0000 0000 0100001
1 0001 0100 Ol 0001 0160010
2 0010 0101 0110 0010 0100100
3 0011 0110 (101 0011 0101000
4 0160 0111 0100 0100 0110000
5 0101 1000 1011 1011 1000001
6 0110 1001 1010 1100 1000010
7 0111 1010 1001 1101 1000100
3 1000 1011 1000 1110 13031000
9

1001 J100

1111 1111

1010000

Fig.1.1 Binary codes for the decimal numbers

4. Error Correction Code

Error Correction codes detect the error, if it is occurred during transmission of the
original data bit stream.

NUMBER SYSTEMS

E,g. Parity code, Hamming code.

Error correction codes — are used to correctthe errors present in the received data bit
stream so that, we will get the original data.

4.1 Parity Code
One of the common way to detect the error is Parity bit. A parity bit is extra bit

included with a message to make the total number of one’s transmitted either odd or
Even.

Two Types in the Parity Code:
1. Odd Parity
2. Even Parity

If an odd parity selected, the total number of 1’s in the message bit and parity bit is odd ,

the P bit.
Parity bit o
Odd parity Even parity
Message P Message P
0000 1 0000 O
0001 0 0001 1
0010 0 0010 1

Fig.1.2 . Parity bit
5. BINARYLOGIC
Binary Logic Deals with binary that on two discrete values and with operations that
assume logical meaning. The two variables take may be called by different names.
e.g. True or false , yesor no

There are basic three logical operations : AND, OR and NOT

AND = XY
OR = X+Y
NOT = X

Truth Tables of Logical Operations

AND OR NOT
x ¥ Xy X ¥ X + ¥ X X
o 0 8] 0o 0 0 0 1
0o 1 O 0 1 1 i 0
1 O O 1 O 1
1 1 1] 1 1

Fig 1.3. Truth Tables of Logical operations
5.1 LOGIC GATES- TRUTH TABLE

AND GATE

NUMBER SYSTEMS

X — I = Xy

5 —
(a) Two-input AND gate
Fig. 1.4. Logical Diagram of AND gate

2 Input AND gate

A | B AB
0 I 0
0 1 0
1 I 0
1 1 1

Fig. 1.5. Truth Table of AND gate

OR GATE

¥y

(b) Two-input OR gate |

Fig.1.6. Logical Diagram of the OR gate

2 Input OR gate

A, B A4B
0 0 o
0 1 1
1 0 1
1 1 1

Fig.1.7. Truth Table of the OR gate

x > x

- NOT gate or inverter

NOT GATE

Fig.1.8 Logical Diagram of the NOT gate

NUMBER SYSTEMS

NOT gate
A | A
0 1
1 0

Fig.1.9. Truth Table of the NOT gate

5.2.BOOLEAN ALGEBRA

The system consists of an AND Gate, a NOR Gate and finally an OR Gate. The
expression for the AND gate is A.B, and the expression for the NOR gate is A+B. Both
these expressions are also separate inputs to the OR gate which is defined as A+B. Thus
the final output expression is given as:

The output of the system is given as Q = (A.B) + (A+B), but the notation A+B is the
same as the De Morgan’s notation A.B, Then substituting A.B into the output expression
gives us a final output notation of Q = (A.B)+(A.B), which is the Boolean notation for
an Exclusive-NOR Gate as seenin the previous section.

Inputs Intermediates Output

A

B A A.B + Q
B

0 0 0 1 1

0 1 0 0 0

1 0 0 0 0

1 1 1 0 1

NUMBER SYSTEMS

6. Simplification of Boolean function with Map method

2.6.3 Converting Expressions In Standard SOP or POS Forms

Sum of products form can be converted to standard sum of products by ANDing the
terms in the expression with terms formed by ORing the literal and its complement which
are not present in that term. For example for a three literal expression with literals A, B
and C, if there is a term AB, where C is missing, then we form term (C + 0) and AND it
with AB. Therefore, we get AB (C + O = ABC + ABC

Steps to convert SOP to standard SOP form

Step 1 : Find the missing literal in each product term if any.

Step 2: AND each product term having missing literal/s with term/s form by ORing
the literal and its complement.

Step 3 : Expand the terms by applying distributive law and reorder the literals in the
product terms.

Step 4 : Reduce the expression by omitting repeated product terms if any. Because A +
A=A

mmp Example 2.3 : Convert the given expression in standard SOP form.

f(A. B, C) = AC+ AB + BC
Solution :
Step 1 : Find the missing literal/s In each product term

>, .

{(A.B,C) = ?:-Aa—: + {,"AE“‘ + !Yac'.,..

|]—— Literal A Is missing

Literal C Is missing
Literal B Is missing

L

Original product terms

| 1

(A.B.C)= UAC. - (B+B) + [AB - (C+T)+ NBE) - (A+R)

Missing literals and their complements

10

NUMBER SYSTEMS

2.6.4 M-Notations : Minterms and Maxterms

Each individual term in standard SOP form is called minterm and each individual
term in standard POS form is called maxterm. The concept of minterms and maxterms
allows us to introduce a very convenient shorthand notations to express logical functions.
Table 2.10 gives the minterms and maxterms for a three literal/variable logical function
where the number of minterms as well as maxterms is 23 = 8. In general, for an n-variable

~ logical function there are 2" minterms and an equal number of maxterms.

Variables Minterms Maxterms
A B C m, M,

o|o|f o ABC=m, A+B+C=M,
0| o0 | 1 ABC=m, A+B+C=M,
o 1] o0 ABC=m, A+B+C=M,
0o 1 1 ABC=m, A+B+C =M,
1 0 0 ABC=m, A+B+C=M,
1 0| 1 ABC=m; A+B+C=Mg
1 1 0 ABC=mg A+B+C= M
1 1 1 ABC=m, A+BsC=M,

Table 2.10 Minterms and maxterms for three variables

11

NUMBER SYSTEMS

2.8 Karnaugh Map Minimization

We have seen that for simplification of Boolean expressions by Boolean algebra we
need better understanding of Boolean laws, rules and theorems. During the process of
simplification we have to predict each successive step. For these reasons, we can never be
absolutely certain that an expression simplified by Boolean algebra alone is the simplest
possible expression. On the other hand, the map method gives us a systematic approach
for simplifying a Boolean expression. The map method, first proposed by Veitch and
modified by Karnaugh, hence it is known as the Veitch diagram or the Karnaugh map.

2.8.1 One-Variable, Two-Variable, Three-Variable and Four-Variable Maps

The basis of this method is a graphical chart known as Karnaugh map (K-map). It
contains boxes called cells. Each of the cell represents one of the 2" possible products that
can be formed from n variables. Thus, a 2-variable map contains 22=4 cells, a 3-variable
map contains 23 = 8 cells, and so forth. Fig. 2.3 shows outlines of 1, 2, 3 and 4 variable
maps.

1-Variable map 2-Variable map 3-Variable map 4-Variable map
(2 cells) (4 cells) (8 calls) (16 cells)

Fig. 2.3 Outlines of 1, 2, 3 and 4 variable Kammaugh maps

2.8.2 Plotting a Karnaugh Map

We know that logic function can be represented in various forms such as truth table,
SOP Boolean expression and POS boolean expression. In this section we will see the
procedures to plot the given logic function in any form on the Karnaugh map.

12

NUMBER SYSTEMS

2.8.2.1 Representation of Truth Table on Karnaugh Map

Fig. 2.6 shows K-maps plotted from truth tables with 2, 3 and 4=variables. Looking a
the Fig. 2.6 we can easily notice that the terms which are having output 1, have thi

corresponding cells marked with 1s. The other cells are marked with zeros.

A B Y 8

o[o .1

1 0 1 — _,’b ?’0

Note : The student can varify the data in each cell by checking the data in the column
Y for particular row number and the data in the same cell number in the K-map.

No. | A B Cc Y

B
A B B8
Al O 1
OR
A 1 0

Fig. 2.6 (a) Representation of 2-variable truth table on K-map

4

5

7

& 0 01 11 10
0o lo]| o 0 0
1 0 0 1 0 /‘0 Oo 0‘ 03 1
2 0 1 0 1 s B R 5
/' i el
s lalalalol ’/‘//44.."; 7
s i
a |10 [o] 1 s o
P 77 NYBE Bec BE BT
g
5 | 1] 0 1 11 7
J/ A 0 0 0 1
6 1 1 0 o// 0 1 3 2
' 1 1 0

Fig. 2.6 (b) Representation of 3-variable truth table on

13

K-map

NUMBER SYSTEMS

No. A B C ;_
0 0 0 0 1
1 0 0 0 0
2 0 0 1 0
3 0 0 1 1
4 0 1 0 1
5 0 1 0 1
6 0 1 1 0
7 0 1 1 1
8 1 0 0 0
9 1 0 0 0
10 | 1 0 1 1
11 1 0 1 0
12 | 1 1 0 1
13 | 1 1 0 0
14 | 1 1 1 1
15 | 1 1 1 1

14

CcD

00 01 11 10
00 1 0 1 0
0 1 3 2
01 1 1 1 0
4 5 7 6
1" 1 0 1 1
12 13 15 14
10 0 0 0 1
8 9 11 10
OR
CD
TD TD cD cD
AB| 1 0 1 0
0 1 3 2
AB 1 1 1 0
4 5 7 6
AB 1 0 1 1
12 13 15 14
AB 0 0 0 1
8 9 1 10

Fig. 2.6(c) Representation of 4-variable truth table on K-map
Fig. 2.6 Plotting truth table on K-map

NUMBER SYSTEMS

2.8.2.2 Representing Standard SOP on K-map

A Boolean expression in the sum of products form can be plotted on the Kamaugh
map by placing a 1 in each cell corresponding to a term (minterm) in the sum of products
expression. Remaining cells are filled with zeros. This is illustrated in the following
examples.

mmp Example 2.10 : Plot Boolean expression Y = ABC + ABC + ABC on the Karnaugh map.

Solution : The expression has 3 variables and hence it can be plotted using 3-variable map
as shown below.

ABC ABC
BC : BC :

A 00 01 . 1 10 A BC BC . BC BT

ol o 1 0 0 Al o 1° 0 0
0 1 3 2 OR 0 1 3 2

1] o 0 1 A Al © 0 A A
4 s]l 72l 6 4] B 1 O

ABC ABT ABC ABT

Fig. 2.7

2.8.2.3 Representing Standard POS on K-map

A Boolean expression in the product of sums can be plotted on the Karnaugh map by
placing a 0 in each cell corresponding to a term (maxterm) in the expression. Remaining
cells are filled with ones. This is illustrated in the following examples.

m=p Example 212 : Plot Boolean expression Y = (A + B+ C)(A+ B+ C) (A+ B+ O
(A + B + C) on the Karnaugh map.

Solution : The expression has 3 variables and hence it can be plotted using 3-variable map
as shown below.

(A+B+C) =M, (A+B+C)=M,;, (A+B+C) =M, (A+B+C) = M,

r A+B+C A*.B*C

A 00 . 01 11 10 A BEC . BC BC . BC
™ - 0 O = ~A+B+C

ol 1 0 b 0’ Al 1 0 <] o il

0 1 3 2 0 1 3 2
OR 1-A+B+cC

1 1 1 1 0 A 1 1 1 0"

4 5 7 ~ B 4 5 7 6

A+B+C

15

NUMBER SYSTEMS

2.8.3 Grouping Cells for Simplification

In the last section we have seen represenlation of Boolean function on the Karnaugh
map. We have also seen that minterms are marked by 1s and maxterms are marked by 0Os.
Once the Boolean function is plotted on the Kamaugh map we have to use grouping
technique to simplify the Boolean function. The grouping is nothing but combining terms
in adjacent cells. Two cells are said to be adjacent if they conform the single change rule.
The simplification is achieved by grouping adjacent 1s or Os in groups of 2!, where i = 1,
2,... n and n is the number of variables. When adjacent 1s are grouped then we get result
in the sum of products form; otherwise we get result in the product of sums form. Let us
see the various grouping rules.

2.8.3.1 Grouping Two Adjacent Ones (Pair)

Fig. 2.11 (a) shows the Karnaugh map for a particular three variable truth table. This
K-map contains a pair of 1s that are horizontally adjacent to each other; the first represents
ABC and the second represents ABC. Note that in these two terms only the B variable

16

NUMBER SYSTEMS

appears in both normal and complemented form (A and C remain unchanged). Thus these
two terms can be combined to give a resultant that eliminates the B variable since it
appears in both uncomplemented and complemented form. This is ecasily proved as
follows :

Y = ABC+ABC
= AC(B+B) Rule6:[A + A =1]
AC

This same principle holds true for any pair of vertically or horizontally adjacent 1s.
Fig. 2.11 (b) shows an example of two vertically adjacent 1s. These two can be combined to
eliminate A variable since it appears in both its uncomplemented and complemented
forms. This gives result

Y = ABC+ABC=BC

sc BT Bc BC BT x gc BC BcC BC BT
A 00 01 1 10 - AC A 00 01 11 10
H } | | 0
ol o 1 . .1,. 0 o] o 0 | 1 1 9 | &
A1l o 0 0 0 A1l o 0 | 1 I 0
Fig. 2.11(a) Fig. 2.11(b)

In a Karnaugh map the leftmost

A&C %OC Eo? E:f 91'(? column and rightmost column are
considered to be adjacent. Thus, the
A0l o] 0 0 two 1s in these columns with a
: AT common row can be combined to
eliminate one variable. This s
A1 1 0 0 1 . : .
: illustrated in Fig. 2.11 (c).

Fig. 2.11 (c)

Here variable B has appeared in both its complemented and uncomplemented forms
and hence eliminated as follows :

Y ABC+ABC

AC(B+B) Rule 6 :[A + A =1]
AC

n

17

NUMBER SYSTEMS

woTO Tb co cb

AB 00 01 11 10 Let us see another example shown
in Fig. 2.11 (d). Here two 1s from top
AB ool O _L 0 0 row and bottom row of some column
> - are combined to eliminate vari/able A,
\ since in a K-map the top row and
0 0 0. 0 :
AB 03 . bottom row are considered to be
: adjacent.
AB 11| O 0 0 0\
~>BTD i B b
I Y= ABCD+ABCD
0 q‘ -0 0 o i
AR 2 [1 - BCD(@ + A)
= BCD

Fig. 2.11 (d)

_Group 1> AC

gc B Bc BC BT
ANC_00 01 " 11 10

.

xo0| o (1 | q ' 0 Fig. 211 (e) shows a Karnaugh

map that has two overlapping pairs of
/ I 1s. This shows that we can share one
11

A1l 0 0 0 term between two pairs.
' Group 2 BC
Fig. 2.11 (e)
Y = ABC+ABC+ABC
= ABC+ABC+ABC+ABC Rule5:[A + A = A]
= AC(B+B)+BC (A +A)
= AC+BC

18

NUMBER SYSTEMS

Fig. 2.11 (f) shows a K-map where three group of pairs can be formed. But only two
pairs are enough to include all 1s present in the K-map. In such cases third pair is not
required.

19

NUMBER SYSTEMS

Group 1 AC

BT Bc -~BC BT
ABC 00 ofT - 11 10

o ..~ Pair not required
Aol o || .
ALy 1) -
@)
0 o |1 10 m b
A1 e

Fig. 2.11 (f) Examples of combining pairs of adjacent ones
ABC+ABC+ABC+ABC
AC@B+B+AB(C+0 Rule6:[A + A=1]

X

U}

AC+AB

2.8.3.2 Grouping Four Adjacent Ones (Quad)

In a Karnaugh map we can group four adjacent 1s. The resultant group is called
Quad. Fig. 2.12 shows several examples of quads. Fig. 2.12 (a) shows the four 1s are
horizontally adjacent and Fig. 2.12 (b) shows they are vertically adjacent.

cp €O TpD co cb

AB 00 01 11 10
‘ 0
gc BC Bc BC BY AB ool O . ! | co
00 01 1 10 //
A0|] O 0 0 0 Ag O1 0 0 1¢] O
A
AN E 1 ! D‘r AB 1| 0 0 1 0
0 0 1 0
AB 10 L
Fig. 212 (a) Y=A Fig. 2.12 (b) Y = CD

A K-map in Fig. 2.12 (c) contains four 1s in a square, and they are considered adjacent
to each other. The four 1s in Fig. 2.12 (d) are also adjacent, as are those in Fig.2.12 (e)
because, as mentioned earlier, the top and bottom rows are considered to be adjacent to
each other and the leftmost and rightmost columns are also adjacent to each other.

20

NUMBER SYSTEMS

Simplification of Sum of Products Expressions (Minimal Sums)

21

NUMBER SYSTEMS

From the above discussion we can outline generalized procedure to simplify Boolean
expressions as follows :

ra

Plot the K-map and place 1s in those cells corresponding to the 1s in the truth table
or sum of product expression. Place Os in other cells.

. Check the K-map for adjacent 1s and encircle those 1s which are not adjacent to

any other Is. These are called isolated Is .

. Check for those Is which are adjacent to only one other 1 and encircle such pairs.

. Check for quads and octets of adjacenl 1s even if it contains some 1s thal have

already been encircled. While doing this make sure that there are minimum
number of groups.

. Combine any pairs necessary to include any 1s that have not yet been grouped.
6.

Form the simplified expression by summing product terms of all the groups.

To get familiar with these steps we will solve some examples.

mep Example 2.14 : Minimize the expression Y = AB C+ A B C+ ABC+ ABC+ABC

Solution :

Step 1: Fig 2.14 (a) shows the K-map

gc BC BcC Bc BT

for three variables and it is plotted A 00 01 11 10
according to the given expression.
Step 2 : There are no isolated 1s. Aof 1 0 1 . ! | 0 2
Step 3 : 1 in the cell 3 is adjacent only A1l 1 1 0 0
to 1 in the cell 1. This pair is combined 4 . ; 6
and referred to as group 1. Fig. 2.14 (a)

g. 2.14 (a
Step 4 : There is no octet, but there is a ec BT BcC BC BT
quad. Cells 0, 1, 4 and 5 form a quad. A 00 01 11 10

This quad is combined and referred to as p S S
group 2. Aol 1 (! !) 0

Step 5: All 1s have already been
grouped.

Step 6 : Each group generates a lerm in
the expression for Y. In group 1 B

i DR Xs

A1 1 1 0 0

Fig. 2.14 (b)

variable is eliminated and in group 2 gc BT BcC Bc 8T
variables A and C are eliminated and we AN 0L 10 *C
LS DRUSNERSI BN "'.,.. /“J""
get, _ _ 1 & 0
Y=AC+B e
0 0
Fia. 2.14 (c)

22

NUMBER SYSTEMS

2.8.6 Simplification of Product of Sums Expressions (Minimal Products)

In the above discussion, we have considered the Boolean expression in sum of
products form and grouped 2, 4, and 8 adjacent ones to get the simplified Boolean
expression in the same torm. In practice, the designer should examine both the sum of
products and product of sums reductions to ascertain which is more simplified. We have
already seen the representation of product of sums on the Karmaugh map. Once the
expression is plotted on the K-map instead of making the groups of ones, we have to
make groups of zeros. Each group of zero results a sum term and it is nothing but the
prime implicate. The technique for using maps for POS reductions is a simple step by step
process and it is similar to the one used earlier.

1. Plot the K-map and place 0s in those cells corresponding to the Os in the truth table
or maxterms in the products of sum expression.

2. Check the K-map for adjacent 0s and encircle those Os which are not adjacent to
any other 0s. These are called isolated 0s.

3. Check for those Os which are adjacent to only one other 0 and encircle such pairs.

4. Check for quads and octets of adjacent Os even if it contains some Os that have
already been encircled. While doing this make sure that there are minimum
number of groups.

5. Combine any pairs necessary to include any Os that have not yet been grouped.

6. Form the simplified SOP expression for F by summing product terms of all the
groups.

(Note : The simplified expression is in the complemented form because we have

grouped 0s to simplify the expression.)

7. Use DeMorgan's theorem on F to produce the simplified expression in POS form.

To get familiar with these steps we will solve some examples.

mmp Example 2.21 : Minimize the expression

Y=(A+B+C)(A+B+C)(A+B+C)(A+B+CNA+B+C)
Solution: (A+B+C)=M,,(A+B+C)=M,;,(A+B+C)=M,,
A+B+C) = M,,(A+B+C) =M,

23

NUMBER SYSTEMS

Step 1: Fig. 221 (a) shows the K-map for BC B Bc BC BC
three variable and it is plotted according to AN\ 00 01 11 10
given maxterms.

AOo| O 0 0
0) |

Step 2 : There are no isolated 0s.

A1l 0 0
4] 8 1| &

Step 3 : 0 in the cell 4 is adjacent only to 0 in

the cell 0 and 0 in the cell 7 is adjacent only to Fig. 2.21 (a)
0 in the cell 3. These two pairs are combined
and referred to as group 1 and group 2 BC B BC BC BT
respectively. AN\ 00 01 11 10
ol o [
Step 4 : There are no quads and octets. E1 {0 B l.‘_’_]
Fig. 2.21 (b)
Step 5: The 0 in the cell 1 can be combined AC
with 0 in the cell 3 to form a pair. This pair is ABC %g 50‘17 pe ?g
referred to as group 3. T -
AO m G \ 0}
Step6: In group 1 and in group 2, A is &4]o B BC
eliminated, where as in group 3 variable B is /FJ R
eliminated and we get BT
Fig. 2.21 (c)

Y = BC +BC + AC

BC+ BC+ AC

(5) 60) (79
(§+E) (E+E‘)(i+f‘)
(B+C) (B+C) (A+)

It is possible to directly write the expression for Y by using DeMorgans theorem for
each minterm as follows :

Y = BC+BC+AC—o>Y=B+C)(B+C)(A+T)

LI
"

Step 7 : Y=

24

NUMBER SYSTEMS

2.9.2 Don't Care Conditions in Logic Design

In this section, we see the example of incompletely specified Boolean function. Let us
see the logic circuit for an even parity generator for 4-bit BCD number. The Table 2.15
shows the truth table for even-parity generator. The truth table shows that the output for

last six input conditions cannot be specified, because such input conditions does not occur
when input is in the BCD form.

mmp Example 2.25 : Find the reduced SOP form of the following function.

f(A.B,C,D) =3 m(1,3,7,11,15) + 3.d (0, 2, 4).

Solution :
co ¢D To co c¢b co 0 Tp <c¢cop «c¢D
AB 00 01 1 10 AB 00 01 11 10
AB Tre =Y
AB oo| X 1 1 X Im’u 1 [4 L)
of 1 3 2
AB 01 X 0 1 0 AB 01 0 0 1 0
4 5 7 6
AB 1] O 0 1 0 AB 11| © 0 1 0
12 13 15 14 :
0
AB 10] O 0 1 0 AB 10| © 0) 1
8 9 " 10 \J

cnD

To form a quad of cells 0, 1, 2 and 3 the don't care conditions 0 and 2 are replaced by
1s.

The remaining don't care condition is replaced by 0 since it is not required to form any
group. With these replacements we get the simplified equation as

f(A,B,C,D) = AB + CD
Group | Group 2

25

