

SCHOOL OF COMPUTING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

UNIT – V – Internet of Things – SCSA5301

HANDS-ON PROJECTS

 Industry 4.0 concepts - Sensors and sensor Node and interfacing using any Embedded

 target boards (Raspberry Pi / Intel Galileo/ARM Cortex/ Arduino) - DIY Kits – Soil

 moisture monitoring - Weather monitoring - Air quality Monitoring - Movement

 Detection.

1. Soil Moisture Monitoring

Soil moisture sensors measure the volumetric water content in soil.

Since the direct gravimetric measurement of free soil moisture requires

removing, drying, and weighting of a sample, soil moisture sensors measure the

volumetric water content indirectly by using some other property of the soil, such

as electrical resistance, dielectric constant, or interaction with neutrons, as a

proxy for the moisture content. The relation between the measured property and

soil moisture must be calibrated and may vary depending on environmental factors

such as soil type, temperature, or electric conductivity. Reflected microwave

radiation is affected by the soil moisture and is used for remote sensing in

hydrology and agriculture.

Figure 1: Soil Moisture Sensor

https://en.wikipedia.org/wiki/Water_content
https://en.wikipedia.org/wiki/Soil
https://en.wikipedia.org/wiki/Soil
https://en.wikipedia.org/wiki/Soil
https://en.wikipedia.org/wiki/Gravimetric_analysis
https://en.wikipedia.org/wiki/Neutron
https://en.wikipedia.org/wiki/Temperature
https://en.wikipedia.org/wiki/Electric_conductivity
https://en.wikipedia.org/wiki/Microwave
https://en.wikipedia.org/wiki/Microwave
https://en.wikipedia.org/wiki/Microwave
https://en.wikipedia.org/wiki/Remote_sensing
https://en.wikipedia.org/wiki/Hydrology

Now let‗s wire the sensor to the Raspberry Pi.

VCC-->3v3

GND -->

GND
D0 --> GPIO 17 (Pin 11)

With everything now wired up, we can turn on the Raspberry Pi. Without writing

any code we can test to see our moisture sensor working. When the sensor detects

moisture, a second led will illuminate .So as a quick test, grab a glass of water (be

very careful not to spill water!!) then place the probes into the water and see the

detection led shine. If the detection light doesn‗t illuminate, you can adjust the

potentiometer on the sensor which allows you to change the detection threshold

(this only applies to the digital output signal). In this example we want to monitor

the moisture levels of our plant pot. So we want to set the detection point at a level

so that if it drops below we get notified that our plant pot is too dry and needs

watering. Our plant here, is a little on the dry side, but ok for now, if it gets any

drier it‗ll need watering.

Figure 2: Experimental Setup

To run the script simply run the following command from the same directory as

the script: sudo python moisture.py

1.1 Code

import RPi.GPIO as

GPIO import smtplib

import time

smtp_username = "enter_username_here" # This is the username used to login

to your SMTP provider

smtp_password = "enter_password_here" # This is the password used to login
to your SMTP provider

smtp_host = "enter_host_here" # This is the host of the SMTP

provider smtp_port = 25 # This is the port that your SMTP

provider uses smtp_sender = "sender@email.com" # This is the

FROM email address smtp_receivers = ['receiver@email.com']

This is the TO email address message_dead = """From:

Sender Name <sender@email.com>

To: Receiver Name <receiver@email.com>

Subject: Moisture Sensor Notification

mailto:sender@email.com
mailto:sender@email.com
mailto:receiver@email.com

This is the message that will be sent when moisture IS

detected again message_alive = """From: Sender Name

<sender@email.com>

To: Receiver Name <receiver@email.com>

Subject: Moisture Sensor

Notification # This is our

sendEmail function

def sendEmail(smtp_message):

try:

smtpObj = smtplib.SMTP(smtp_host, smtp_port)

smtpObj.login(smtp_username, smtp_password) # If you don't

need to login to your smtp provider, simply remove this line

smtpObj.sendmail(smtp_sender, smtp_receivers,

smtp_message) print "Successfully sent email"

except smtplib.SMTPException:

print "Error: unable to send email"

This is our callback function, this function will be called every time there is a
change on the specified GPIO channel, in this example we are using 17

def callback(channel):

mailto:sender@email.com
mailto:receiver@email.com

if GPIO.input(channel):

print "LED off"

sendEmail(message_d

ead)

else:

print "LED on"

sendEmail(message_al

ive)

Set our GPIO numbering to

BCM

GPIO.setmode(GPIO.BCM)

Define the GPIO pin that we have our digital output from our sensor

connected to channel = 17

Set the GPIO pin to an input

GPIO.setup(channel, GPIO.IN)

This line tells our script to keep an eye on our gpio pin and let us know

when the pin goes HIGH or LOW

GPIO.add_event_detect(channel, GPIO.BOTH, bouncetime=300)

This line assigns a function to the GPIO pin so that when the above line

tells us there is a change on the pin, run this function

GPIO.add_event_callback(channel, callback)

This is an infinte loop to keep our script

running while True:

This line simply tells our script to wait 0.1 of a second, this is so the script

doesnt hog all of the CPU

time.sleep(0.1)

2. Weather Monitoring

The DHT11 is a low-cost temperature and humidity sensor. It isn‗t the

fastest sensor around but its cheap price makes it useful for experimenting or

projects where you don‗t require new readings multiple times a second. The device

only requires three connections to the Pi.

+3.3v, ground and one GPIO pin.

 DHT11 Specifications

The device itself has four pins but one of these is not used. You can buy the 4-pin

device on its own or as part of a 3-pin module. The modules have three pins and

are easy to connect directly to the Pi‗s GPIO header.

 Humidity : 20-80% (5% accuracy)

 Temperature : 0-50°C (±2°C accuracy)

 Hardware Setup

Figure 3: Humidity and Temperature Sensor

The 4-pin device will require a resistor (4.7K-10K) to be placed between Pin 1

(3.3V) and Pin 2 (Data). The 3-pin modules will usually have this resistor included

which makes the wiring a bit easier. The 3 pins should be connected to the Pi as

shown in the table below :

DHT Pin Signal Pi Pin
1 3.3V 1
2 Data/Out 11 (GPIO17)
3 not used –
4 Ground 6 or 9

Your data pin can be attached to any GPIO pin you prefer. In my example I am

using physical pin 11 which is GPIO 17. Here is a 4-pin sensor connected to the

Pi‗s GPIO header. It has a 10K resistor between pin 1 (3.3V) and 2 (Data/Out).

 Python Library

The DHT11 requires a specific protocol to be applied to the data pin. In

order to save time trying to implement this yourself it‗s far easier to use the

Adafruit DHT library. The library deals with the data that needs to be exchanged

with the sensor but it is sensitive to timing issues. The Pi‗s operating system may

get in the way while performing other tasks so to compensate for this the library

requests a number of readings from the device until it gets one that is valid. To start

with update your package lists and install a few Python libraries :

sudo apt-get update

sudo apt-get install build-essential python-dev

Then clone the Adafruit library from their repository :

Git clone

https://github.com/adafruit Cd

Adafruit_Python_DHT

Then install the library for Python 2 and

Python 3 sudo python setup.py install

sudo python3 setup.py

install python

AdafruitDHT.py 11 17

The example script takes two parameters. The first is the sensor type so is set to

―11‖ to represent the DHT11. The second is the GPIO number so for my example

I am using ―17‖ for GPIO17. You can change this if you are using a different

GPIO pin for your data/out wire. You should see an output similar to this :

Temp=22.0*Humidity=6

8.0% import

Adafruit_DHT

https://github.com/adafruit

Set sensor type : Options are DHT11,DHT22 or

AM2302 sensor=Adafruit_DHT.DHT11

Set GPIO sensor is

connected to gpio=17

Use read_retry method. This will retry up to 15 times to

get a sensor reading (waiting 2 seconds between each retry).

humidity, temperature = Adafruit_DHT.read_retry(sensor, gpio)

Reading the DHT11 is very sensitive to timings and occasionally

the Pi might fail to get a valid reading. So check if readings

are valid. if humidity is not None and temperature is not

None:

print('Temp={0:0.1f}*C Humidity={1:0.1f}%'.format(temperature,

humidity)) else:

print('Failed to get reading. Try again!')

3. Air Pollution Monitoring

Air pollution is a major problem in urban centers as well as rural set-up. The

major pollutants of concern are primarily carbon monoxide, nitrogen oxides,

hydrocarbons and particulate matter (PM10, PM2.5). Ozone, PAN and PBN are

other secondary pollutants generated as a result of the photochemical reactions

of the primary pollutants. These pollutants affect human health as well as

environment. Therefore, air pollution monitoring is necessary to keep a check

on the concentration of these pollutants in ambient air. The grove sensors, grove

DHT (for temperature and humidity), grove gas sensor modules like dust, MQ-5

(for smoke), MQ-7 (for CO) and MQ-135 (for CO2) are interfaced to this shield

for monitoring in our proposed.

Adafruit CCS811 is a gas sensor that can detect a wide range of Volatile

Organic Compounds (VOCs) and is intended for indoor air quality monitoring.

When connected to your microcontroller (running our library code) it will return a

Total Volatile Organic Compound (TVOC) reading and an equivalent carbon

dioxide reading (eCO2) over I2C. There is also an on- board thermistor that can be

used to calculate the approximate local ambient temperature.

Figure 4: Gas Sensor

 Power Pins

 Vin - this is the power pin. Since the sensor uses 3.3V, we have included an

onboard voltage regulator that will take 3-5VDC and safely convert it

down. To power the board, give it the same power as the logic level of

your microcontroller - e.g. for a 5V micro like Arduino, use 5V

 3Vo - this is the 3.3V output from the voltage regulator, you can grab up to
100mA from this if you like

 GND - common ground for power and logic

1. sudo apt-get update

Logic pins

 SCL - this is the I2C clock pin, connect to your microcontrollers I2C

clock line.

There is a 10K pullup on this pin and it is level shifted so you can use 3 -

5VDC.

 SDA - this is the I2C data pin, connect to your microcontrollers I2C data

line. There is a 10K pullup on this pin and it is level shifted so you can

use 3 - 5VDC.

 INT - this is the interrupt-output pin. It is 3V logic and you can use it to

detect when a new reading is ready or when a reading gets too high or too

low.

 WAKE - this is the wakeup pin for the sensor. It needs to be pulled to

ground in order to communicate with the sensor. This pin is level shifted

so you can use 3- 5VDC logic.

 RST - this is the reset pin. When it is pulled to ground the sensor resets

itself. This pin is level shifted so you can use 3-5VDC logic.

3. 3 Raspberry Pi Wiring & Test

The Raspberry Pi also has an I2C interface that can be used to communicate

with this sensor. Once your Pi is all set up, and you have internet access set up,

lets install the software we will need. First make sure your Pi package manager

is up to date

Next, we will install the Raspberry Pi library and Adafruit_GPIO which is our

hardware interfacing layer

1. sudo apt-get install -y build-essential python-pip python-dev python-smbus git

2. git clone https://github.com/adafruit/Adafruit_Python_GPIO.git

3. cd Adafruit_Python_GPIO

4. sudo python setup.py install

1. sudo pip install Adafruit_CCS811

1. sudo raspi-config

1. sudo nano /boot/config.txt

1. dtparam=i2c_baudrate=10000

Next install the adafruit CCS811 python library.

Enable I2C

We need to enable the I2C bus so we can communicate with the sensor.

Once I2C is enabled, we need to slow the speed way down due to constraints of

this particular sensor.

add this line to the file

1. sudo i2cdetect -y 1

1. cd ~/

2. git clone https://github.com/adafruit/Adafruit_CCS811_python.git

3. cd Adafruit_CCS811_python/examples

4. sudo python CCS811_example.py

press Ctrl+X, then Y, then enter to save and exit. Then run sudo shutdown -h

now to turn off the Pi and prepare for wiring.
Wiring Up Sensor

With the Pi powered off, we can wire up the sensor to the Pi Cobbler like this:

 Connect Vin to the 3V or 5V power supply (either is fine)

 Connect GND to the ground pin on the Cobbler

 Connect SDA to SDA on the Cobbler

 Connect SCL to SCL on the Cobbler

 Connect Wake to the ground pin on the Cobbler

Now you should be able to verify that the sensor is wired up correctly by asking the

Pi to detect what addresses it can see on the I2C bus:

Run example code

At long last, we are finally ready to run our example code

from time import sleep

from Adafruit_CCS811 import

Adafruit_CCS811 ccs =

Adafruit_CCS811()

while not

ccs.available():

pass

temp =

ccs.calculateTemperature()

ccs.tempOffset = temp - 25.0

while(1):

if ccs.available():

temp =

ccs.calculateTemperature() if

not ccs.readData():

print "CO2: ", ccs.geteCO2(), "ppm, TVOC: ", ccs.getTVOC(), "

temp: ", temp else:

print

"ERROR!"

while(1):

pas

s sleep(2)

4. Movement Detection

PIR stands for passive infrared. This motion sensor consists of a fresnel lens, an

infrared detector, and supporting detection circuitry. The lens on the sensor focuses

any infrared radiation present around it toward the infrared detector. Our bodies

generate infrared heat, and as a result, this heat is picked up by the motion sensor.

The sensor outputs a 5V signal for a period of one minute as soon as it detects the

presence of a person. It offers a tentative range of detection of about 6–7 meters

and is highly sensitive. When the PIR motion sensor detects a person, it outputs a

5V signal to the Raspberry Pi through its GPIO and we define what the Raspberry

Pi should do as it detects an intruder through the Python coding. Here we are just

printing "Intruder detected".

Figure 5: Working of PIR Sensor

4.1 Working Mechanism

All living beings radiate energy to the surroundings in the form of infrared

radiations which are invisible to human eyes. A PIR (Passive infrared) sensor can

be used to detect these passive radiations. When an object (human or animal)

emitting infrared radiations passes through the field of view of the sensor, it detects

the change in temperature and therefore can be used to detect motion.HC-SR501

uses differential detection with two pyroelectric infrared sensors. By taking a

difference of the values, the average temperature from the field of view of a sensor

is removed and thereby reducing false positives.

import RPi.GPIO as GPIO

import time #Import time

library

GPIO.setmode(GPIO.BOARD) #Set GPIO pin

numbering pir = 26 #Associate pin 26 to pir

GPIO.setup(pir, GPIO.IN) #Set pin as GPIO in print "Waiting for

sensor to settle" time.sleep(2) #Waiting 2 seconds for the sensor to

initiate print "Detecting motion"

while True:

if GPIO.input(pir): #Check whether pir is HIGH print "Motion

Detected!" time.sleep(2) #D1- Delay to avoid multiple

detection

time.sleep(0.1) #While loop delay should be less than detection(hardware) delay

5. Upload Your Raspberry Pi Sensor Data to

Thingspeak Website Things needed

1. Raspbeery Pi

2. Power Cable

3. Wifi adapter or LAN connection to Raspbeery Pi

Step 1: Signup for

Thingspeak Go to

www.thinspeak.com

Figure 6: Thingspeak Website

Click on ―Sign Up‖ option and complete the details

Figure7: Create user

http://www.thinspeak.com/

account Step 2: Create a Channel for Your Data

Once you Sign in after your account activation, Create a new channel by

clicking ―New Channel‖ button

Figure 8: Creating New Channel

After the ―New Channel‖ page loads, enter the Name and Description of the data

you want to upload. You can enter the name of your data (ex: Temperature) in

Field1. If you want more Fields you can check the box next to Field option and

enter the corresponding name of your data.

Figure 9: New Channel settings

Click on ―Save Channel‖ button to save all of your settings.

We created two Fields, one is CPU Memory and one for CPU Temperature

Figure 10: Creating field charts to display data

Step 3: Get an API Key

To upload our data, we need an API key, which we will later include in a piece of

python code to upload our sensor data to Thingspeak Website.

Click on ―API Keys‖ tab to get the key for uploading your sensor data.

Figure 11: Copy the Write API Key of the channel

The advantage of using Thingspeak compared to Xively or any other websites is

that the convenience of using Matlab Analysis and Matlab Visualizations. Once

you have the ―Write API Key‖. We are almost ready to upload our data, except for

the python code.

Step 4: Modifying the Python Code

Go to

https://github.com/sriharshakunda/Thingspeak_CPU_Python-

Code Download the code into your Raspberry Pi Home folder.

https://github.com/sriharshakunda/Thingspeak_CPU_Python-Code
https://github.com/sriharshakunda/Thingspeak_CPU_Python-Code

Open the CPU_Python.py file in a

notepad. Code:

import httplib, urllib
import time
sleep = 60 # how many seconds to sleep between posts to the channel

key = 'Put your Thingspeak Channel Key here' # Thingspeak channel to update

#Report Raspberry Pi internal temperature to Thingspeak

Channel def thermometer():
while True:

#Calculate CPU temperature of Raspberry Pi in Degrees C

temp = int(open('/sys/class/thermal/thermal_zone0/temp').read()) / 1e3 # Get
Raspberry Pi CPU temp

params = urllib.urlencode({'field1': temp, 'key':key })
headers = {"Content-typZZe": "application/x-www-form-

urlencoded","Accept": "text/plain"}

conn =

httplib.HTTPConnection("api.thingspeak.com:80"

) try:

conn.request("POST", "/update", params,

headers) response = conn.getresponse()
print temp
print response.status,

response.reason data =

response.read()
conn.close

() except:
print "connection

failed" break

#sleep for desired amount of

time if name == "

main ":
while True:

thermometer()

time.sleep(sle

ep)

Edit the line 19 by using CPU_Temp instead of temp.

Use your Write API Key to replace the key with your API Key

Use your Write API Key to replace the key with your API Key

Save the file to overwrite changes

Step 5: Assuming you have python 2.7 and proper python libraries, go to the

folder where you copied the CPU_Python.py file

Type python2.7 CPU_Python.py file

In case if there are any errors uploading the data, you will receive ―connection failed‖

message

Step 6: Check Thinspeak API and Confirm data transfer

Open your channel and you should see the temperature uploading into thinspeak

website.

Figure: 12 CPU Temperature data displayed in

Field Chart

6. IFTTT

IFTTT – short for ‗If This Then That‗ – is a free online service that lets you

automate specific tasks. It lets you trigger actions on other apps, web services and

devices automatically every time certain conditions are met. These trigger > action

relationships used to be called recipes. but will now be known as Applets. The

trigger and action relationships have always been known as recipes‗, but that‗s all

changing. From now on, they will be dubbed Applets. There are no major changes

to the way things work, but there are a few differences worth being aware of. Each

Applet you enable will still trigger ‗if this then that‗ action when the relevant

conditions are met, but now Applets can trigger multiple actions, instead of just

one. Once the first action is completed, a second, third, fourth, etc, can also be

triggered.

"Channel" is IFTTT parlance for a Web service or other action. IFTTT currently

supports 67 different channels spanning a wide range of popular services, and it

can perform basic actions such as calling or texting a phone, or sending you an

email. Here's a list of all the available IFTTT channels. You may recognize some

of them: Craigslist, Dropbox, Evernote, Facebook, Flickr, Foursquare, Instagram,

SkyDrive, Twitter, YouTube, and a wide range of Google services are just the tip

of the iceberg. A newly released iPhone IFTTT app even adds channels for your

phone's Reminders, Contacts, and Photos apps. Once you've gone through and

activated some channels—basically, granting IFTTT access to your various

services or providing it with personal details—you're ready to start crafting.

 Services

A service is just what it sounds like, a tool, application, or facility that works with

IFTTT. The brilliant thing about IFTTT is that its variety of channels allows it to

offer something to everybody. The list of available services is enormous and more

are added all the time. Some of the most popular services include Facebook,

Twitter, Instagram, YouTube, SoundCloud, Dropbox, Evernote, and Pocket.

 Applets

Applets are what make IFTTT worth your time. Basically, they are the

combination of services that use a trigger and an action. When something happens

on one service, it triggers an action on another.

 Create an Applet

The first step is to click My Applets and then New Applet. Next, click the word This.

https://ifttt.com/channels
https://ifttt.com/channels
http://www.macworld.com/article/2044123/hands-on-ifttt-for-ios-automates-your-online-life.html
https://ifttt.com/search/services
http://dropbox.com/

Figure13: Login Page

For this example, we will select the Instagram trigger, which will then ask us to

activate Instagram just this once. Having done that, we will choose a trigger

action:

Figure 14: Service

Figure 15: Trigger

Figure 16: Action Service

After doing this, we will be greeted by the second batch of actions. We‗ll select the

first one and be asked to complete the fields. In this case, it‗s asking us where to

grab the photos, how to name them and where it should put them. All you have to

do is click on the Add ingredient, make your selection from the drop-down box,

and hit the Create Action button. Finally, you will be asked to review your Applet.

You can optionally enable notifications when the Applet runs. Then, click Finish.

 Pre-Made Applets

We can browse other people‗s Applets, view options by category, check out

collections, look at recommendations, or do a search if you are looking for

something specific. And, using existing Applets is easier than creating your own.

Figure 17: Pre Made Applets

Just click on an Applet to review the details, and move the slider to turn it on.

Depending on the Applet you choose, you may be asked to connect an account like

Facebook or configure pieces of the Applet like date and time. But, this is all very

simple and self-explanatory as you move through the process.

Top 7 Applets

Applet #1 – Daily SMS Weather Forecast

You get IFTTT to send an SMS each morning telling you what the weather

conditions are going to be for the day.

Applet #2 – Wake Up Call

You get a call at a time of your preference with an automated message.

Applet #3 – Starred Emails in Gmail to Evernote

When you mark an email with a star on Gmail, a copy of it is sent to your Evernote

account.

https://ifttt.com/recipes/24908
https://ifttt.com/recipes/152
https://ifttt.com/recipes/6440

Applet #4 – NASA’s Image of the Day

NASA is well-known for many things, not the least of which is their stunning

photographs of our galaxy. Set this up and you‗ll get an amazing photo in your

email every day.

Applet #6 – Email For a Call to Find a Lost Phone

We‗ve all lost our phone before. With this Applet you get a call when you send an

email to the specified address, helping you hear where it is.

Applet #7 – Timed Daily Tweet

Your account sends a tweet every day at a time you choose.

7. Other Apps and Services

 Cayenne IoT Builder

Cayenne is an app for smartphones and computers that allows you to control the

Raspberry Pi and soon also the Arduino through the use of an elegant graphical

interface and a solid nice communication protocol.

The features are:

 Add and remotely control sensors, motors, actuators, GPIO boards, and more

 Customizable dashboards with drag-and-drop widgets for connection devices

 Create triggers and threshold alerts for devices, events, and actions

 Schedule one-time or multi-device events for easy automation

 Quick and easy setup - connect your Pi in minutes

Step 1: Go to Cayenne site and Sign Up. After download the file and install the

Cayenne system on your Raspberry Pi. Download the app on your Smartphone or

tablet by using the follows link

https://ifttt.com/applets/zgD6EJ8h-receive-nasa-s-image-of-the-day-in-your-email
https://ifttt.com/recipes/1828
https://ifttt.com/applets/390278p-timed-daily-tweet

Cayenne on Apple Store or Cayenne on Play Store

Install on your Raspberry Pi the Raspbian system. For this step download NOOBS

from Raspberripi.org: https://www.raspberrypi.org/downloads/

Copy the package on your SD, and start the Raspbian installation. For the raspbian

installation I recommend to use a HDMI screen, a USB mouse and a USB

keyboard.After this, connect your Raspberry at your LAN by cable. Then open your

Cayenne app and install the library on your device. The next step.

Step 2: Download the App and Install Cayenne

Download the app on your Smartphone or tablet by using the

follows link Cayenne on Apple Store or Cayenne on Play Store

Install on your Raspberry Pi the Raspbian system. After this, connect your Raspberry

at your LAN by cable. Then open your Cayenne app and install the library on your

device (or)

Install manually Cayenne on your Raspberry Pi by using commands in Terminal of

Raspberry Pi:

wget

https://cayenne.mydevices.com/dl/rpi_b8w8pn82i

9.sh sudo bash rpi_b8w8pn82i9.sh -v

https://itunes.apple.com/us/app/cayenne-connect-create-control/id1057997711?mt=8
https://play.google.com/store/apps/details?id=com.mydevices.cayenne
https://www.raspberrypi.org/downloads/
https://itunes.apple.com/us/app/cayenne-connect-create-control/id1057997711?mt=8
https://play.google.com/store/apps/details?id=com.mydevices.cayenne

After this reboot your Raspberry.

Step 3: See Your Device on Cayenne Dashboard

Figure 18: Device on Cayenne Dashboard

By using Computer you can see your device on: https://cayenne.mydevices.com/ like

in photo. By using a Smartphone you can open the app and see your devices.You can

personalize the Dashboard of Cayenne by using the widgets. The default Dashboard

have CPU, Temp and RAM widget . These are the values of your Raspberry Pi. You

can see the temp and the work flow of Raspberry pi. Then you can see the GPIO

schedule. In the GPIO you can set every pin of GPIO of Raspberry. You can set the

pin like Output or Input. Then you can activate the pin or read the value of the pin. The

two values are HIGH or LOW. This is valid for Input and Output.

https://cayenne.mydevices.com/

Step 4: Connect a Led to Your Raspberry Pi

Now you can connect a led to GPIO port of Raspberry Pi. Use ALWAYS a resistor in

series to led. If you don't use a resistor, you can burn the led or the Raspberry Pi. See

the photo and connect the led to pin number 11 or GPIO 17.

Figure 19: Connections with LED

Step 5: Switch ON the Led

Now go to the Dashboard of Cayenne, and open the GPIO schedule. Then Select the

Pin 17 and click on Input. Setup the pin like Output, and after click on LOW button.

The button below Green and the word HIGH appear on it. Now your led in ON. You

can switch on the led by using your Raspberry Pi by LAN, and also by a different

Network Area. This is because Cayenne use a proprietary proxy.

Step 6: Create the Buttons on Dashboard

Go to Cayenne Dashboard on smartphone app, and click + on right up corner of

screen.

Now you can add a widget. Select Actuators device --> Select Generic --> Select

Digital Output. Fill the all the fields, and select the correct channel for RGB led.

The Blue pin in the 25

The Green pin in the 24

The Red pin in the 23

Step 7: Now Switch on the Rainbow

Figure 20: Create Buttons on Dashboard

You can use a normal breadboard and an RGB led common cathode. The RGB led is a

led that have 3 leds inside. Why the pin are only 3? Because the 3 leds share a cathode,

or anode pin. For this reason you must specify the kind of led you want. Now I use a

common cathode led.

The GPIO port on Raspberry are:

The Blue pin in the

25 The Green pin in

the 24

The Red pin in the 23

 Amazon Alexa

Alexa is Amazon‘s cloud-based voice service available on tens of millions of

devices from Amazon and third-party device manufacturers. With Alexa, you can build

natural voice experiences that offer customers a more intuitive way to interact with the

technology they use every day. Our collection of tools, APIs, reference solutions, and

documentation make it easy for anyone to build with Alexa. Alexa Enabled is a

category of products with built-in access to Alexa. You can talk to the device with the

wake word ―Alexa,‖ and receive voice responses and content instantly. Alexa- enabled

products work with Alexa skills and Alexa compatible smart home devices and

gadgets, bringing familiar capabilities from the Amazon Echo family of devices to a

range of new form factors and use cases developed by leading brands.

The Alexa Voice Service (AVS) enables you to access cloud-based Alexa

capabilities with the support of AVS APIs, hardware kits, software tools, and

documentation. We simplify building voice-forward products by handling complex

speech recognition and natural language understanding in the cloud, reducing your

development costs and accelerating your time to market. Best of all, regular Alexa

updates bring new features to your product and add support for a growing assortment

of compatible smart home devices. Build with AVS, and become part of the Alexa

family.

