

SCHOOL OF COMPUTING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

UNIT – III – Internet of Things – SCSA5301

COMMUNICATION AND CONNECTIVE TECHNOLOGIES

IoT Communication Model - Cloud computing in IoT - IoT in cloud architecture -

Logging on to cloud - Selecting and Creating cloud service - cloud based IoT platforms -

IBM Watson - Google cloud.

1. IoT Communication Model

The term of internet of things (IoT) communication offered by Internet

protocols . Many of the devices often called as smart objects operated by

humans as components in buildings or vehicles, or are spread out in the

environment.

Communication types

1. Device-to-Device Communications

2. Device-to-Cloud Communications

 Device-to-Device Communications:

The device-to-device communication model represents two or more

devices that directly connect and communicate between one another, rather

than through an intermediary application server. These devices communicate

over many types of networks, including IP networks or the Internet.

Often,however these devices use protocols like Bluetooth-Wave, or ZigBee to

establish direct device-to-device communications.

Attack Surfaces on Device to Device Communication:

 Credentials stealing from the firmware

 Sensitive information disclosure

 No proper updating mechanism of firmware

 DoS Attacks

Buffer-overflow

attacks

A buffer is a temporary area for data storage. When more data gets placed by a

program or system process, the extra data overflows. It causes some of that data

to leak out into other buffers, which can corrupt or overwrite whatever data they

were holding. In a buffer- overflow attack, the extra data sometimes holds

specific instructions for actions intended by a hacker or malicious user; for

example, the data could trigger a response that damages files, changes data or

unveils private information.

Best Practices for securing Device to Device Communication:

 Evaluate hardware components, firmware, software, communications protocols

 Try to Make the signed Firmware, software and hash your binaries.

 Implement the machine to machine authentication securely.

 Get the feedback from the clients to improve the device security levels

 Device-to-Cloud Communications

In a device to cloud communication model, the IoT device connects

directly to an Internet cloud service like an application service provider to

exchange data and control message traffic. This approach frequently takes

advantage of existing communications mechanisms like traditional wired

Ethernet or Wi-Fi connections to establish a connection between the device

and the IP network, which ultimately connects to the cloud service.

Figure 1: Device to Cloud Communication

Device to Cloud protocols . Below table 1 explains the details about

the protocols :

Protocols AMQP MQT

T
XMPP CoAP

Transport TCP/IP TCP/I
P

TCP/IP UDP/I
P

Message

pattern

Publish

—

Subscrib

e

Publish

—

Subscrib

e

Point —
Point

Publish

–

Subscri

be

Request

–

Respons

e

The Advanced Message Queuing Protocol (AMQP) and the MQTT

Protocol are often seen as mutually exclusive choices, especially in the Internet

of Things (IoT). AMQP is a general-purpose message transfer protocol suitable

for a broad range of messaging- middleware infrastructures, and also for peer-

to-peer data transfer. It’s a symmetric and bi- directional protocol that allows

either party on an existing connection to initiate links and transfers, and has rich

extensibility and annotation features at practically all layers. Both protocols

share that they can be tunneled over Web Sockets and therefore function well in

environments that restrict traffic to communication over TCP port 443

(HTTPS).

 MQTT Concepts

In MQTT, all messages are published into a shared topic space at the broker

level. A

―topic‖ in MQTT is a filter condition on the consolidated message stream that

runs through the MQTT broker from all publishers. Publishing topics have a

hierarchical structure (a path through topic space) and filters can be expressed as

direct matching conditions (topic name and filter expression must match), or the

filter can use wild-cards for single or multiple path segments.

Figure 2: MQTT Protocol

Every published message from any publisher is eligible for delivery into

any client session where a subscription exists with a matching topic filter.

MQTT is very suitable for fast and ―online‖ dispatch and distribution of

messages to many subscribers in scenarios where it’s feasible for the entirety

of the consolidated published message stream to be inspected on behalf of all

concurrent subscribers.

MQTT’s ―subscribe‖ gesture is much lighter weight. It establishes a filter

context and simultaneously initiates and unbounded receive operation on that

context. If session recovery is used, to scope of undelivered messages is that

individual filter context. Subscribing is receiving. In some brokers, such an

MQTT subscription context may indeed be backed by a volatile queue to allow

leveling between fast and slow subscribers and to allow for caching of messages

while a subscriber is temporarily disconnected and if session recovery is

supported; but that’s an implementation detail, not an explicit construct. The

trouble with MQTT is that it uses TCP connections to a MQTT broker. Having

an always-on connection will limits the time the devices can be put to sleep.

This can be somewhat mitigated by using MQTT-S, which works with UDP

instead of TCP. But MQTT also lacks encryption since the protocol was

intended to be lightweight and encryption would add significant overhead.

Advanced Message Queuing Protocol (AMQP) is an open source published

standard for asynchronous messaging by wire. AMQP enables encrypted and

interoperable messaging between organizations and applications. The protocol

is used in client/server messaging and in IoT device management. AMPQ is

efficient, portable, multichannel and secure. The messaging protocol is fast and

features guaranteed delivery with acknowledgement of received messages.

AMPQ works well in multi-client environments and provides a means for

delegating tasks and making servers handle immediate requests faster. Because

AMPQ is a streamed binary messaging system with tightly mandated messaging

behavior, the interoperability of clients from different vendors is assured.

AMQP allows for various guaranteed messaging modes specifying a message be sent:

 At-most-once(sent one time with the possibility of being missed).

 At-least-once (guaranteeing delivery with the possibility of duplicated

messages).

 Exactly-once (guaranteeing a one-time only delivery).

eXtensible Messaging and Presence Protocol (XMPP) is a TCP protocol based

on XML. It enables the exchange of structured data between two or more

connected entities, and out of the box it supports presence and contact list

maintenance (since it started as a chat protocol). Because of the open nature of

XML, XMPP can be easily extended to include publish- subscribe systems,

making it a good choice for information that is handed to a central server and

then distributed to numerous IoT devices at once. It is decentralized, and

authentication can be built in by using a centralized XMPP server. The

downsides of XMPP for IoT is that it lacks end-to-end encryption. It also doesn’t

have quality-of-service functionality, which can be a real deal-breaker

depending on the application.

http://whatis.techtarget.com/definition/open-source
http://internetofthingsagenda.techtarget.com/definition/Internet-of-Things-IoT
http://searchenterprisedesktop.techtarget.com/definition/client

Constrained Application Protocol (CoAP) is a protocol specifically developed

for resource- constrained devices. It uses UDP instead of TCP, and developers

can work with CoAP the same way they work with REST-based APIs. Since it

uses minimal resources, it is a good option or low-power sensors. Since it uses

UDP, it also can run on top of packet-based technologies such as SMS, and

messages can be marked confirmable or nonconfirmable to work with QoS.

Datagram Transport Layer Security (DTLS) can be used for encryption. The

downside of CoAP is that it is a one-to-one protocol, so broadcast capabilities

are not native to the protocol.

 Attack Surfaces on Device to Cloud Communication

1. SQL injection , Cross-site scripting , Cross-site Request Forgery possible

attacks on cloud application interfaces.

SQL Injection (SQLi) refers to an injection attack wherein an attacker can

execute malicious SQL statements (also commonly referred to as a malicious

payload) that control a web application’s database server (also commonly

referred to as a Relational Database Management System – RDBMS). Since an

SQL Injection vulnerability could possibly affect any website or web

application that makes use of an SQL-based database, the vulnerability is one of

the oldest, most prevalent and most dangerous of web application

vulnerabilities.

2. Cross-site Scripting (XSS) refers to client-side code injection attack

wherein an attacker can execute malicious scripts (also commonly

referred to as a malicious payload) into a legitimate website or web

application. XSS is amongst the most rampant of web application

vulnerabilities and occurs when a web application makes use of

unvalidated or unencoded user input within the output it generates. By

leveraging XSS, an attacker does not target a victim directly. Instead, an

attacker would exploit a vulnerability within a website or web application

that the victim would visit, essentially using the vulnerable website as a

vehicle to deliver a malicious script to the victim’s browser.

3. Username and password enumeration attacks

4. MITM attacks

Man-in-the-middle attack (MITM) is an attack where the attacker secretly

relays and possibly alters the communication between two parties who believe

they are directly communicating with each other. One example of man-

in-the-middle attacks is active eavesdropping, in which the attacker makes

independent connections with the victims and relays messages between them to

make them believe they are talking directly to each other over a private

connection, when in fact the entire conversation is controlled by the attacker.

The attacker must be able to intercept all relevant messages passing between the

two victims and inject new ones.

5. Man in the Cloud (MiTC) attacks

Man in the cloud (MitC) attacks are interesting, and worrying, as they do

not require any exploits or the running malicious code in order to get a

grip during the initial infection stage. Instead they rely upon the type of

common file synchronization service that we have all become used to, the

likes of DropBox or Google Drive for example, to be the infrastructure

providing command and control, data exfiltration and remote access

options. Man in the cloud attacks are interesting, and worrying, as they do

not require any exploits or the running malicious code .Simply by

reconfiguring these cloud services, without end user knowledge and

without the need for plaintext credential compromise to have occurred. It

is hard for common security measures to detect as the synchronization

protocol being used makes it all but impossible to distinguish between

malicious and normal traffic.

Best Practices for securing Device to Cloud Security:

 Check all cloud interfaces are reviewed for security vulnerabilities (e.g.

API interfaces and cloud-based web interfaces)

 Make sure cloud-based web interface not having weak passwords

 Ensure that any cloud-based web interface has an account lockout mechanism

 Implement two-factor authentication for cloud-based web interfaces

https://en.wikipedia.org/wiki/Eavesdropping

 Maintain transport encryption

 Ensure that any cloud-based web interface has been tested for XSS, SQLi

and CSRF vulnerabilities.

2. IoT in Cloud

The advent of cloud computing has acted as a catalyst for the development

and deployment of scalable Internet-of-Things business models and

applications. Therefore, IoT and cloud are nowadays two very closely affiliated

future internet technologies, which go hand-in-hand in non-trivial IoT

deployments.

Cloud computing is the next evolutionary step in Internet-based computing,

which provides the means for delivering ICT resources as a service. The ICT

resources that can be delivered through cloud computing model include

computing power, computing infrastructure (e.g.,servers and/or storage

resources), applications, business processes and more. Cloud computing

infrastructures and services have the following characteristics, which typically

differentiate them from similar (distributed computing) technologies:

 Elasticity and the ability to scale up and down: Cloud computing

services can scale upwards during high periods of demand and downward

during periods of lighter demand. This elastic nature of cloud computing

facilitates the implementation of flexibly scalable business models, e.g.,

through enabling enterprises to use more or less resources as their business

grows or shrinks.

 Self-service provisioning and automatic deprovisioning: Contrary to

conventional web-based Application Service Providers (ASP) models (e.g.,

web hosting), cloud computing enables easy access to cloud services without

a lengthy provisioning process. In cloud computing, both provisioning and de-

provisioning of resources can take place automatically.

 Application programming interfaces (APIs): Cloud services are

accessible via APIs, which enable applications and data sources to

communicate with each other.

 Billing and metering of service usage in a pay-as-you-go model: Cloud

services are associated with a utility-based pay-as-you-go model. To this end,

they provide the means for metering resource usage and subsequently issuing

bills.

 Performance monitoring and measuring: Cloud computing

infrastructures provide a service management environment along with an

integrated approach for managing physical environments and IT systems.

 Security: Cloud computing infrastructures offer security functionalities

towards safeguarding critical data and fulfilling customers’ compliance

requirements.

The two main business drivers behind the adoption of a cloud computing model

and associated services including:

 Business Agility: Cloud computing alleviates tedious IT procurement

processes, since it facilitates flexible, timely and on-demand access to

computing resources (i.e. compute cycles, storage) as needed to meet business

targets.

Depending on the types of resources that are accessed as a service, cloud

computing is associated with different service delivery models.

 Infrastructure as a Service (IaaS): IaaS deals with the delivery of

storage and computing resources towards supporting custom business

solutions. Enterprises opt for an IaaS cloud computing model in order to

benefit from lower prices, the ability to aggregate resources, accelerated

deployment, as well as increased and customized security. The most

prominent example of IaaS service Amazon’s Elastic Compute Cloud (EC2),

which uses the Xen open-source hypervisor to create and manage virtual

machines.

 Platform as a Service (PaaS): PaaS provides development environments

for creating cloud-ready business applications. It provides a deeper set of

capabilities comparing to IaaS, including development, middleware, and

deployment capabilities. PaaS services create and encourage deep ecosystem

of partners who commit to this environment. Typical examples of PaaS

services are Google’s App Engine and Microsoft’s Azure cloud environment,

which both provide a workflow engine, development tools, a testing

environment, database integration functionalities, as well as third-party tools

and services.

 Software as a Service (SaaS): SaaS services enable access to purpose-

built business applications in the cloud. Such services provide the pay-go-go,

reduced CAPEX and elastic properties of cloud computing infrastructures.

Cloud services can be offered through infrastructures (clouds) that are publicly

accessible (i.e. public cloud services), but also by privately owned

infrastructures (i.e. private cloud services). Furthermore, it is possible to offer

services supporting by both public and private clouds, which are characterized

as hybrid cloud services.

 IoT/Cloud Convergence

Internet-of-Things can benefit from the scalability, performance and pay-

as-you-go nature of cloud computing infrastructures. Indeed, as IoT

applications produce large volumes of data and comprise multiple

computational components (e.g., data processing and analytics algorithms),

their integration with cloud computing infrastructures could provide them with

opportunities for cost-effective on-demand scaling. As prominent examples

consider the following settings:

 A Small Medium Enterprise (SME) developing an energy management

IoT product, targeting smart homes and smart buildings. By streaming the

data of the product (e.g., sensors and WSN data) into the cloud it can

accommodate its growth needs in a scalable and cost effective fashion.

 A smart city can benefit from the cloud-based deployment of its IoT

systems and applications. A city is likely to deploy many IoT applications,

such as applications for smart energy management, smart water management,

smart transport management, urban mobility of the citizens and more. These

applications comprise multiple sensors and devices, along with computational

components. Furthermore, they are likely to produce very large data volumes.

Cloud integration enables the city to host these data and applications in a cost-

effective way. Furthermore, the elasticity of the cloud can directly support

expansions to these applications, but also the rapid deployment of new ones

without major concerns about the provisioning of the required cloud

computing resources.

 A cloud computing provider offering pubic cloud services can extend

them to the IoT area, through enabling third-parties to access its infrastructure

in order to integrate IoT data and/or computational components operating

over IoT devices. The provider can offer IoT data access and services in a

pay-as-you-fashion, through enabling third-parties to access resources of its

infrastructure and accordingly to charge them in a utility-based fashion.

One of the earliest efforts has been the famous Pachube.com infrastructure

(used extensively for radiation detection and production of radiation maps

during earthquakes in Japan). Pachube.com has evolved (following several

evolutions and acquisitions of this infrastructure) to Xively.com, which is

nowadays one of the most prominent public IoT clouds. Nevertheless, there

are tens of other public IoT clouds as well, such as ThingsWorx,

ThingsSpeak, Sensor-Cloud, Realtime.io and more. The list is certainly non-

exhaustive. These public IoT clouds offer commercial pay-as-you-go access to

end-users wishing to deploying IoT applications on the cloud. Most of them

come with developer friendly tools, which enable the development of cloud

applications, thus acting like a PaaS for IoT in the cloud.

Similarly to cloud computing infrastructures, IoT/cloud infrastructures and

related services can be classified to the following models:

 Infrastructure-as-a-Service (IaaS) IoT/Clouds: These services provide

the means for accessing sensors and actuator in the cloud. The associated

business model involves the IoT/Cloud provide to act either as data or sensor

provider. IaaS services for IoT provide access control to resources as a

prerequisite for the offering of related pay-as-you-go services.

 Platform-as-a-Service (PaaS) IoT/Clouds: This is the most widespread

model for IoT/cloud services, given that it is the model provided by all public

IoT/cloud infrastructures outlined above. As already illustrate most public IoT

clouds come with a range of tools and related environments for applications

development and deployment in a cloud environment. A main characteristic

of PaaS IoT services is that they provide access to data, not to hardware. This

is a clear differentiator comparing to IaaS.

 Software-as-a-Service (SaaS) IoT/Clouds: SaaS IoT services are the

ones enabling their uses to access complete IoT-based software applications

through the cloud, on- demand and in a pay-as-you-go fashion. As soon as

sensors and IoT devices are not visible, SaaS IoT applications resemble very

much conventional cloud-based SaaS applications.

http://xively.com/
https://www.thingworx.com/
https://www.thingworx.com/
https://www.thingworx.com/
https://www.thingworx.com/
https://www.sensor-cloud.com/
https://realtime.io/

The benefits of integrating IoT into Cloud are discussed in this section as follows.

1. Communication

The Cloud is an effective and economical solution which can be used to

connect, manage, and track anything by using built-in apps and customized

portals . The availability of fast systems facilitates dynamic monitoring and

remote objects control, as well as data real-time access. It is worth declaring

that, although the Cloud can greatly develop and facilitate the IoT

interconnection, it still has weaknesses in certain areas. Thus, practical

restrictions can appear when an enormous amount of data needs to be

transferred from the Internet to the Cloud.

2. Storage

As the IoT can be used on billions of devices, it comprises a huge number of

information sources, which generate an enormous amount of semi-structured or

non-structured data . This is known as Big Data, and has three characteristics :

variety (e.g. data types), velocity (e.g. data generation frequency), and volume

(e.g. data size). The Cloud is considered to be one of the most cost-effective and

suitable solutions when it comes to dealing with the enormous amount of data

created by the IoT. Moreover, it produces new chances for data integration,

aggregation, and sharing with third parties .

3. Processing capabilities

IoT devices are characterized by limited processing capabilities which prevent

on-site and complex data processing. Instead, gathered data is transferred to

nodes that have high capabilities; indeed, it is here that aggregation and

processing are accomplished. However, achieving scalability remains a

challenge without an appropriate underlying infrastructure. Offering a solution,

the Cloud provides unlimited virtual processing capabilities and an on- demand

usage model . Predictive algorithms and data-driven decisions making can be

integrated into the IoT in order to increase revenue and reduce risks at a lower

cost .

4. Scope

With billions of users communicating with one another together and a variety of

information being collected, the world is quickly moving towards the Internet of

Everything (IoE) realm - a network of networks with billions of things that

generate new chances and risks . The Cloud-based IoT approach provides new

applications and services based on the expansion of the Cloud through the IoT

objects, which in turn allows the Cloud to work with a number of new real

world scenarios, and leads to the emergence of new services .

5. New abilities

The IoT is characterised by the heterogeneity of its devices, protocols, and

technologies. Hence, reliability, scalability, interoperability, security,

availability and efficiency can be very hard to achieve. Integrating IoT into the

Cloud resolves most of these issues. It provides other features such as easeof-

use and ease-of-access, with low deployment costs .

6. New Models

Cloud-based IoT integration empowers new scenarios for smart objects,

applications, and services. Some of the new models are listed as follows:

• SaaS (Sensing as a Service) , which allows access to sensor data;

• EaaS (Ethernet as a Service), the main role of which is to provide ubiquitous

connectivity to control remote devices;

• SAaaS (Sensing and Actuation as a Service), which provides control logics

automatically.

• IPMaaS (Identity and Policy Management as a Service) , which provides

access to policy and identity management.

• DBaaS (Database as a Service), which provides ubiquitous database management;

• SEaaS (Sensor Event as a Service) , which dispatches messaging services that are

generated by sensor events;

• SenaaS (Sensor as a Service) , which provides management for remote sensors;

• DaaS (Data as a Service), which provides ubiquitous access to any type of data.

3. Cloud Architecture

The cloud components of IoT architecture are positioned within a

three-tier architecture pattern comprising edge, platform and enterprise

tiers, as described in the Industrial Internet Consortium Reference

Architecture . The edge-tier includes Proximity Networks and Public

Networks where data is collected from devices and transmitted to devices.

Data flows through the IoT gateway or optionally directly from/to the

device then through edge services into the cloud provider via IoT

transformation and connectivity. The Platform tier is the provider cloud,

which receives, processes and analyzes data flows from the edge tier and

provides API Management and Visualization. It provides the capability to

initiate control commands from the enterprise network to the public

network as well. The Enterprise tier is represented by the Enterprise

Network comprised of Enterprise Data, Enterprise User Directory, and

Enterprise Applications. The data flow to and from the enterprise network

takes place via a Transformation and Connectivity component. The data

collected from structured and non-structured data sources, including real-

time data from stream computing, can be stored in the enterprise data.

One of the features of IoT systems is the need for application logic

and control logic in a hierarchy of locations, depending on the timescales

involved and the datasets that need to be brought to bear on the decisions

that need to be made. Some code may execute directly in the devices at the

very edge of the network, or alternatively in the IoT Gateways close to the

devices. Other code executes centrally in the provider cloud services or in

the enterprise network. This is sometimes alternatively called ―fog

computing‖ to contrast with centralised ―cloud computing‖, although fog

computing can also contain one or more layers below the cloud that each

could potentially provide capabilities for a variety of services like

analytics.

Aspects of the architecture include:

 The user layer is independent of any specific network domain.

It may be in or outside any specific domain.

 The proximity network domain has networking capabilities that

typically extend the public network domain. The devices

(including sensor/actuator, firmware and management agent) and

the physical entity are part of the proximity network domain. The

devices communicate for both data flow and control flow either

via an IoT Gateway and edge services or directly over the public

network via edge services.
 The public network and enterprise network domains contain data

sources

that feed the entire architecture. Data sources include traditional

systems of record from the enterprise as well as new sources

from Internet of Things (IoT). The public network includes

communication with peer clouds.

 The provider cloud captures data from devices, peer cloud

services and other data sources (for example Weather services). It

can use integration technologies or stream processing to

transform, filter and analyse this data in real time and it can store

the data into repositories where further analytics can be

performed. This processing, which can be augmented with the

use of Cognitive and Predictive analytics, is used to generate

Actionable Insights. These insights are used by users and

enterprise applications and can also be used to trigger actions to

be performed by IoT Actuators. All of this needs to be done in a

secure and governed environment.

The following figure 3 shows the capabilities and relationships for supporting

IoT using cloud computing.

Figure 3: Cloud Components for IoT

User Layer - contains IoT users and their end user applications.

 IoT User (people/system) - a person or alternatively an automated

system that makes use of one or more end user applications to achieve

some goal. The IoT User is one of the main beneficiaries of the IoT

solution.

 End User Application - domain specific or device specific application.

The IoT user may use end user applications that run on smart phones,

tablets, PCs or alternatively on specialised IoT devices including control

panels.

Proximity Network - contains the physical entities that are at the heart of

the IoT system, along with the devices that interact with the physical

entities and connect them to the IoT system.

Physical Entity - the physical entity is the real-world object that is of

interest – it is subject to sensor measurements or to actuator behavior. It is

the ―thing‖ in the Internet of Things. This architecture distinguishes between

the physical entities and the IT devices that sense them or act on them. For

example, the thing can be the ocean and the device observing is it a water

temperature thermometer.

Device - contains sensor(s) and/or actuator(s) plus a network connection

that enables interaction with the wider IoT system. There are cases where

the device is also the physical entity being monitored by the sensors – such

as an accelerometer inside a smart phone.

 Sensor/Actuator - senses and acts on physical entities. A sensor is a

component that senses or measures certain characteristics of the real

world and converts them into a digital representation. An actuator is a

component that accepts a digital command to act on a physical entity in

some way.

 Agent - provides remote management capabilities for the device,

supporting a device management protocol that can be used by the Device

Management service or IoT management system.

 Firmware - software that provides control, monitoring and data

manipulation of engineered products and systems. The firmware

contained in devices such as consumer electronics provides the low-level

control program for the devices.

 Network Connection - provides the connection from the device to the

IoT system. This is often a local network that connects the device with an

IoT gateway – low power and low range in many cases to reduce the

power demands on the device.

 User Interface - allows users to interact with applications, agents,

sensors and actuators (optional – some devices have no user interface

and all interaction takes place from remote applications over the

network).

IoT Gateway - acts as a means for connecting one or more devices to the

public network (typically the Internet). It is commonly the case that devices

have limited network connectivity – they may not be able to connect

directly to the Internet. This can be for a number of reasons, including the

limitation of power on the device, which can restrict the device to using a

low-power local network. The local network enables the devices to

communicate with a local IoT Gateway, which is then able to communicate

with the public network. The IoT Gateway contains the following

components:

 App Logic - provides domain specific or IoT solution specific logic that

runs on the IoT Gateway. For IoT systems that have Actuators which act

on physical entities, a significant capability of the app logic is the

provision of control logic which makes decisions on how the actuators

should operate, given input from sensors and data of other kinds, either

held locally or held centrally.

 Analytics - provides Analytics capability locally rather than in the

provider cloud.

 Agent - allows management of the IoT Gateway itself and can also

enable management of the attached devices by providing a

connection to the provider cloud layer's Device

Management.service via the device management protocol.

 Device Data Store - stores data locally. Devices may generate a large

amount of data in real time it may need to be stored locally rather than

being transmitted to a central location. Data in the device data store

can be used by the application logic and analytics capability in the IoT

Gateway.

Public Network - contains the wide area networks (typically the internet),

peer cloud systems, the edge services.

Peer Cloud - a 3rd party cloud system that provides services to bring data

and capabilities to the IoT platform. Peer clouds for IoT may contribute to

the data in the IoT system and may also provide some of the capabilities

defined in this IoT architecture. For example an IoT for Insurance solution

may use services from partners, such as weather data.

Edge Services - services needed to allow data to flow safely from the

internet into the provider cloud and into the enterprise. Edge services also

support end user applications. Edge services include:

Domain Name System Server - resolves the URL for a particular web

resource to the TCP-IP address of the system or service that can deliver that

resource.

Content Delivery Networks (CDN) - support end user applications by

providing geographically distributed systems of servers deployed to

minimize the response time for serving resources to geographically

distributed users, ensuring that content is highly available and provided to

users with minimum latency. Which servers are engaged will depend on

server proximity to the user, and where the content is stored or cached.

Firewall - controls communication access to or from a system

permitting only traffic meeting a set of policies to proceed and

blocking any traffic that does not meet the policies. Firewalls can be

implemented as separate dedicated hardware, or as a component in

other networking hardware such as a load-balancer or router or as

integral software to an operating system.

Load Balancers - provides distribution of network or application traffic

across many resources (such as computers, processors, storage, or

network links) to maximize throughput, minimize response time,

increase capacity and increase reliability of applications. Load

balancers can balance loads locally and globally. Load balancers should

be highly available without a single point of failure. Load balancers are

sometimes integrated as part of the provider cloud analytical system

components like stream processing, data integration, and repositories.

Provider Cloud - provides core IoT applications and associated services

including storage of device data; analytics; process management for the

IoT system; create visualizations of data. Also hosts components for

device management including a device registry.

A cloud computing environment provides scalability and elasticity to cope

with varying data volume, velocity and related processing requirements.

Experimentation and iteration using different cloud service configurations

is a good way to evolve the IoT system, without upfront capital investment.

IoT Transformation and Connectivity - enables secure connectivity to

and from IoT devices. This component must be able to handle and perhaps

transform high volumes of messages and quickly route them to the right

components in the IoT solution. The Transformation and Connectivity

component includes the following capabilities:

 Secure Connectivity - provides the secured connectivity which

authenticates and authorizes access to the provider cloud.

 Scalable Messaging - provides messaging from and to IoT devices.

Scalability of the messaging component is essential to support high data

volume applications and applications with highly variable data rates,

like weather.

 Scalable Transformation - provides transformation of device IoT data

before it gets to provider cloud layer, to provide a form more suitable for

processing and analysis. This may include decoding messages that are

encrypted, translating a compressed formatted message, and/or

normalizing messages from varying devices.

Application Logic - The core application components, typically

coordinating the handling of IoT device data, the execution of other

services and supporting end user applications. An Event based

programming model with trigger, action and rules is often a good way to

write IoT application logic. Application logic can include workflow.

Application logic may also include control logic, which determines how to

use actuators to affect physical entities, for those IoT systems that have

actuators.

Visualization - enables users to explore and interact with data from the

data repositories, actionable insight applications, or enterprise

applications. Visualization capabilities include End user UI, Admin UI &

dashboard as sub components.

 End User UI - allows users to communicate and interact with Enterprise

applications, analytics results, etc. This also includes internal or

customer facing mobile user interfaces.

 Admin UI - enables administrators to access metrics, operation data, and

various logs.

 Dashboard - allows users to view various reports. Admin UI and

Dashboard are internal facing user interfaces.

Analytics - Analytics is the discovery and communication of meaningful

patterns of information found in IoT data, to describe, to predict, and to

improve business performance.

Process Management - activities of planning, developing, deploying

and monitoring the performance of a business process. For IoT

systems, real-time process management may provide significant

benefits.

Device Data Store - stores data from the IoT devices so that the data can

be integrated with processes and applications that are part of the IoT

System. Devices may generate a large amount of data in real time calling

for the Device Data Store to be elastic and scalable.

API Management - publishes catalogues and updates APIs in a wide

variety of deployment environments. This enables developers and end

users to rapidly assemble solutions through discovery and reuse of existing

data, analytics and services.

Device Management - provides an efficient way to manage and connect

devices securely and reliably to the cloud platform. Device management

contains device provisioning, remote administration, software updating,

remote control of devices, monitoring devices. Device management may

communicate with management agents on devices using management

protocols as well as communicate with management systems for the IoT

solutions.

Device Registry - stores information about devices that the IoT system

may read, communicate with, control, provision or manage. Devices may

need to be registered before they can connect to and or be managed by the

IoT system. IoT deployments may have a large number of devices

therefore scalability of the registry is important.

Device Identity Service - ensures that devices are securely identified

before being granted access to the IoT systems and applications. In the IoT

systems, device identification can help address threats that arise from fake

servers or fake devices.

Transformation and Connectivity - enables secure connections to

enterprise systems and the ability to filter, aggregate, or modify data or its

format as it moves between cloud and IoT systems components and

enterprise systems (typically systems of record). Within the IoT reference

architecture the transformation and connectivity component sits between

the cloud provider and enterprise network. However, in a hybrid cloud

model these lines might become blurred. The Transformation and

Connectivity component includes the following capabilities:

 Enterprise Secure Connectivity - integrates with enterprise data

security systems to authenticate and authorize access to enterprise

systems.
 Transformation - transforms data going to and from enterprise systems.

 Enterprise Data Connectivity - enables provider cloud components to

connect securely to enterprise data. Examples include VPN and

gateway tunnels.

Enterprise Network - host a number of business specific enterprise

applications that deliver critical business solutions along with supporting

elements including enterprise data. Typically, enterprise applications have

sources of data that are extracted and integrated with services provided by the

cloud provider. Analysis is performed in the cloud computing environment,

with output consumed by the enterprise applications.

Enterprise Data - includes metadata about the data as well as systems of

record for enterprise applications. Enterprise data may flow directly to

data integration or the data repositories providing a feedback loop in the

analytical system for IoT. IoT systems may store raw, analyzed, or

processed data in appropriate Enterprise Data elements. Enterprise Data

includes:

Enterprise User Directory - stores user information to support authentication,

authorization, or profile data. The security services and edge services use this

to control access to the enterprise network, enterprise services, or enterprise

specific cloud provider services.

Enterprise Applications - Enterprise applications consume cloud provider data and

analytics to produce results that address business goals and objectives. Enterprise

applications can be updated from enterprise data or from IoT applications or they can

provide input and content for enterprise data and

Security and Privacy - Security and Privacy in IoT deployments must address

both information technology (IT) security as well as operations technology (OT)

security elements. Furthermore, the level of attention to security and the topic

areas to address varies depending upon the application environment, business

pattern, and risk assessment. A risk assessment will take into account multiple

threats and attacks along with an estimate of the potential costs associated with

such attacks. In addition to security considerations, the connecting of IT

systems with physical systems also brings with it the need to consider the

impact to safety that the IoT system may have. IoT systems must be designed,

deployed, and managed such that they can always bring the system to a safe

operating state, even when disconnected from communications with other

systems that are part of the deployment. Identity and Access Management- As

with any computing system, there must be strong identification of all

participating entities – users, systems, applications, and, in the case of IoT,

devices and the IoT gateways through which those devices communicate with

the rest of the system. Device identity and management necessarily involves

multiple entities, starting with chip and device manufacturers, including IoT

platform providers, and also including enterprise users and operators of the

devices. In IoT solutions it is often the case that multiple of these entities will

continue to communicate and address the IoT devices throughout their

operational lifetime.

Data Protection -Data in the device, in flight throughout the public network,

provider cloud, and enterprise network, as well as at rest in a variety of locations

and formats must be protected from inappropriate access and use. Multiple

methods can be utilized, and indeed, in many cases, multiple methods are

applied simultaneously to provide different levels of protection of dataagainst

different types ofthreatsor isolation from different entities supporting the system.

4. AWS IoT

AWS IoT provides secure, bi-directional communication between

Internet-connected devices such as sensors, actuators, embedded micro-

controllers, or smart appliances and the AWS Cloud. This enables you to collect

telemetry data from multiple devices, and store and analyze the data. You can

also create applications that enable your users to control these devices from their

phones or tablets.

AWS IoT consists of the following components:

Device gateway -Enables devices to securely and efficiently communicate

with AWS IoT. Message broker-Provides a secure mechanism for devices and

AWS IoT applications to publish and receive messages from each other. You

can use either the MQTT protocol directly or MQTT over WebSocket to

publish and subscribe. You can use the HTTP REST interface to publish.

Rules engine-Provides message processing and integration with other AWS

services. You can use an SQL-based language to select data from message

payloads, and then process and send the data to other services, such as Amazon

S3, Amazon DynamoDB, and AWS Lambda. You can also use the message

broker to republish messages to other subscribers.

Security and Identity service-Provides shared responsibility for security in the

AWS Cloud. Your devices must keep their credentials safe in order to securely

send data to the message broker. The message broker and rules engine use AWS

security features to send data securely to devices or other AWS services.

Registry-Organizes the resources associated with each device in the AWS

Cloud. You register your devices and associate up to three custom attributes

with each one. You can also associate certificates and MQTT client IDs with

each device to improve your ability to manage and troubleshoot them.

Group registry-Groups allow you to manage several devices at once by

categorizing them into groups. Groups can also contain groups—you can build a

hierarchy of groups. Any action you perform on a parent group will apply to its

child groups, and to all the devices in it and in all of its child groups as well.

Permissions given to a group will apply to all devices in the group and in all of

its child groups.

Device shadow-A JSON document used to store and retrieve current state

information for a device.

Device Shadow service-Provides persistent representations of your devices in

the AWS Cloud. You can publish updated state information to a device's

shadow, and your device can synchronize its state when it connects. Your

devices can also publish their current state to a shadow for use by applications

or other devices.

Device Provisioning service- Allows you to provision devices using a template

that describes the resources required for your device: a thing, a certificate, and

one or more policies. A thing is an entry in the registry that contains attributes

that describe a device. Devices use certificates to authenticate with AWS IoT.

Policies determine which operations a device can perform in AWS IoT.

Custom Authentication service- You can define custom authorizers that allow

you to manage your own authentication and authorization strategy using a

custom authentication service and a Lambda function. Custom authorizers allow

AWS IoT to authenticate your devices and authorize operations using bearer

token authentication and authorization strategies. Custom authorizers can

implement various authentication strategies (for example: JWT verification,

OAuth provider call out, and so on) and must return policy documents which

are used by the device gateway to authorize MQTT operations.

Jobs Service- Allows you to define a set of remote operations that are sent to

and executed on one or more devices connected to AWS IoT. For example, you

can define a job that instructs a set of devices to download and install

application or firmware updates, reboot, rotate certificates, or perform remote

troubleshooting operations. To create a job, you specify a description of the

remote operations to be performed and a list of targets that should perform

them. The targets can be individual devices, groups or both.

 Accessing AWS IoT

AWS IoT provides the following interfaces to create and interact with your devices:

 AWS Command Line Interface (AWS CLI)—Run commands for AWS

IoT on Windows, macOS, and Linux. These commands allow you to

create and manage things, certificates, rules, and policies. To get started,

see the AWS Command Line Interface User Guide.

 AWS IoT API—Build your IoT applications using HTTP or HTTPS

requests. These API actions allow you to programmatically create and

manage things, certificates, rules, and policies.

 AWS SDKs—Build your IoT applications using language-specific APIs.

These SDKs wrap the HTTP/HTTPS API and allow you to program in

any of the supported languages.

 AWS IoT Device SDKs—Build applications that run on devices that

send messages to and receive messages from AWS IoT.

 Related Services

AWS IoT integrates directly with the following AWS services:

 Amazon Simple Storage Service—Provides scalable storage in the AWS Cloud.

Amazon DynamoDB—Provides managed NoSQL databases.

 Amazon Kinesis—Enables real-time processing of streaming data at a

massive scale. AWS Lambda—Runs your code on virtual servers from

Amazon EC2 in response to events.

 Amazon Simple Notification Service—Sends or receives notifications.

 Amazon Simple Queue Service—Stores data in a queue to be retrieved

by applications.

 Working of AWS IoT

 AWS IoT enables Internet-connected devices to connect to the AWS

Cloud and lets applications in the cloud interact with Internet-connected

devices. Common IoT applications either collect and process telemetry

http://docs.aws.amazon.com/cli/latest/userguide/
http://docs.aws.amazon.com/cli/latest/userguide/

from devices or enable users to control a device remotely.

 Devices report their state by publishing messages, in JSON format, on

MQTT topics. Each MQTT topic has a hierarchical name that identifies

the device whose state is being updated. When a message is published on

an MQTT topic, the message is sent to the AWS IoT MQTT message

broker, which is responsible for sending all messages published on an

MQTT topic to all clients subscribed to that topic.

 Communication between a device and AWS IoT is protected through the

use of X.509 certificates. AWS IoT can generate a certificate for you or

you can use your own. In either case, the certificate must be registered

and activated with AWS IoT, and then copied onto your device. When

your device communicates with AWS IoT, it presents the certificate to

AWS IoT as a credential.

 We recommend that all devices that connect to AWS IoT have an entry in

the registry. The registry stores information about a device and the

certificates that are used by the device to secure communication with

AWS IoT.

 You can create rules that define one or more actions to perform based on

the data in a message. For example, you can insert, update, or query a

DynamoDB table or invoke a Lambda function. Rules use expressions to

filter messages. When a rule matches a message, the rules engine invokes

the action using the selected properties. Rules also contain an IAM role

that grants AWS IoT permission to the AWS resources used to perform

the action.

Figure 4: AWS IOT Architecture

 Each device has a shadow that stores and retrieves state information.

Each item in the state information has two entries: the state last reported

by the device and the desired state requested by an application. An

application can request the current state information for a device. The

shadow responds to the request by providing a JSON document with the

state information (both reported and desired), metadata, and a version

number. An application can control a device by requesting a change in its

state. The shadow accepts the state change request, updates its state

information, and sends a message to indicate the state information has

been updated. The device receives the message, changes its state, and

then reports its new state.

5. Managing Cloud Account Credentials

If you do not have an AWS account, create one.

 To create an AWS account:

1. Open the AWS home page and choose Create an AWS Account.

2. Follow the online instructions. Part of the sign-up procedure involves

receiving a phone call and entering a PIN using your phone's keypad.

3. Sign in to the AWS Management Console and open the AWS IoT console.

4. On the Welcome page, choose Get started.

https://aws.amazon.com/
https://console.aws.amazon.com/iot/home

Figure 5: Registration

 Register a Device in the Registry

Devices connected to AWS IoT are represented by things in the registry.

The registry allows you to keep a record of all of the devices that are connected

to your AWS IoT account. The fastest way to start using your AWS IoT Button

is to download the mobile app for iOS or Android. The mobile app creates the

required AWS IoT resources for you, and adds an event source to your button

that uses a Lambda blueprint to invoke a new AWS Lambda function of your

choice. If you are unable to use the mobile apps, follow these instructions.

1. On the Welcome to the AWS IoT Console page, in the left navigation

pane, choose Manage to expand the choices, and then choose Things.

2. On the page that says You don't have any things yet, choose Register a thing.

Figure 6: Register a Thing

3. On the Creating AWS IoT things page, choose Create a single thing.

4. On the Create a thing page, in the Name field, type a name for your

device, such as MyIoTButton. Choose Next to add your device to the

registry.

 Create and Activate a Device Certificate

Communication between your device and AWS IoT is protected through the

use of

X.509 certificates. AWS IoT can generate a certificate for you or you can use your

own

X.509 certificate. AWS IoT generates the X.509 certificate for you.

Certificates must be activated prior to use.

1. Choose Create certificate.

Figure 7: Certificate Creation

2. On the Certificate created! page, choose Download for the certificate,

private key, and the root CA for AWS IoT (the public key need not be

downloaded). Save each of them to your computer, and then choose

Activate to continue.Be aware that the downloaded filenames may be

different than those listed on the Certificate created! page. For

example:

 2a540e2346-certificate.pem.crt.txt

 2a540e2346-private.pem.key

 2a540e2346-public.pem.key

Note

Although it is unlikely, root CA certificates are subject to expiration

and/or revocation. If this should occur, you must copy new a root

CA certificate onto your device.

3. Choose the back arrow until you have returned to the main AWS

IoT console screen.

 Create an AWS IoT Policy

X.509 certificates are used to authenticate your device with AWS IoT. AWS

IoT policies are used to authorize your device to perform AWS IoT operations,

such as subscribing or publishing to MQTT topics. Your device will presents its

certificate when sending messages to AWS IoT. To allow your device to

perform AWS IoT operations, you must create an AWS IoT policy and attach it

to your device certificate.

1. In the left navigation pane, choose Secure, and then Policies. On the You

don't have a policy yet page, choose Create a policy.

2. On the Create a policy page, in the Name field, type a name for the

policy (for example,MyIoTButtonPolicy). In the Action field,

type iot:Connect. In the Resource ARN field, type *. Select the

Allow checkbox. This allows all clients to connect to AWS IoT.

You can restrict which clients (devices) are able to connect by specifying a

client ARN as the resource. The client ARNs follow this format:

arn:aws:iot:your-region:your-aws-account:client/<my-client-id>

Finally, select the Allow check box. This allows your device to publish

messages to the specified topic.After you have entered the information for your

policy, choose Create.

 Attach an AWS IoT Policy to a Device Certificate

Now that you have created a policy, you must attach it to your device

certificate. Attaching an AWS IoT policy to a certificate gives the device the

permissions specified in the policy.

1. In the left navigation pane, choose Secure, and then Certificates.

Figure 8: Attach Certificate

2. In the box for the certificate you created, choose ... to open a drop-down

menu, and then choose Attach policy.

3. In the Attach policies to certificate(s) dialog box, select the check box

next to the policy you created in the previous step, and then choose

Attach.

 Attach a Certificate to a Thing

A device must have a certificate, private key and root CA certificate to

authenticate with AWS IoT. We recommend that you also attach the device

certificate to the thing that represents your device in AWS IoT. This allows you

to create AWS IoT policies that grant permissions based on certificates attached

to your things. For more information. see Thing Policy Variables

https://docs.aws.amazon.com/iot/latest/developerguide/thing-policy-variables.html
https://docs.aws.amazon.com/iot/latest/developerguide/thing-policy-variables.html

1. In the box for the certificate you created, choose ... to open a drop-down

menu, and then choose Attach thing.

2. In the Attach things to certificate(s) dialog box, select the check box

next to the thing you registered, and then choose Attach.

3. To verify the thing is attached, select the box representing the certificate.

4. On the Details page for the certificate, in the left navigation pane, choose

Things.

5. To verify the policy is attached, on the Details page for the certificate, in

the left navigation pane, choose Policies.

 Configure Your Device and Button

Configuring your device allows it to connect to your Wi-Fi network. Your

device must be connected to your Wi-Fi network to install required files and

send messages to AWS IoT. All devices must install a device certificate, private

key, and root CA certificate in order to communicate with AWS IoT. The easiest

way to configure your AWS IoT button is to use the AWS IoT button smart

phone app. You can download it from the Apple App Store or the Google Play

Store. If you are unable to use the smart phone app, follow these directions to

configure your button.

 Turn on your device

1. Remove the AWS IoT button from its packaging, and then press and hold

the button until a blue blinking light appears. (This should take no longer

than 15 seconds.)

2. The button acts as a Wi-Fi access point, so when your computer searches

for Wi-Fi networks, it will find one called Button ConfigureMe - XXX

where XXX is a three- character string generated by the button. Use your

computer to connect to the button's Wi-Fi access point.

https://itunes.apple.com/us/app/aws-iot-button/id1178216626
https://play.google.com/store/apps/details?id=com.amazonaws.iotbutton
https://play.google.com/store/apps/details?id=com.amazonaws.iotbutton

 Configure a Different Device

Consult your device's documentation to connect to it and copy your

device certificate, private key, and root CA certificate onto your device. You

can use the AWS IoT MQTT client to better understand the MQTT messages

sent by a device. Devices publish MQTT messages on topics. You can use the

AWS IoT MQTT client to subscribe to these topics to see these messages.

To view MQTT messages:

1. In the AWS IoT console, in the left navigation pane, choose Test.

Figure 9: MQTT Messages

2. Subscribe to the topic on which your thing publishes. In the case of the

AWS IoT button, you can subscribe to iotbutton/+ (note that + is the

wildcard character). In Subscribe to a topic, in the Subscription topic

field, type iotbutton/+, and then choose Subscribe to topic. Choosing

Subscribe to topic above, results in the topic iotbutton/+ appearing

in theSubscriptions column.

3. Press your AWS IoT button, and then view the resulting message in the

AWS IoT MQTT client. If you do not have a button, you will simulate a

https://console.aws.amazon.com/iot/home

{

"serialNumber": "ABCDEFG12345",

"clickType": "SINGLE",

"batteryVoltage": "2000 mV"

}

button press in the next step.

4. To use the AWS IoT console to publish a message:

On the MQTT client page, in the Publish section, in the Specify a topic

and a message to publish… field, type iotbutton/ABCDEFG12345. In

the message payload section, type the following JSON:

Choose Publish to topic. You should see the message in the AWS IoT

MQTT client (choose iotbutton/+ in the Subscription column to see the

message).

 Configure and Test Rules

The AWS IoT rules engine listens for incoming MQTT messages that

match a rule. When a matching message is received, the rule takes some action

with the data in the MQTT message (for example, writing data to an Amazon S3

bucket, invoking a Lambda function, or sending a message to an Amazon SNS

topic). In this step, you will create and configure a rule to send the data received

from a device to an Amazon SNS topic. Specifically, you will:

 Create an Amazon SNS topic.

 Subscribe to the Amazon SNS topic using a cell phone number.

 Create a rule that will send a message to the Amazon SNS topic when a

message is received from your device.

 Test the rule using your AWS IoT button or an MQTT client.

6. Microsoft Azure

Millions of developers know how to create applications using the

Windows Server programming model. Yet applications written for Windows

Azure, don’t exactly use this familiar model. While most of a Windows

developer’s skills still apply, Windows Azure provides its own programming

model. Many vendors’ cloud platforms do just this, providing virtual

machines (VMs) that act like on-premises VMs. This approach, commonly

called Infrastructure as a Service (IaaS), certainly has value, and it’s the

right choice for some applications.

Instead of IaaS, Windows Azure offers a higher-level abstraction that’s

typically categorized as Platform as a Service (PaaS). While it’s similar in

many ways to the on- premises Windows world, this abstraction has its own

programming model meant to help developers build better applications.

Applications built using the Windows Azure programming model can be

easier to administer, more available, and more scalable (up or down) than

those built on traditional Windows servers.

Figure 10: Microsoft Azure Architecture

 Administration

In PaaS, the platform itself handles most of the administrative tasks. With

Windows Azure, this means that the platform automatically takes care of

things such as applying Windows patches and installing new versions of

system software. The goal is to reduce the effort and the cost of administering

the application environment.

 Availability

Whether planned or not, today’s applications usually have down time for

patches, application upgrades, hardware failures, and other reasons. With

cloud platforms there is no need for any downtime. The Windows Azure

programming model is designed to let applications be continuously available,

even in the face of software upgrades and hardware failures.

 Scalability

The kinds of applications that people want to host in the cloud are often

meant to handle lots of users. Yet the traditional Windows Server

programming model wasn’t explicitly designed to support Internet-scale

applications. The Windows Azure programming model, however, was

intended from the start to do this. Created for the cloud era, it’s designed to let

developers build the scalable applications that massive cloud data centres can

support. Just as important, it also allows applications to scale down when

necessary, letting them use just the resources they need and pay for only the

computing resources used.

Windows Azure has three core components: Compute, Storage and Fabric. As

the names suggest, Compute provides a computation environment with Web

Role and Worker Role while Storage focuses on providing scalable storage

(Blobs, Tables, Queue and Drives) for large-scale needs.

Fabric Controller

Windows Azure is designed to run in data centres containing lots of

computers. Accordingly, every Windows Azure application runs on multiple

machines simultaneously. All the computers in a particular Windows Azure

data centre are managed by an application called the fabric controller. The

fabric controller is itself a distributed application that runs across multiple

computers. When a developer gives Windows Azure an application to run, he

provides the code for the application’s roles together with the service

definition and service configuration files for this application. Among other

things, this information tells the fabric controller how many instances of each

role it should create. The fabric controller chooses a physical machine for

each instance, then creates a VM on that machine and starts the instance

running. The role instances for a single application are spread across different

machines within this data centre. Once it’s created these instances, the fabric

controller continues to monitor them. If an instance fails for any reason—

hardware or software—the fabric controller will start a new instance for that

role. While failures might cause an application’s instance count to temporarily

drop below what the developer requested, the fabric controller will always

start new instances as needed to maintain the target number for each of the

application’s roles.

Windows Azure programming model:

 A Windows Azure application is built from one or more roles.

 A Windows Azure application runs multiple instances of each role.

 A Windows Azure application behaves correctly when any role instance fails.

 Azure storage

Windows Azure offers blobs, tables, queues etc., as data storage options.

They are a new type of data storage, they are fast and they are non-relational.

Storage must be external to role instances. This is to ensure if a role instance

fails, any data it contains is not lost. So Windows Azure stores data

persistently outside role instances. This way another role instance can now

access data that otherwise would have been lost if that data had been stored

locally on a failed instance. Storage is replicated. Just as a Windows Azure

application runs multiple role instances to allow for failures, Windows Azure

storage provides multiple copies of data. Without this, a single failure would

make data unavailable, something that’s not acceptable for highly available

applications.

Storage must be able to handle very large amounts of data. Traditional

relational systems aren’t necessarily the best choice for very large data sets.

Since Windows Azure is designed in part for massively scalable applications,

it must provide storage mechanisms for handling data at this scale. We can

use blobs for storing binary data and tables for storing large structured data

sets.

 Windows Azure Application Deployment

When we deploy the application, you can select the subregion (which at

the moment determines the data centre) where you want to host the

application. You can also define affinity groups that you can use to group

inter-dependent Azure applications and storage accounts together in order to

improve performance and reduce costs. Performance improves because

Windows Azure co-locates members of the affinity group in the same data

centre. This reduces costs because data transfers within the same data centre

do not incur bandwidth charges. Affinity groups offer a small advantage over

simply selecting the same subregion for your hosted services, because

Windows Azure makes a ―best effort‖ to optimise the location of those

services.

 Identity Management

All applications and services must manage user identity. This is

particularly important in cloud-based scenarios that can potentially serve a

very large number of customers and each of these customers may have their

own identity framework. The ideal solution is a solution that takes advantage

of the customers existing on-premises or federated directory service to enable

single sign on (SSO) across their local and all external hosted services. This

reduces the development effort of building individual and separate identity

management systems. SSO allows users to access the application or service

using their existing credentials.

Windows Azure - One or more instances of web roles and worker roles: Every

Windows Azure application consists of one or more roles. When it executes,

an application that conforms to the Windows Azure programming model must

run at least two copies—two distinct instances—of each role it contains. Each

instance runs as its own VM. Every instance of a particular role runs the exact

same code. In fact, with most Windows Azure applications, each instance is

just like all of the other instances of that role—they’re interchangeable. For

example, Windows Azure automatically load balances HTTP requests

across an application’s Web role instances.

This load balancing doesn’t support sticky sessions, so there’s no way to

direct all of a client’s requests to the same Web role instance. Storing client-

specific state, such as a shopping cart, in a particular Web role instance won’t

work, because Windows Azure provides no way to guarantee that all of a

client’s requests will be handled by that instance. Instead, this kind of state

must be stored externally, for example in SQL Azure. An application that

follows the Windows Azure programming model must be built using roles,

and it must run two or more instances of each of those roles. A Windows

Azure application behaves correctly when any role instance fails. If all

instances of a particular role fail, an application will stop behaving as it

should—this can’t be helped. The requirement to work correctly during partial

failures is fundamental to the Win

