
1

SCS1201 Advanced Data Structures

Unit V

Table Data Structures

Table is a data structure which plays a significant role in information retrieval. A set of n distinct

records with keys K1, K2, …., Kn are stored in a file. If we want to find a record with a given key

value, K, simply access the index given by its key k.

The table lookup has a running time of O(1). The searching time required is directly proportional to the

number of number of records in the file. This searching time can be reduced, even can be made

independent of the number of records, if we use a table called Access Table.

Some of possible kinds of tables are given below:

• Rectangular table

• Jagged table

• Inverted table.

• Hash tables

Rectangular Tables

Tables are very often in rectangular form with rows and columns. Most programming languages

accommodate rectangular tables as 2-D arrays. Rectangular tables are also known as matrices. Almost

all programming languages provide the implementation procedures for these tables as they are used in

many applications.

Fig. Rectangular tables in memory

Logically, a matrix appears as two-dimensional, but physically it is stored in a linear fashion. In order

to map from the logical view to physical structure, an indexing formula is used.

The compiler must be able to convert the index (i, j) of a rectangular table to the correct position in the

sequential array in memory.

For an m x n array (m rows, n columns):

2

 Each row is indexed from 0 to m-1

 Each column is indexed from 0 to n – 1

Item at (i, j) is at sequential position i * n + j

Row major order:

Assume that the base address is the first location of the memory, so the

Address aij =storing all the elements in the first(i-1)
th

 rows +

 the number of elements in the i
th

 row up to the j
th

 coloumn

= (i-1)*n+j

Column major order:

Address of aij = storing all the elements in the first(j-1)th column +

 The number of elements in the j
th

 column up to the i
th

rows.

 =(j-1)*m+i

Jagged table

Jagged tables are nothing but the special kind of sparse matrices such as triangular matrices, band

matrices, etc… In the jagged tables, we put a restriction that in the row (or in a column) if elements are

present then they are contiguous. Thus in fig (a) - (e), all are jagged tables except the table in fig (f).

Fig. Jagged table and sparse matrices

3

Symmetric sparse matrices stored as one dimensional arrays can be retrieved using the indexing

formula

This formula involves multiplication and division which are infact inefficient from the computational

point of view. So, the alternative technique is by setting up an access table whose entries correspond to

the row indices of the jagged table, such that the ith entry in the access table is

The access table is calculated only at the time of initiation and a=can be stored in memory, it can

referred each time the access of element in the jagged table occur. We can also calculate by pure

addition rather than multiplication or division such as 0,1, (1+2), (1+2)+3,…

Fig. Access array for the jagged tables

For e.g., if we want to access a54 (element in 5th row and 4th column) then at 5th location of the access

table, we see the entry is 10; hence desire element is at 14 (=10+4) location of the array which contains

the elements. It is assumed that the 1st element of the table is located at the location of the array.

4

 Above mentioned accessing technique has another advantage over the indexing formula. We can find

the indexing formula even if the jagged tables are asymmetric with respect to the arrangement of

elements in it. For e.g., in fig (d), it is difficult find index formula. In this case, we can easily maintain

its storage in an array and can obtain faster access of elements from it. In the fig access of elements in

the asymmetric matrix, its use is same as that of the symmetric sparse matrices. An entry in the ith

location of the access table can be obtained by adding the number of elements in (i-1)th row of the

jagged table and (i-1)th entry of the access table, assuming that entry 0 as the first entry in the access

table, and as before, the starting location of the array storing the elements is 1.

Inverted tables

The concept of inverted tables can be explain with an example. Suppose, a telephone company

maintains records of all the subscribers of a telephone exchange as shown in the fig given below.

These records can be used to serve several purposes. One of them requires the alphabetical ordering of

5

name of the subscriber. Second, it requires the lexicographical ordering of the address of subscriber.

Third, it also requires the ascending order of the telephone numbers in order to estimate the cabling

charge from the telephone exchange to the location of the telephone connection etc.... To serve these

purposes, the telephone company should maintain 3 sets of records: one in alphabetical order of the

NAME, second, the lexicographical ordering of the ADDRESS and third, the ascending order of the

phone numbers.

This way of maintaining records leads to the following drawbacks,

a. Requirement of extra storage: three times the actual memory

b. Difficulty in modification of records: if a subscriber changes his address, then we have to

modify this in three storages to maintain consistency in information.

Using the concept of inverted tables, we can avoid the multiple set of records, and we can still retrieve

the records by any of the three keys almost as quickly as if the records are fully sorted by that key.

Therefore, we should maintain an3 inverted table. In this case, this table comprise of three columns:

NAME, ADDRESS, and PHONE as shown in below figure. Each column contains the index numbers

of records in the order based on the sorting of the corresponding key. This inverted table, therefore, can

be consulted to retrieve information

Symbol Tables

6

Symbol table is an important data structure created and maintained by compilers in order to store

information about the occurrence of various entities such as variable names, function names, objects,

classes, interfaces, etc. Symbol table is used by both the analysis and the synthesis parts of a compiler.

A symbol table is a major data structure used in a compiler:

o Associates attributes with identifiers used in a program

o For instance, a type attribute is usually associated with each identifier

o A symbol table is a necessary component

� Definition (declaration) of identifiers appears once in a program

� Use of identifiers may appear in many places of the program text

o Identifiers and attributes are entered by the analysis phases

� When processing a definition (declaration) of an identifier

� In simple languages with only global variables and implicit declarations:

� The scanner can enter an identifier into a symbol table if it is not already there

� In block-structured languages with scopes and explicit declarations:
� The parser and/or semantic analyzer enter identifiers and corresponding attributes

o Symbol table information is used by the analysis and synthesis phases

� To verify that used identifiers have been defined (declared)

� To verify that expressions and assignments are semantically correct – type checking

� To generate intermediate or target code

Symbol Table Interface

� The basic operations defined on a symbol table include:

o allocate – to allocate a new empty symbol table

o free – to remove all entries and free the storage of a symbol table

o insert – to insert a name in a symbol table and return a pointer to its entry

o lookup – to search for a name and return a pointer to its entry

o set_attribute – to associate an attribute with a given entry

o get_attribute – to get an attribute associated with a given entry

� Other operations can be added depending on requirement

o For example, a delete operation removes a name previously inserted

� Some identifiers become invisible (out of scope) after exiting a block

� This interface provides an abstract view of a symbol table

� Supports the simultaneous existence of multiple tables

� Implementation can vary without modifying the interface

A symbol table is simply a table which can be either linear or a hash table. It maintains an entry for

each name in the following format:

<symbol name, type, attribute>

7

For example, if a symbol table has to store information about the following variable declaration:

static int interest;

then it should store the entry such as:

<interest, int, static>

The attribute clause contains the entries related to the name.

Implementation

If a compiler is to handle a small amount of data, then the symbol table can be implemented as an

unordered list, which is easy to code, but it is only suitable for small tables only. A symbol table can

be implemented in one of the following ways:

• Linear (sorted or unsorted) list

• Binary Search Tree

• Hash table

Among all, symbol tables are mostly implemented as hash tables, where the source code symbol itself

is treated as a key for the hash function and the return value is the information about the symbol.

• Unordered List

o Simplest to implement

o Implemented as an array or a linked list

o Linked list can grow dynamically – alleviates problem of a fixed size array

o Insertion is fast O(1), but lookup is slow for large tables – O(n) on average

• Ordered List
o If an array is sorted, it can be searched using binary search – O(log2 n)
o Insertion into a sorted array is expensive – O(n) on average

o Useful when set of names is known in advance – table of reserved words

• Binary Search Tree

o Can grow dynamically
o Insertion and lookup are O(log2 n) on average

Operations

• First consideration is how to insert and lookup names Variety of

implementation techniques

• A symbol table, either linear or hash, should provide the following operations.

insert()

This operation is more frequently used by analysis phase, i.e., the first half of the compiler where

tokens are identified and names are stored in the table. This operation is used to add information in the

8

symbol table about unique names occurring in the source code. The format or structure in which the

names are stored depends upon the compiler in hand.

An attribute for a symbol in the source code is the information associated with that symbol. This

information contains the value, state, scope, and type about the symbol. The insert() function takes the

symbol and its attributes as arguments and stores the information in the symbol table.

For example:

int a;

should be processed by the compiler as:

insert(a, int);

lookup()

lookup() operation is used to search a name in the symbol table to determine:

• if the symbol exists in the table.

• if it is declared before it is being used.

• if the name is used in the scope.

• if the symbol is initialized.

• if the symbol declared multiple times.

The format of lookup() function varies according to the programming language. The basic format

should match the following:

lookup(symbol)

This method returns 0 (zero) if the symbol does not exist in the symbol table. If the symbol exists in

the symbol table, it returns its attributes stored in the table.

Scope Management

A compiler maintains two types of symbol tables: a global symbol table which can be accessed by all

the procedures and scope symbol tables that are created for each scope in the program.

To determine the scope of a name, symbol tables are arranged in hierarchical structure as shown in the

example below:

int value=10;

void pro_one()

 {

 int one_1;

9

 int one_2;

 { \

 int one_3; |_ inner scope 1

 int one_4; |

 } /

 int one_5;

 { \

 int one_6; |_ inner scope 2

 int one_7; |

 } /

 }

 void pro_two()

 {

 int two_1;

 int two_2;

 { \

 int two_3; |_ inner scope 3

 int two_4; |

 } /

 int two_5;

 }

. . .

The above program can be represented in a hierarchical structure of symbol tables:

10

The global symbol table contains names for one global variable (int value) and two procedure names,

which should be available to all the child nodes shown above. The names mentioned in the pro_one

symbol table (and all its child tables) are not available for pro_two symbols and its child tables.

This symbol table data structure hierarchy is stored in the semantic analyzer and whenever a name

needs to be searched in a symbol table, it is searched using the following algorithm:

• first a symbol will be searched in the current scope, i.e. current symbol table.

• if a name is found, then search is completed, else it will be searched in the parent symbol table

until,

• either the name is found or global symbol table has been searched for the name.

Hash Table

Hash Table is a data structure which store data in associative manner. In hash table, data is stored in

array format where each data value has its own unique index value. Access of data becomes very fast

if we know the index of desired data.

Hash table: The memory area where the keys are stored is called hash table.

Properties of Hash table:

• Hash table is partitioned into b buckets, HT(0),..HT(b-1).

• Each bucket is capable of holding ‘s’ records.

• A bucket is said to consist of s slots, each slot being large enough to hold 1 record.

• Usually s=1 and each bucket can hold exactly 1 record.

11

It becomes a data structure in which insertion and search operations are very fast irrespective of size

of data. Hash Table uses array as a storage medium and uses hash technique to generate index where

an element is to be inserted or to be located from.

HASHING TECHNIQUES

Hashing Technique: The hashing technique is the method in which the address or location of a key

‘k’ is obtained by computing some arithmetic function ‘f’ of k. f(k) gives the address of k in the table.

The address will be referred to as hash address or home address.

Hashing function f(k): The hashing function used to perform an identifier transformation on k. f(k)

maps the set of possible identifiers onto the integer 0 through b-1.

Overflow: An overflow is said to occur when a new identifier k is mapped or hashed by f(k) into a full

bucket.

Collision: A collision occurs when two non-identical identifiers are hashed into the same bucket.

When bucket size s=1, collisions and overflow occur simultaneously. Choose f which is easy to

compute and results in very few collisions.

Hashing is a technique to convert a range of key values into a range of indexes of an array. We're

going to use modulo operator to get a range of key values. Consider an example of hashtable of size

20, and following items are to be stored. Item are in (key, value) format.

• (1,20)

• (2,70)

• (42,80)

• (4,25)

• (12,44)

• (14,32)

• (17,11)

• (13,78)

12

• (37,98)

S.n. Key Hash Array Index

1 1 1 % 20 = 1 1

2 2 2 % 20 = 2 2

3 42 42 % 20 = 2 2

4 4 4 % 20 = 4 4

5 12 12 % 20 = 12 12

6 14 14 % 20 = 14 14

7 17 17 % 20 = 17 17

8 13 13 % 20 = 13 13

9 37 37 % 20 = 17 17

Factors affecting Hash Table Design:

• Hash function

• Table size-usually fixed at the start

• Collision handling scheme

Hashing functions

A hash function is one which maps an element’s key into a valid hash table index h(key) => hash table

index.

Hash Function Properties:

• A hash function maps key to integer

 Constraint: Integer should be between [0, TableSize-1]

• A hash function can result in a many-to-one mappingν (causing collision)

 Collision occurs when hash function maps two or more keys to same array index.

13

• A “good” hash function should have the properties:

1. Reduced chance of collision

 Different keys should ideally map to different indices

 Distribute keys uniformly over table

 2. Should be fast to compute

Different types:

(a) Mid square method.

The key k is squared then the required hash value is obtained by deleting some digits from both

ends of k
2
.

f (k) = specific digits(k
2
)

For example, let us the compute the hash address for the following key value: 334, 567, 239.

(i) f(334) = 3
rd

 , 4
th

 digits (111556) = 11.

(ii) f(567) = 3
rd

 , 4
th

 digits (321489) = 21.

(iii) f(239) = 3
rd

 , 4
th

 digits (57121) = 57

(b) Division method

In the division method the hash address is the remainder after key k is divided by m, where m is

the number of buckets.

f(k) = k mod m.

Let m = 10.

f(334) = 334 mod 10 = 4

f(567) = 567 mod 10 = 7

(c) Folding method

This method involves chopping the key k into two parts and adding them to get the hash

address.

 f(334) = 03 + 34 =37

 f(567) = 05 + 67 = 72

Collision resolution

Hash collisions are practically unavoidable when hashing a random subset of a large set of possible

keys. For example, if 2,450 keys are hashed into a million buckets, even with a perfectly uniform

random distribution, there is approximately a 95% chance of at least two of the keys being hashed to

the same slot.

Therefore, almost all hash table implementations have some collision resolution strategy to handle such

events. Some common strategies are described below. All these methods require that the keys (or

pointers to them) be stored in the table, together with the associated values.

14

Techniques to Deal with Collisions:

Chaining

Open addressing

Double hashing, etc.

Chaining

 In chaining, the buckets are implemented using linked lists. If there is a collision, then a new node is

created and added at the end of the bucket. Hence all records in T with the same hash address h may be

linked together to form a linked list. It is also known as open hashing.

In chaining, the entries are inserted as nodes in a linked list. The hash table itself is an array of head

pointers.

Separate chaining

In the method known as separate chaining, each bucket is independent, and has some sort of list of

entries with the same index. The time for hash table operations is the time to find the bucket (which is

constant) plus the time for the list operation.

In a good hash table, each bucket has zero or one entries, and sometimes two or three, but rarely more

than that. Therefore, structures that are efficient in time and space for these cases are preferred.

Structures that are efficient for a fairly large number of entries per bucket are not needed or desirable.

If these cases happen often, the hashing function needs to be fixed.

Separate chaining with linked lists

Chained hash tables with linked lists are popular because they require only basic data structures with

simple algorithms, and can use simple hash functions that are unsuitable for other methods.

The cost of a table operation is that of scanning the entries of the selected bucket for the desired key. If

the distribution of keys is sufficiently uniform, the average cost of a lookup depends only on the

average number of keys per bucket—that is, it is roughly proportional to the load factor.

Fig. Hash collision resolved by separate chaining

15

For this reason, chained hash tables remain effective even when the number of table entries n is much

higher than the number of slots. For example, a chained hash table with 1000 slots and 10,000 stored

keys (load factor 10) is five to ten times slower than a 10,000-slot table (load factor 1); but still 1000

times faster than a plain sequential list.

For separate-chaining, the worst-case scenario is when all entries are inserted into the same bucket, in

which case the hash table is ineffective and the cost is that of searching the bucket data structure. If the

latter is a linear list, the lookup procedure may have to scan all its entries, so the worst-case cost is

proportional to the number n of entries in the table.

The bucket chains are often searched sequentially using the order the entries were added to the bucket.

If the load factor is large and some keys are more likely to come up than others, then rearranging the

chain with a move-to-front heuristic may be effective. More sophisticated data structures, such as

balanced search trees, are worth considering only if the load factor is large (about 10 or more), or if the

hash distribution is likely to be very non-uniform, or if one must guarantee good performance even in a

worst-case scenario. However, using a larger table and/or a better hash function may be even more

effective in those cases.

Chained hash tables also inherit the disadvantages of linked lists. When storing small keys and values,

the space overhead of the next pointer in each entry record can be significant. An additional

disadvantage is that traversing a linked list has poor cache performance, making the processor cache

ineffective.

The advantages of using chaining are

• Insertion can be carried out at the head of the list at the index.

• The array size is not a limiting factor on the size of the table.

The prime disadvantage is the memory overhead incurred if the table size is small.

Potential disadvantages of Chaining

Linked lists could get long

� Especially when N approaches M

� Longer linked lists could negatively impact performance

More memory because of pointers

Absolute worst-case (even if N << M):

� All N elements in one linked list!

� Typically the result of a bad hash function

Open addressing

In open hashing, all entry records are stored in the bucket array itself. When a new entry has to be

inserted, the buckets are examined, starting with the hashed-to slot and proceeding in some probe

sequence, until an unoccupied slot is found. When searching for an entry, the buckets are scanned in

the same sequence, until either the target record is found, or an unused array slot is found, which

indicates that there is no such key in the table. The name "open addressing" refers to the fact that the

location ("address") of the item is not determined by its hash value. This method is also called closed

hashing.

Wellknown probe sequences include:

16

• Linear probing, in which the interval between probes is fixed (usually 1)

• Quadratic probing, in which the interval between probes is increased by adding the successive

outputs of a quadratic polynomial to the starting value given by the original hash computation

• Double hashing, in which the interval between probes is computed by a second hash function

Collision Resolution by Open Addressing

 When a collision occurs, look elsewhere in the table for an empty slot

� Advantages over chaining

� No need for list structures

� No need to allocate/deallocate memory during insertion/deletion (slow)

� Disadvantages

� Slower insertion – May need several attempts to find an empty slot

� Table needs to be bigger (than chaining-based table) to achieve average-case constant-time

performance, Load factor λ ≈ 0.5

Linear Probing

In linear probing, if there is a collision then we try to insert the new key value in the next available free

space.

As we can see, it may happen that the hashing technique used to create already used index of the

array. In such case, we can search the next empty location in the array by looking into the next cell

until we found an empty cell. This technique is called linear probing.

S.n. Key Hash Array Index After Linear Probing, Array Index

1 1 1 % 20 = 1 1 1

2 2 2 % 20 = 2 2 2

3 42 42 % 20 = 2 2 3

4 4 4 % 20 = 4 4 4

5 12 12 % 20 = 12 12 12

6 14 14 % 20 = 14 14 14

7 17 17 % 20 = 17 17 17

8 13 13 % 20 = 13 13 13

17

9 37 37 % 20 = 17 17 18

Quadratic Probing:

Quadratic Probing is similar to Linear probing. The difference is that if you were to try to insert into

a space that is filled you would first check 1^2 = 1 element away then 2^2 = 4 elements away,

then 3^2 =9 elements away then 4^2=16 elements away and so on.

With linear probing we know that we will always find an open spot if one exists (It might be a long

search but we will find it). However, this is not the case with quadratic probing unless you take care

in the choosing of the table size. For example consider what would happen in the following situation:

Table size is 16. First 5 pieces of data that all hash to index 2

• First piece goes to index 2.

• Second piece goes to 3 ((2 + 1)%16

• Third piece goes to 6 ((2+4)%16

• Fourth piece goes to 11((2+9)%16

• Fifth piece dosen't get inserted because (2+16)%16==2 which is full so we end up back where we

started and we haven't searched all empty spots.

Double Hashing:

Double Hashing is works on a similar idea to linear and quadratic probing. Use a big table and hash

into it. Whenever a collision occurs, choose another spot in table to put the value. The difference

here is that instead of choosing next opening, a second hash function is used to determine the

location of the next spot. For example, given hash function H1 and H2 and key.

Steps:

• Check location hash1(key). If it is empty, put record in it.

• If it is not empty calculate hash2(key).

• check if hash1(key)+hash2(key) is open, if it is, put it in

• repeat with hash1(key)+2hash2(key), hash1(key)+3hash2(key) and so on, until an opening is

found.

Basic Operations

Following are basic primary operations of a hashtable which are following.

• Search − search an element in a hashtable.

• Insert − insert an element in a hashtable.

• Delete − delete an element from a hashtable.

DataItem

18

Define a data item having some data, and key based on which search is to be conducted in hashtable.

struct DataItem {

 int data;

 int key;

};

Hash Method

Define a hashing method to compute the hash code of the key of the data item.

int hashCode(int key){

 return key % SIZE;

}

Search Operation

Whenever an element is to be searched, compute the hash code of the key passed and locate the

element using that hashcode as index in the array. Use linear probing to get element ahead if element

not found at computed hash code.

struct DataItem *search(int key){

 //get the hash

 int hashIndex = hashCode(key);

 //move in array until an empty

 while(hashArray[hashIndex] != NULL){

 if(hashArray[hashIndex]->key == key)

 return hashArray[hashIndex];

 //go to next cell

 ++hashIndex;

 //wrap around the table

 hashIndex %= SIZE;

 }

 return NULL;

}

Insert Operation

19

Whenever an element is to be inserted. Compute the hash code of the key passed and locate the index

using that hashcode as index in the array. Use linear probing for empty location if an element is found

at computed hash code.

void insert(int key,int data){

 struct DataItem *item = (struct DataItem*) malloc(sizeof(struct DataItem));

 item->data = data;

 item->key = key;

 //get the hash

 int hashIndex = hashCode(key);

 //move in array until an empty or deleted cell

 while(hashArray[hashIndex] != NULL && hashArray[hashIndex]->key != -1){

 //go to next cell

 ++hashIndex;

 //wrap around the table

 hashIndex %= SIZE;

 }

 hashArray[hashIndex] = item;

}

Delete Operation

Whenever an element is to be deleted, Compute the hash code of the key passed and locate the index

using that hash code as index in the array. Use linear probing to get element ahead if an element is not

found at computed hash code. When found, store a dummy item there to keep performance of hash

table intact.

struct DataItem* delete(struct DataItem* item){

 int key = item->key;

 //get the hash

 int hashIndex = hashCode(key);

 //move in array until an empty

 while(hashArray[hashIndex] !=NULL){

 if(hashArray[hashIndex]->key == key){

 struct DataItem* temp = hashArray[hashIndex];

 //assign a dummy item at deleted position

20

 hashArray[hashIndex] = dummyItem;

 return temp;

 }

 //go to next cell

 ++hashIndex;

 //wrap around the table

 hashIndex %= SIZE;

 }

 return NULL;

}

Sets

A Set is a collection of objects need not to be in any particular order. It is just applying the

mathematical concept in concept. The set with no element is called null set or empty set.

Some set data structures are designed for static or frozen sets that do not change after they are

constructed. Static sets allow only query operations on their elements — such as checking whether a

given value is in the set, or enumerating the values in some arbitrary order. Other variants,

called dynamic or mutable sets, allow also the insertion and deletion of elements from the set.

Rules:

 Elements should not be repeated.

 Each element should have a reason to be in the set.

Example:

 Assume we are going to store indian cricketers in a set. The names should not be repeated, as

well the name who is not in the team can’t be inserted. This is the restriction which need to be followed

in the set.

Representation of Sets:

 List

 Tree

 Hash Table

 Bit Vectors

List Representation:

 Its a simple and straight forward representation, which is best suited for dynamic storage

facility. This representation allows multiplicity of elements i.e., Bag strutures. All the operations can be

21

easily implemented and performance of these operations are as good as compared to other

representatations. A set S={5,6,9,3,2,7,1}

Tree Representation:

 Tree is used to represent a set, and each element in the set has the same root. Each element in

the set has a pointer to its parent. For example a set S1={1,3,5,7,9,11,13} can be represented as

Hash Table Representation:

 In this representation the elements in collection are seperated into number of buckets. Each

bucket can hold arbitrary number of elements. Consider the set S={2,5,7,16,17,23,34,42}, the hash

table with 4 buckets and H(x) hash function can store wchi can place element from S to any of the four

buckets.

Bit Vectors Representation:

Two variations are proposed which are maintaining the actual data values, maintaining the

indication of presence or absence of data. A set, giving the records about the age of cricketer less than

or equal to 35 is as given {0,0,0,0,1,1,1,1,0,1,1}. Here 1 indicates the presence of records having age

less than or equal to 35. 0 indicates the absence of records having the age less than or euqla to 35. As

22

we have to indicate presence or absence of an element only, so 0 or 1 can be used for indication of

saving storage space.

Operations on Sets:

Basic operations:

• union(S,T): returns the union of sets S and T.

• intersection(S,T): returns the intersection of sets S and T.

• difference(S,T): returns the difference of sets S and T.

• subset(S,T): a predicate that tests whether the set S is a subset of set T.

Operations on a static set structure S:

• is_element_of(x,S): checks whether the value x is in the set S.

• is_empty(S): checks whether the set S is empty.

• size(S) or cardinality(S): returns the number of elements in S.

• iterate(S): returns a function that returns one more value of S at each call, in some

arbitrary order.

• enumerate(S): returns a list containing the elements of S in some arbitrary order.

• build(x1,x2,…,xn,): creates a set structure with values x1,x2,…,xn.

• create_from(collection): creates a new set structure containing all the elements of the

given collection or all the elements returned by the given iterator.

Operations on a Dynamic set structure:

• create(): creates a new, initially empty set structure.

• create_with_capacity(n): creates a new set structure, initially empty but capable

of holding up to n elements.

• add(S,x): adds the element x to S, if it is not present already.

• remove(S, x): removes the element x from S, if it is present.

• capacity(S): returns the maximum number of values that S can hold.

Other operations:

• pop(S): returns an arbitrary element of S, deleting it from S.

• pick(S): returns an arbitrary element of S. Functionally, the mutator pop can be interpreted as

the pair of selectors (pick, rest), where rest returns the set consisting of all elements except for the

arbitrary element. Can be interpreted in terms of iterate.

• map(F,S): returns the set of distinct values resulting from applying function F to each element

of S.

• filter(P,S): returns the subset containing all elements of S that satisfy a given predicate P.

• fold(A0,F,S): returns the value A|S| after applying Ai+1 := F(Ai, e) for each element e of S, for

some binary operation F. F must be associative and commutative for this to be well-defined.

• clear(S): delete all elements of S.

23

• equal(S1, S2): checks whether the two given sets are equal (i.e. contain all and only the same

elements).

• hash(S): returns a hash value for the static set S such that if equal(S1, S2) then hash(S1) =

hash(S2)

Applications:

1. Hash function.

2. Spelling Checker.

3. Information storage and retrieval.

4. Filtering the records from the huge database.

Hash function:

 Hash function is a function that generate an integernumber with a particular logic. This function

is like a one way entry. We can’t reverse this function. But by doing the process with same number we

may get an answer. Sometimes the same valyue may be generated for the diffrent values called

collision. In that case, we need to check for the data in that location. In some cases, same values will

generate the different outout. Both are possible.

Spell Checker:

 This concept applied by using the hash table data structure. The two files are provided to us for

process. One is ‘dictionary file’, which is the collection of meaningful words, and another one is ‘input

file’, that contains the word to be validated for spell. Initially the word from the dictionary file and also

from input file be inserted into the hash tables seperately. Intersection operation will be done between

the two hash tables. If the set with one element is the result of the intersection, then the word is in

dictionary. Spell is perfect. If, null set returned from the intersection, then the spell is wrong.

Static tree tables:

• When symbols are known in advance and no insertion and deletion is allowed, it is called

a static tree table.

• An example of this type of table is a reserved word table in a compiler.

Dynamic tree tables:

• A dynamic tree tables are used when symbols are not known in advance but are inserted as they

come and deleted if not required.

• Dynamic keyed tables are those that are built on-the-fly.

• The keys have no history associated with their use.

Reference

24

Debasis Samatha, “Classic Datastructures”, 2
nd

 edition, PHI learning pvt. ltd., 2009 ISBN,

812033731X, 9788120337312.

