

1

School of Computing

Department of Computer Science and Engineering

and

Department of Information Technology

SCS1608 - Software Quality Assurance and Testing

UNIT - III

2

UNIT III

Software Testing Strategies and Approaches

1. Static Testing Strategy

A static test evaluates the quality of a system without actually running the system. While

that may seem impossible, it can be accomplished in a few ways.

The static test looks at portions of or elements related to the system in order to detect problems

as early as possible. For example, developers review their code after writing and before pushing

it. This is called desk-checking, a form of static testing. Another example of a static test would

be a review meeting held for the purpose of evaluating requirements, design, and code.

Static tests offer a decided advantage: If a problem is detected in the requirements before it

develops into a bug in the system, it will save time and money. If a preliminary code review

leads to bug detection, it saves the trouble of building, installing, and running a system to find

and fix the bug.

It is possible to perform automated static tests with the right tools. C programmers can

use the lint program to identify potential bugs while Java users can utilize JTest to check their

scripts against a coding standard.

Static tests must be performed at the right time. For example, if requirements are

reviewed after developers have finished coding the entire software it can help testers design test

cases. But testers cannot detect bugs in already written code without running the system, thus

defeating the purpose of static tests. In this case, the code must be reviewed by individual

developers as soon as it is created, and before it is integrated.

Additionally, static tests must be run not just by technical personnel, but other

stakeholders. Business domain experts must review requirements, system architects must review

design, and so on. Testers’ feedback is also imperative since they are trained to spot

inconsistencies, missing details, vague functionality, etc.

https://www.browserstack.com/guide/writing-good-test-cases
https://www.browserstack.com/guide/writing-good-test-cases

3

2. Structural Testing Strategy

While static tests are quite useful, they are not adequate. The software needs to be

operated on real devices, and the system has to be run in its entirety to find all bugs. Structural

tests are among the most important of these tests.

Structural tests are designed on the basis of the software structure. They can also be called white-

box tests because they are run by testers with thorough knowledge of the software as well as the

devices and systems it is functioning on. Structural tests are most often run on individual

components and interfaces in order to identify localized errors in data flows.

A good example of this would be using reusable, automated test harnesses for the system

being tested. With this harness in place, coders can create structural test cases for components

right after they have written the code for each component. Then, they register the tests into the

source code repository along with the main component during integration. A well-crafted test

harness will run the tests every time new code is added, thus serving as a regression test suite.

Since creating structural tests require a thorough understanding of the software being tested, it is

best that they are executed by developers or highly skilled testers. In the best-case scenario,

developers and testers work in tandem to set up test harnesses and run them at regular intervals.

Testers are especially helpful when it comes to developing reusable and shareable test scripts and

cases, which cut down on time and effort in the long run.

3. Behavioral Testing Strategy

Behavioral Testing focuses on how a system acts rather than the mechanism behind its

functions. It focuses on workflows, configurations, performance, and all elements of the user

journey. The point of these tests, often called “black box” tests, is to test a website or app from

the perspective of an end-user.

Behavioral testing must cover multiple user profiles as well as usage scenarios. Most of

these tests focus on fully integrated systems rather than individual components. This is because it

is possible to effectively gauge system behavior from a user’s eyes, only after it has been

assembled and integrated to a significant extent.

Behavioral tests are most frequently run manually, though some of them can be

automated. Manual testing requires careful planning, design, and meticulous checking of results

https://www.browserstack.com/guide/regression-testing
https://www.browserstack.com/guide/manual-testing-tutorial

4

to detect what goes wrong. Skilled manual testers are known for being able to follow a trail of

bugs and ascertain their effect on user experience.

Automation testing helps primarily to run repetitive actions, such as regression tests

which check that new code has not disrupted already existing features that are working well. For

example, a website needs to be tested by filling 50 fields in a form. Now this action needs to be

repeated with multiple sets of values. Obviously, it is smarter to let a machine handle this rather

than risk wasting time, human effort, and human error.

Behavioral testing does require some understanding of the system’s technicality. Testers

need some measure of insight into the business side of the software, especially with regard to

what target users want. In order to plan test scenarios, they must know what users are likely to do

once they access a website or app.

What to consider when choosing a software testing strategy?

A strategic approach to software testing must take the following into account:

 Risks- Risk management is very important during testing to figure out the risks and the

risk level. For example, for an app that is well-established and slowly evolving,

regression is a critical risk.

 Objectives- Testing should satisfy the requirements and needs of stakeholders to

succeed. The objective is to look for as many defects as possible with less up-front time

and effort invested.

 Skills- It is important to consider the skills of the testers since strategies should not only

be chosen but executed as well. A standard-compliant strategy is a smart option when

lacking skills and time in the team to create an approach.

 Product- Some products have specified requirements. This could lead to synergy with an

analytical strategy that is requirements-based.

 Business- Business considerations and strategy are often important. If using a legacy

system as a model for a new one, you could use a model-based strategy.

https://www.browserstack.com/guide/automation-testing-tutorial

5

 Regulations- At some instances, one needs to satisfy the regulators along with the

stakeholders. In this case, you would need a methodical strategy which satisfies these

regulators.

The role of Real Devices: An Accurate Software Testing Approach

The point of all software testing is to identify bugs. Testers must be perfectly clear on

how frequently a bug occurs and how it affects the software.

The best way to detect all bugs is to run software through real devices and browsers. When it

comes to a website, ensure that it is under the purview of both manual testing and automation

testing. Automated Selenium testing should supplement manual tests so that testers do not miss

any bugs in the Quality Assurance process.

Websites must also be put through extensive cross browser testing so that they function

consistently, regardless of the browser they are being accessed by. Using browsers installed on

real devices is the only way to guarantee cross-browser compatibility and not alienate users of

any browser.

The best option is to opt for a cloud-based testing service that provides real device

browsers and operating systems. BrowserStack offers 2000+ real browsers and devices for

manual and automated testing. Users can sign up for free, log in, choose desired device-browser-

OS combinations and start testing.

The same applies to apps. BrowserStack offers real devices for mobile app testing

and automated app testing. Simply upload the app to the required device-OS combination and

check to see how it functions in the real world.

Additionally, BrowserStack offers a wide range of debugging tools that make it easy to

share and resolve bugs. This includes text and video logs to identify exactly where and why a test

failed, thus letting testers zero in on what issue to work on.

A clear comprehension of test automation strategy is essential to building test suites, scripts and

timelines that offer fast and accurate results. This is equally true for manual tests. Don’t start

testing without knowing what techniques to use, what approach to follow and how the software

is expected to perform. The information in this article intends to provide a starting point for

https://www.browserstack.com/automate
https://www.browserstack.com/guide/qa-best-practices
https://www.browserstack.com/live
https://www.browserstack.com/guide/cross-browser-compatibility-testing-beyond-chrome
https://www.browserstack.com/app-live
https://www.browserstack.com/app-automate
https://www.browserstack.com/automate/debugging

6

building constructive testing plans, by detailing what strategies exist for testers to explore in the

first place.

Strategy of testing

A strategy of software testing is shown in the context of spiral.

Following figure shows the testing strategy:

Unit testing

Unit testing starts at the centre and each unit is implemented in source code.

Integration testing

An integration testing focuses on the construction and design of the software.

Validation testing

Check all the requirements like functional, behavioral and performance requirement are validate

against the construction software.

System testing

System testing confirms all system elements and performance are tested entirely.

7

Testing strategy for procedural point of view

As per the procedural point of view the testing includes following steps.

1) Unit testing

2) Integration testing

3) High-order tests

4) Validation testing

These steps are shown in following figure:

Software Testing Life Cycle – Different Stages of Testing

What is Software Testing Life Cycle (STLC)?

Software Testing Life Cycle (STLC) defines a series of activities conducted to perform

Software Testing. It identifies what test activities to carry out and when to accomplish those test

activities. In the STLC process, each activity is carried out in a planned and systematic way and

each phase has different goals and deliverables.

8

What are the different phases of Software Testing Life Cycle?

The different phases of Software testing life cycle are:

 Requirement Analysis

 Test Planning

 Test Case Development

 Environment Setup

 Test Execution

 Test Cycle Closure

Now let’s move ahead and have a look at the different phases of software testing life cycle in

detail.

Requirement Analysis

Requirement Analysis is the first step involved in Software testing life cycle. In this step,

Quality Assurance (QA) team understands the requirement in terms of what we will testing &

figure out the testable requirements. During this phase, test team studies the requirements from a

testing point of view to identify the testable requirements.The QA team may interact with

various stakeholders such as client, business analyst, technical leads, system architects etc. to

understand the requirements in detail.

https://www.edureka.co/blog/software-testing-life-cycle/#requirementanalysis
https://www.edureka.co/blog/software-testing-life-cycle/#testplanning
https://www.edureka.co/blog/software-testing-life-cycle/#testcasedevelopment
https://www.edureka.co/blog/software-testing-life-cycle/#environmentsetup
https://www.edureka.co/blog/software-testing-life-cycle/#testexecution
https://www.edureka.co/blog/software-testing-life-cycle/#testcycleclosure

9

The different types of Requirements include :

Business Requirements – They are high-level requirements that are taken from the business

case from the projects.

Architectural & Design Requirements – These requirements are more detailed than business

requirements. It determines the overall design required to implement the business requirement.

 System & Integration Requirements – It is detailed description of each and every

requirement. It can be in form of user stories which is really describing everyday business

language. The requirements are in abundant details so that developers can begin coding.

Entry Criteria Deliverable

The following documents are required:

 Requirements Specification.

 Application architectural

 List of questions with all answers

to be resolved from testable

requirements

 Automation feasibility report

Activities

 Prepare the list of questions or queries and

get resolved from Business Analyst, System

Architecture, Client, Technical

Manager/Lead etc.

 Make out the list for what all Types of Tests

performed like Functional, Security, and

Performance etc.

 Define the testing focus and priorities.

 List down the Test environment details where

testing activities will be carried out.

https://www.edureka.co/software-testing-fundamentals-training
https://www.edureka.co/software-testing-fundamentals-training

10

 Checkout the Automation feasibility if

required & prepare the Automation feasibility

report.

Test Planning

Test Planning is the most important phase of Software testing life cycle where all testing strategy

is defined. This phase is also called as Test Strategy phase. In this phase, the Test Manager is

involved to determine the effort and cost estimates for the entire project. It defines the objective

& scope of the project.

The commonly used Testing types are :

 Unit Test

 API Testing

 Integration Test

 System Test

 Install/Uninstall Testing

 Agile Testing

Test plan is one of the most important steps in software testing life cycle. The steps involved in

writing a test plan include :

1. Analyze the product

2. Design Test Strategy

3. Define Test Objectives

4. Define Test Criteria

5. Resource Planning

6. Plan Test Environment

7. Schedule & Estimation

8. Determine Test Deliverable

11

Test Case Development

The Test case development begins once the test planning phase is completed. This is the phase of

STLC where testing team notes the detailed test cases. Along with test cases, testing team also

prepares the test data for testing. Once the test cases are ready then these test cases are reviewed

by peer members or QA lead.

A good test case is the one which is effective at finding defects and also covers most of the

scenarios on the system under test. Here is the step by step guide on how to develop a good test

case :

 Test cases need to be simple and transparent

 Create test case with end user in mind

 Avoid test case repetition

 Do not assume functionality and features of your software application

 Ensure 100% coverage of software requirements

 Name the test case id such that they are identified easily while tracking defects

 Implement testing techniques

 The test case you create must return the Test Environment to the pre-test state

 The test case should generate the same results every time

 Your peers should be able to uncover defects in your test case design

Test Environment Setup

Setting up the test environment is vital part of the Software Testing Life Cycle. A testing

environment is a setup of software and hardware for the testing teams to execute test cases. It

supports test execution with hardware, software and network configured.

12

The test environment involves setting up of distinct areas like :

 Setup of Test Server – Every test may not be executed on a local machine. It may need

establishing a test server, which can support applications.

 Network – We need to set up the network as per requirements.

 Test PC Setup – We need to set up different browsers for different testers.

 Bug Reporting – Bug reporting tools should be provided to testers.

 Creating Test Data for the Test Environment – Many companies use a separate test

environment to test the software product. The common approach used is to copy

production data to test.

Test Execution

The next phase in Software Testing Life Cycle is Test Execution. Test execution is the

process of executing the code and comparing the expected and actual results. When test

13

execution begins, the test analysts start executing the test scripts based on test strategy allowed in

the project.

Entry Criteria Deliverable

 Test Plan or Test

strategy document.

 Test cases.

 Test data.

 Test case execution

report.

 Defect report.

Activities

 Mark status of test cases like Passed,

Failed, Blocked, Not Run etc.

 Assign Bug Id for all failed and blocked

test cases.

 Do Retesting once the defects are fixed.

 Track the defects to closure.

Test Cycle Closure

The final phase of the Software Testing Life Cycle is Test Cycle Closure. It involves

calling out the testing team member meeting & evaluating cycle completion criteria based on

Test coverage, Quality, Cost, Time, Critical Business Objectives, and Software.

A test closure report by the test lead is published after accomplishing the exit criteria and

finishing the testing phase. It follows a standard format such as :

 Test Summary Report

 Identifier

 Test Summary

 Variances

 Comprehensiveness Assessment

 Summary of Results

14

 Evaluation

 Summary of Activities

 Approval

Stages of Test Closure :

The process of test closure is implemented with the assistance of six important stages such as –

1. Check planned Deliverable – The planned deliverables that will be given to the

stakeholder of the project are checked and analyzed by the team.

2. Close Incident Reports – The team checks that the planned deliverable are delivered and

validates that all the incidents are resolved before the culmination of the process.

3. Handover to Maintenance – After resolving incidents and closing the incident report,

the test-wares are then handed over to the maintenance team.

4. Finalize & Archive Testware/Environment – It involves finalizing and archiving of the

testware and software like test scripts, test environment, test infrastructure, etc.

5. Document System Acceptance – It involves system verification and validation

according to the strategy outlined.

6. Analyze Best Practices – It determines the various changes required for similar projects

and their future release.

Let’s now move ahead with this article and understand the difference between SDLC and STLC.

15

What is SDLC and STLC in Software Testing?

SDLC STLC

Stands for Software Development Life Cycle Stands for Software testing Life Cycle

It refers to a sequence of various activities that

are performed during the software development

process

It refers to a sequence of various activities that

are performed during the software testing

process

Aims to complete the development of the

software including testing and other phases

successfully

Aims to evaluate the functionality of a software

application to find any software bugs

In SDLC, the code for the software is built

based on the design documents

In STLC, the test environment is created and

various tests are carried out on the software

Now with this, we come to an end to this “Software Testing Life Cycle” blog. I hope you guys

enjoyed this article and understood what is software testing and the different Types of Software

testing.

What is Functional Testing?

FUNCTIONAL TESTING is a type of software testing that validates the software

system against the functional requirements/specifications. The purpose of Functional tests is to

test each function of the software application, by providing appropriate input, verifying the

output against the Functional requirements.

Functional testing mainly involves black box testing and it is not concerned about the

source code of the application. This testing checks User Interface, APIs, Database, Security,

Client/Server communication and other functionality of the Application Under Test. The testing

can be done either manually or using automation.

16

What do you test in Functional Testing?

The prime objective of Functional testing is checking the functionalities of the software system.

It mainly concentrates on -

 Mainline functions: Testing the main functions of an application

 Basic Usability: It involves basic usability testing of the system. It checks whether a user

can freely navigate through the screens without any difficulties.

 Accessibility: Checks the accessibility of the system for the user

 Error Conditions: Usage of testing techniques to check for error conditions. It checks

whether suitable error messages are displayed.

Software Testing Methodologies

Functional vs. Non-functional Testing

The goal of utilizing numerous testing methodologies in your development process is to

make sure your software can successfully operate in multiple environments and across different

platforms. These can typically be broken down between functional and non-functional testing.

FUNCTIONAL TESTING is a type of software testing that validates the software

system against the functional requirements/specifications. The purpose of Functional tests is to

test each function of the software application, by providing appropriate input, verifying the

output against the Functional requirements.

Functional testing involves testing the application against the business requirements. It

incorporates all test types designed to guarantee each part of a piece of software behaves as

expected by using uses cases provided by the design team or business analyst. These testing

methods are usually conducted in order and include:

 Unit testing

 Integration testing

 System testing

17

 Acceptance testing

How to perform Functional Testing: Complete Process

In order to functionally test an application, the following steps must be observed.

 Understand the Software Engineering Requirements

 Identify test input (test data)

 Compute the expected outcomes with the selected test input values

 Execute test cases

 Comparison of actual and computed expected result

Non-functional testing methods incorporate all test types focused on the operational aspects of a

piece of software. These include:

 Performance testing

 Security testing

 Usability testing

 Compatibility testing

18

The key to releasing high quality software that can be easily adopted by your end users is to

build a robust testing framework that implements both functional and non-functional software

testing methodologies.

Unit Testing

Unit testing is the first level of testing and is often performed by the developers themselves. It is

the process of ensuring individual components of a piece of software at the code level are

functional and work as they were designed to. Developers in a test-driven environment will

typically write and run the tests prior to the software or feature being passed over to the test team.

Unit testing can be conducted manually, but automating the process will speed up delivery cycles

and expand test coverage. Unit testing will also make debugging easier because finding issues

earlier means they take less time to fix than if they were discovered later in the testing process.

TestLeft is a tool that allows advanced testers and developers to shift left with the fastest test

automation tool embedded in any IDE.

Integration Testing

After each unit is thoroughly tested, it is integrated with other units to create modules or

components that are designed to perform specific tasks or activities. These are then tested as

group through integration testing to ensure whole segments of an application behave as expected

(i.e, the interactions between units are seamless). These tests are often framed by user scenarios,

such as logging into an application or opening files. Integrated tests can be conducted by either

developers or independent testers and are usually comprised of a combination of automated

functional and manual tests.

System Testing

System testing is a black box testing method used to evaluate the completed and

integrated system, as a whole, to ensure it meets specified requirements. The functionality of the

software is tested from end-to-end and is typically conducted by a separate testing team than the

development team before the product is pushed into production.

https://smartbear.com/learn/automated-testing/test-automation-frameworks/

19

Acceptance Testing

Acceptance testing is the last phase of functional testing and is used to assess whether or

not the final piece of software is ready for delivery. It involves ensuring that the product is in

compliance with all of the original business criteria and that it meets the end user’s needs. This

requires the product be tested both internally and externally, meaning you’ll need to get it into

the hands of your end users for beta testing along with those of your QA team. Beta testing is key

to getting real feedback from potential customers and canaddress any final usability concerns.

Performance Testing

Performance testing is a non-functional testing technique used to determine how an

application will behave under various conditions. The goal is to test its responsiveness and

stability in real user situations. Performance testing can be broken down into four types:

 Load testing is the process of putting increasing amounts of simulated demand on your

software, application, or website to verify whether or not it can handle what it’s designed to

handle.

 Stress testing takes this a step further and is used to gauge how your software will

respond at or beyond its peak load. The goal of stress testing is to overloadthe application

on purpose until it breaks by applying both realistic and unrealistic load scenarios. With

stress testing, you’ll be able to find the failure point of your piece of software.

 Endurance testing, also known as soak testing, is used to analyze the behavior of an

application under a specific amount of simulated load over longer amounts of time. The

goal is to understand how your system will behave under sustained use, making it a

longer process than load or stress testing (which are designed to end after a few hours). A

critical piece of endurance testing is that it helps uncover memory leaks.

 Spike testing is a type of load test used to determine how your software will respond to

substantially larger bursts of concurrent user or system activity over varying amounts of

time. Ideally, this will help you understand what will happen when the load is suddenly

and drastically increased.

Security Testing

https://smartbear.com/learn/performance-testing/what-is-load-testing/

20

With the rise of cloud-based testing platforms and cyber attacks, there is a growing concern

and need for the security of data being used and stored in software. Security testing is a non-

functional software testing technique used to determine if the information and data in a system is

protected. The goal is to purposefully find loopholes and security risks in the system that could

result in unauthorized access to or the loss of information by probing the application for

weaknesses. There are multiple types of this testing method, each of which aimed at verifying six

basic principles of security:

1. Integrity

2. Confidentiality

3. Authentication

4. Authorization

5. Availability

6. Non-repudiation

Usability Testing

Usability testing is a testing method that measures an application’s ease-of-use from the

end-user perspective and is often performed during the system or acceptance testing stages. The

goal is to determine whether or not the visible design and aesthetics of an application meet the

intended workflow for various processes, such as logging into an application. Usability testing is

a great way for teams to review separate functions, or the system as a whole, is intuitive to use.

Compatibility Testing

Compatibility testing is used to gauge how an application or piece of software will work

in different environments. It is used to check that your product is compatible with multiple

operating systems, platforms, browsers, or resolution configurations. The goal is toensure that

your software’s functionality is consistently supported across any environment you expect your

end users to be using.

21

Functional Vs Non-Functional Testing:

Functional Testing Non-Functional Testing

Functional testing is performed using the

functional specification provided by the

client and verifies the system against the

functional requirements.

Non-Functional testing checks the

 Performance, reliability, scalability and

other non-functional aspects of the

software system.

Functional testing is executed first Non-functional testing should be performed

after functional testing

Manual Testing or automation tools can be

used for functional testing

Using tools will be effective for this testing

Business requirements are the inputs to

functional testing

Performance parameters like speed,

scalability are inputs to non-functional

testing.

Functional testing describes what the

product does

Nonfunctional testing describes how good

the product works

Easy to do Manual Testing Tough to do Manual Testing

https://www.guru99.com/manual-testing.html

22

Examples of Functional testing are

 Unit Testing

 Smoke Testing

 Sanity Testing

 Integration Testing

 White box testing

 Black Box testing

 User Acceptance testing

 Regression Testing

Examples of Non-functional testing are

 Performance Testing

 Load Testing

 Volume Testing

 Stress Testing

 Security Testing

 Installation Testing

 Penetration Testing

 Compatibility Testing

 Migration Testing

Defect

A Software DEFECT / BUG / FAULT is a condition in a software product which does

not meet a software requirement (as stated in the requirement specifications) or end-user

expectation (which may not be specified but is reasonable). In other words, a defect is an error in

coding or logic that causes a program to malfunction or to produce incorrect/ unexpected results.

o defect: An imperfection or deficiency in a work product where it does not meet its requirements

or specifications.

Related Terms

o A program that contains a large number of bugs is said to be buggy.

o Reports detailing defects / bugs in software are known as defect reports / bug reports.

o Applications for tracking defects bugs are known as defect tracking tools / bug tracking

tools.

https://www.guru99.com/unit-testing-guide.html
https://www.guru99.com/integration-testing.html
https://www.guru99.com/regression-testing.html
https://www.guru99.com/performance-testing.html

23

o The process of finding the cause of bugs is known as debugging.

o The process of intentionally injecting bugs in a software program, to estimate test

coverage by monitoring the detection of those bugs, is known as bebugging.

Software Testing proves that defects exist but NOT that defects do not exist.

Classification

Software Defects/ Bugs are normally classified as per:

o Severity / Impact

o Probability / Visibility

o Priority / Urgency

o Related Dimension of Quality

o Related Module / Component

o Phase Detected

o Phase Injected

Related Module /Component

Related Module / Component indicates the module or component of the software where the

defect was detected. This provides information on which module / component is buggy or risky.

o Module/Component A

o Module/Component B

o Module/Component C

o …

24

Phase Detected

Phase Detected indicates the phase in the software development lifecycle where the defect was

identified.

o Unit Testing

o Integration Testing

o System Testing

o Acceptance Testing

Phase Injected

Phase Injected indicates the phase in the software development lifecycle where the bug was

introduced. Phase Injected is always earlier in the software development lifecycle than the Phase

Detected. Phase Injected can be known only after a proper root-cause analysis of the bug.

o Requirements Development

o High Level Design

o Detailed Design

o Coding

o Build/Deployment

Note that the categorizations above are just guidelines and it is up to the project/ organization to

decide on what kind of categorization to use. In most cases, the categorization depends on the

defect tracking tool that is being used. It is essential that project members agree beforehand on

the categorization (and the meaning of each categorization) so as to avoid arguments, conflicts,

and unhealthy bickering later.

Metrics

Some metrics related to Defects are:

25

o Defect Age

o Defect Density

o Defect Detection Efficiency

Defect vs Bug

Strictly speaking, a BUG is a deficiency in just the software but a DEFECT could be a deficiency

in the software as well as any work product (Requirement Specification, for example). You don’t

say ‘There’s a bug in the Test Case’; you say ‘There’s a defect in the Test Case.’We prefer the

term ‘Defect’ over the term ‘Bug’ because ‘Defect’ is more comprehensive.

Defect Life Cycle

DEFECT LIFE CYCLE, also known as Bug Life Cycle, is the journey of a defect from

its identification to its closure. The Life Cycle varies from organization to organization and is

governed by the software testing process the organization or project follows and/or the Defect

tracking tool being used. Nevertheless, the life cycle in general resembles the following:

Status

https://softwaretestingfundamentals.com/defect-age/
https://softwaretestingfundamentals.com/defect-density/
https://softwaretestingfundamentals.com/defect-detection-efficiency/

26

Status Alternative Status

NEW

ASSIGNED OPEN

DEFERRED

DROPPED REJECTED

COMPLETED FIXED, RESOLVED, TEST

REASSIGNED REOPENED

CLOSED VERIFIED

o NEW: Tester finds a defect and posts it with the status NEW. This defect is yet to be

studied/approved. The fate of a NEW defect is one of ASSIGNED, DROPPED or DEFERRED.

o ASSIGNED / OPEN: Test / Development / Project lead studies the NEW defect and if it is

found to be valid it is assigned to a member of the Development Team. The assigned

Developer’s responsibility is now to fix the defect and have it COMPLETED. Sometimes,

ASSIGNED and OPEN can be different statuses. In that case, a defect can be open yet

unassigned.

o DEFERRED: If a valid NEW or ASSIGNED defect is decided to be fixed in upcoming

releases instead of the current release it is DEFERRED. This defect is ASSIGNED when the

time comes.

27

o DROPPED / REJECTED: Test / Development/ Project lead studies the NEW defect and

if it is found to be invalid, it is DROPPED / REJECTED. Note that the specific reason for this

action needs to be given.

o COMPLETED / FIXED / RESOLVED / TEST: Developer ‘fixes’ the defect that is

ASSIGNED to him or her. Now, the ‘fixed’ defect needs to be verified by the Test Team and the

Development Team ‘assigns’ the defect back to the Test Team. A COMPLETED defect is either

CLOSED, if fine, or REASSIGNED, if still not fine.

o If a Developer cannot fix a defect, some organizations may offer the following statuses:

o Won’t Fix / Can’t Fix: The Developer will not or cannot fix the defect due to

some reason.

o Can’t Reproduce: The Developer is unable to reproduce the defect.

o Need More Information: The Developer needs more information on the defect

from the Tester.

o REASSIGNED / REOPENED: If the Tester finds that the ‘fixed’ defect is in fact not fixed

or only partially fixed, it is reassigned to the Developer who ‘fixed’ it. A REASSIGNED defect

needs to be COMPLETED again.

o CLOSED / VERIFIED: If the Tester / Test Lead finds that the defect is indeed fixed and

is no more of any concern, it is CLOSED / VERIFIED. This is the happy ending.

Guidelines

o Make sure the entire team understands what each defect status exactly means. Also, make

sure the defect life cycle is documented.

o Ensure that each individual clearly understands his/her responsibility as regards each

defect.

o Ensure that enough detail is entered in each status change. For example, do not simply

DROP a defect but provide a reason for doing so.

28

o If a defect tracking tool is being used, avoid entertaining any ‘defect related requests’

without an appropriate change in the status of the defect in the tool. Do not let anybody take

shortcuts. Or else, you will never be able to get up-to-date and reliable defect metrics for

analysis.

Verification and Validation

Verification and Validation is the process of investigating that a software system satisfies

specifications and standards and it fulfills the required purpose. Barry Boehm described

verification and validation as the following:

Verification: Are we building the product right?

Validation: Are we building the right product?

Verification:

Verification is the process of checking that a software achieves its goal without any bugs. It is

the process to ensure whether the product that is developed is right or not. It verifies whether the

developed product fulfills the requirements that we have.

Verification is Static Testing.

Activities involved in verification:

1. Inspections

2. Reviews

3. Walkthroughs

4. Desk-checking

Validation:

Validation is the process of checking whether the software product is up to the mark or in other

words product has high level requirements. It is the process of checking the validation of product

i.e. it checks what we are developing is the right product. it is validation of actual and

expectedproduct.

Validation is the Dynamic Testing.

29

Activities involved in validation:

1. Black box testing

2. White box testing

3. Unit testing

4. Integration testing

Note: Verification is followed by Validation.

Software Testing Functional and Structural

Functional testing is sometimes called black-box testing because no knowledge of the internal

logic of the system is used to develop test cases. For example, if a certain function key should

produce a specific result when pressed, a functional test validates this expectation by pressing the

function key and observing the result. When conducting functional tests, you’ll use validation

techniquesalmost exclusively.

Conversely, structural testing is sometimes called white-box testing because knowledge of the

internal logic of the system is used to develop hypothetical test cases. Structural tests use

verification predominantly. If a software development team creates a block of code that will

30

allow a system to process information in a certain way, a test team would verify this structurally

by reading the code, and given the system’s structure, see if the code would work reasonably. If

they felt it could, they would plug the code into the system and run an application to structurally

validate the code.

Each method has its pros and cons:

Functional Testing Advantages

1• Simulates actual system usage.

2• Makes no system structure assumptions

Functional Testing Disadvantages

1• Potential of missing logical errors in software

2• Possibility of redundant testing

Structural Testing Advantages

1• You can test the software’s structure logic

2• You test code that you wouldn’t use if you performed only functional testing

Structural Testing Disadvantages

1• Does not ensure that you’ve met user requirements

2• Its tests may not mimic real-world situations

A functional test case might be taken from the documentation description of how to perform a

certain function, such as accepting bar code input. A structural test case might be taken from a

technical documentation manual. To effectively test systems, you need to use both methods.

31

Workbench

This is a method which aims to examine and verify the structure of testing performance by detailed

documenting. Workbench process has its common stages and steps which serve for different test

assignments. The common stages of each workbench include:

Input. It is the initial workbench stage. Each certain assignment should contain its initial and

outcome (input and output) requirements to know the available parameters and expected results.

Each workbench has its specific inputs depending on the type of product under testing.

Performance. The priority aim of the entire testing is in the transformation of the initial parameters

to outcome requirements and reach the prescribed results.

Check. It is an examination of output parameters after the performance phase to verify its accordance

with the expected ones.

Production output. It is the final stage of a workbench in case the check confirmed the properly

conducted performance.

http://2.bp.blogspot.com/_2XJwgH8jhEc/SSFn8kG8frI/AAAAAAAAAfM/2FVp-iMqzaQ/s1600-h/12.jpg
https://qatestlab.com/approach/technologies/

32

Reworking. If the outcome parameters are not in compliance with the desired result, it is necessary

to return to the performance phase and conduct it from the beginning.

Workbench Phases

Let’s look at the initial and outcome data from different angles, considering various phases:

Requirement phase

 the initial data should be collected from the customer to perform a test task;

 the customer’s requirements are included in the document to check its accordance with

clients’ needs;

 the outcome data are received and codified in one document.

Design phase

 the initial data is in the requirement document;

 testers prepare the technical document and check if the design document is technically

proper;

 testers check if the information about the requirements is transferred to the requirement

document completely.

Execution phase

 it is the performance of the entire testing process;

 the initial data is contained in the technical document, and the performance means

adjusting of code according to the documented technical requirements;

33

 the outcome data is the source code.

Testing phase

The initial parameters are contained in the source code, and the outcomes are formed after the test

performance.

Distribution phase

The aim of this phase is to prepare the product which is ready for use. Initial data, in this case, is a

code version given by customer with initial requirements and code after testing.

Maintenance phase

 input appears as the outcome of distribution;

 the outcome data forms a new release;

 each change in product requirements is subjected to regression testing to fulfill the

customers’ requests.

The workbench concept serves to build and monitor the proper structure of testers’ work. It helps to

divide assignments in each phase of testing and reach the customers’ expectations relying on initial

data and transforming the product parameters into desirable ones.

The eight considerations listed below provide the framework for

developingtesting tactics.

Each is described in the following sections.

Acquire and study the test strategy

Determine the type of development project

Determine the type of software system

Determine the project scope

Identify the tactical risks

Determine when testing should occur

Build the tactical test plan

34

Build the unit test plansAcquire and Study the Test Strategy

A team familiar with the business risks associated with the software normallydevelops the test

strategy, and the test team develops the tactics. Thus, the testteam needs to acquire and study the

test strategy, focusing on the followingquestions:

What is the relationship of importance among the test factors?

Which of the high-level risks are the most significant?

Who has the best understanding of the impact of the identified businessrisks?

What damage can be done to the business if the software fails to performcorrectly?

What damage can be done to the business if the software is notcompleted on time?

Determine the Type of Development Project

The type of project refers to the environment in which the software willbedeveloped, and the

methodology used. Changes to the environment also changethe testing risk. For example, the

risks associated with a traditional developmenteffort are different from the risks associated with

off-the shelf purchasedsoftware.

Testing checklist

During SDLC (Software Development Life Cycle) while software is in the testing phase, it is

advised to make a list of all the required documents and tasks to avoid last minute hassle. This

way tester will not miss any important step and will keep a check on quality too. If the tester

doesn’t make any checklist or forgets to include any task in it then it is possible that he may miss

some of the important defects.

Testing Checklist is divided into number of categories which are listed as follows:

1) Resource Assignment and Training

35

 To make sure that testing project has sufficient budget allocated at project level.

 We have sufficient staffing or human resources allocated for testing project.

 Analyze skills and competencies of test team to make sure whether they are competent

enough or required more grooming to meet required skill set.

 All required testing tools are installed at workstation with appropriate software licence.

 All resources are well trained on required testing tools and project business.

 Required responsibilities are assigned to team member and respective leads.

 All required sign off are procured from senior management for staffing and training.

2) Software Testing Documentation

 Make sure that all the functional documents and design documents are completed before

testing team can start writing test cases.

 Test plan is created covering all the required test cases.

 Test cases are created covering all the required business use cases.

 Review of test cases and test plan following maker and checker policy.

 Setting up of Bug reporting portal to log the defects.

 Creation of tractability matrix with the functional team to make sure functions are

mapped to test cases.

 Make sure, project weekly status report format is well defined.

 Sign off or approval from QA manager to execute the test cases.

3) Software Testing Checklist

 Regression suite is executed successfully when testing with new test phase or new project

release.

 Make sure each tester is filling the time sheet and logging defect in defect portal on daily

basis.

 Keeping a check on total test cases executed on daily basis and hence project work

progress.

 Test weekly status reports is circulated on weekly basis with correct format and to

required recipients.

36

 Open bugs are addressed timely by development team, requirement gathering team and

senior management.

 Make sure, there are no roadblocks in testing area related to technologies, management

and client behavior.

 Make sure before declaring the testing status as complete or providing testing sign off, all

major or minor open bugs or defects are either closed or deferred for future release.

 Make sure all system compatibility checks are done, e.g. an application working on IE

explorer should also work on chrome, Mozilla, etc.

4) Compliance’s

 Review of test plan to make sure project complies with the required design methods.

 Evaluation of project goal statement with the business use cases.

 Project should comply with all required legal compliance’s.

 Identify the priorities items in the project which are necessary for organization

compliance’s and execute those items.

 Examine project plan for strategic compliance with objective of business organization.

 Verify that project deliverable are in compliance with the client requirements.

 Evaluate project capabilities meets the desired outcome to accomplish predefined project

goal.

 All necessary project compliance sign offs are procured from senior management.

5) Measurability and Monitoring

 Evaluation of project activities and processes that are well measurable to set the desired

level of performance.

 Verification of System process measures for reliability and accuracy.

 Requesting the client to assign accessibility of project system to project team for review.

 Scheduling check point call, test phase completion call and daily scrum call to monitor

the progress of test project.

 Make sure test project deliverable has predefined acceptance criteria which is approved,

this will help to measure project deliverable.

37

 Make sure, proper escalation contact details are well communicated to client and project

team members.

6) Project Flexibility

 Make sure that project is flexible and has ability to make desired amendments timely.

 Evaluate project has risk mitigation plan after analyzing all the possible project risk

factors.

 Make sure project control system is reliable and effective.

 Make sure that project has a contingency plan to address exception and unforeseen

events.

 Be confident that project goal completely address problems defined by the business use

cases.

 Creation of self-regulatory feedback loop for the project to make sure every problem is

reported related to test project work.

These are some of the main terms should be included in the Testing Checklist, however, every

organization has different software and application Testing Checklist may vary. It is always a

good practice to make a checklist so that testing can be done in a proper way and no important

point should be missed.

	SCS1608 - Software Quality Assurance and Testing
	UNIT III
	Software Testing Strategies and Approaches
	1. Static Testing Strategy
	2. Structural Testing Strategy
	3. Behavioral Testing Strategy
	What to consider when choosing a software testing strategy?
	The role of Real Devices: An Accurate Software Testing Approach
	Strategy of testing
	Testing strategy for procedural point of view

	Software Testing Life Cycle – Different Stages of Testing
	What is Software Testing Life Cycle (STLC)?
	What are the different phases of Software Testing Life Cycle?
	Requirement Analysis

	Test Planning
	Test Case Development
	Test Environment Setup
	Test Execution
	Test Cycle Closure
	What is SDLC and STLC in Software Testing?
	What is Functional Testing?
	What do you test in Functional Testing?
	The prime objective of Functional testing is checking the functionalities of the software system. It mainly concentrates on -
	Functional vs. Non-functional Testing
	How to perform Functional Testing: Complete Process
	Unit Testing
	Integration Testing
	System Testing
	Acceptance Testing
	Performance Testing
	Security Testing
	Usability Testing
	Compatibility Testing
	Functional Vs Non-Functional Testing:

	Defect
	Related Terms
	Classification
	Metrics
	Defect vs Bug

	Defect Life Cycle
	Status
	Guidelines

	Verification and Validation
	Software Testing Functional and Structural
	Workbench
	Workbench Phases

	1) Resource Assignment and Training
	2) Software Testing Documentation
	3) Software Testing Checklist
	4) Compliance’s
	5) Measurability and Monitoring
	6) Project Flexibility

