
COURSE CODE: SCS1203
COURSE NAME: FUNDAMENTALS OF DIGITAL SYSTEMS
CHAPTER NAME: SYNCHRONOUS SEQUENTIAL LOGIC

UNIT II

Flip Flops - Analysis of clocked sequential circuit - C - Flip flop excitation tables -

Design Procedure - Design of counters - Registers - Shift registers - Synchronous

Counters - Timing sequences- Algorithmic State Machines - ASM chart - timing

considerations - control implementation

1. FLIP-FLOP

 In electronics, a flip-flop or latch is a circuit that has two stable states and

can be used to store state information. Flip-flops and latches are used as data

storage elements. A flip-flop stores a single bit (binary digit) of data; one of its two

states represents a "one" and the other represents a "zero". Such data storage can be

used for storage of state, and such a circuit is described as sequential logic. When

used in a finite-state machine, the output and next state depend not only on its

current input, but also on its current state (and hence, previous inputs). It can also

be used for counting of pulses, and for synchronizing variably-timed input signals

to some reference timing signal.

Flip-flops can be either simple (transparent or opaque) or clocked (synchronous or

edge-triggered). Although the term flip-flop has historically referred generically to

both simple and clocked circuits, in modern usage it is common to reserve the term

flip-flop exclusively for discussing clocked circuits; the simple ones are commonly

called latches.

Using this terminology, a latch is level-sensitive, whereas a flip-flop is edge-

sensitive. That is, when a latch is enabled it becomes transparent, while a flip flop's

output only changes on a single type (positive going or negative going) of clock

edge.

Flip-flop types

Flip-flops can be divided into common types

1. SR ("set-reset")

2. D ("data" or "delay"
[12]

)

https://en.wikipedia.org/wiki/Electronics
https://en.wikipedia.org/wiki/Electronic_circuit
https://en.wikipedia.org/wiki/Binary_digit
https://en.wikipedia.org/wiki/State_%28computer_science%29
https://en.wikipedia.org/wiki/Sequential_logic
https://en.wikipedia.org/wiki/Finite-state_machine
https://en.wikipedia.org/wiki/Clock_signal
https://en.wikipedia.org/wiki/Flip-flop_%28electronics%29#cite_note-12

3. T ("toggle")

4. JK types are the common ones.

2. Analysis of clocked sequential circuit

Sequential Logic Circuits

Unlike Combinational Logic circuits that change state depending upon the actual

signals being applied to their inputs at that time, Sequential Logic circuits have

some form of inherent “Memory” built in to them as they are able to take into

account their previous input state as well as those actually present, a sort

of “before” and “after” effect is involved with sequential logic circuits.

In other words, the output state of a “sequential logic circuit” is a function of

the following three states, the “present input”, the “past input” and/or the “past

output”. Sequential Logic circuits remember these conditions and stay fixed in

their current state until the next clock signal changes one of the states, giving

sequential logic circuits “Memory”.

Sequential logic circuits are generally termed as two state or Bistable

devices which can have their output or outputs set in one of two basic states, a

logic level “1” or a logic level “0” and will remain “latched” (hence the name

latch) indefinitely in this current state or condition until some other input trigger

pulse or signal is applied which will cause the bistable to change its state once

again.

The word “Sequential” means that things happen in a “sequence”, one after

another and in Sequential Logic circuits, the actual clock signal determines when

http://www.electronics-tutorials.ws/combination/comb_1.html
http://www.electronics-tutorials.ws/waveforms/bistable.html

things will happen next. Simple sequential logic circuits can be constructed from

standard Bistable circuits such as: Flip-flops, Latches and Counters and which

themselves can be made by simply connecting together universal NAND Gates

and/or NOR Gates in a particular combinational way to produce the required

sequential circuit

3. Flip flop excitation tables - Flip flop excitation tables

- Design Procedure of SR, Jk, D T flipflops

SR Flip-Flop

The SR flip-flop, also known as a SR Latch, can be considered as one of the

most basic sequential logic circuit possible. This simple flip-flop is basically a one-

bit memory bistable device that has two inputs, one which will “SET” the device

(meaning the output = “1”), and is labelled S and another which will “RESET” the

device (meaning the output = “0”), labelled R.

Then the SR description stands for “Set-Reset”. The reset input resets the

flip-flop back to its original state with an output Q that will be either at a logic

level “1” or logic “0” depending upon this set/reset condition.

A basic NAND gate SR flip-flop circuit provides feedback from both of its

outputs back to its opposing inputs and is commonly used in memory circuits to

store a single data bit. Then the SR flip-flop actually has three inputs, Set, Reset

and its current output Q relating to it’s current state or history. The term “Flip-

flop” relates to the actual operation of the device, as it can be “flipped” into one

logic Set state or “flopped” back into the opposing logic Reset state.

The Basic SR Flip-flop

http://www.electronics-tutorials.ws/logic/logic_5.html
http://www.electronics-tutorials.ws/logic/logic_6.html

The Set State

Consider the circuit shown above. If the input R is at logic level “0” (R = 0)

and input S is at logic level “1” (S = 1), the NAND gate Y has at least one of its

inputs at logic “0” therefore, its output Q must be at a logic level “1” (NAND Gate

principles). Output Q is also fed back to input “A” and so both inputs to NAND

gate X are at logic level “1”, and therefore its output Q must be at logic level “0”.

Again NAND gate principals. If the reset input R changes state, and goes

HIGH to logic “1” with S remaining HIGH also at logic level “1”, NAND gate Y

inputs are now R = “1” and B = “0”. Since one of its inputs is still at logic level “0”

the output at Q still remains HIGH at logic level “1” and there is no change of

state. Therefore, the flip-flop circuit is said to be “Latched” or “Set” with Q = “1”

and Q = “0”.

Reset State

In this second stable state, Q is at logic level “0”, (not Q = “0”) its inverse

output at Q is at logic level “1”, (Q = “1”), and is given by R = “1” and S = “0”. As

gate X has one of its inputs at logic “0” its output Q must equal logic level “1”

(again NAND gate principles). Output Q is fed back to input “B”, so both inputs to

NAND gate Y are at logic “1”, therefore, Q = “0”.

If the set input, S now changes state to logic “1” with input R remaining at

logic “1”, output Q still remains LOW at logic level “0” and there is no change of

state. Therefore, the flip-flop circuits “Reset” state has also been latched and we

can define this “set/reset” action in the following truth table.

Truth Table for this Set-Reset Function

It can be seen that when both inputs S = “1” and R = “1” the outputs Q and

Q can be at either logic level “1” or “0”, depending upon the state of the inputs S

or R BEFORE this input condition existed. Therefore the condition of S = R = “1”

does not change the state of the outputs Q and Q.

However, the input state of S = “0” and R = “0” is an undesirable or invalid

condition and must be avoided. The condition of S = R = “0” causes both outputs

Q and Q to be HIGH together at logic level “1” when we would normally want Q

to be the inverse of Q. The result is that the flip-flop looses control of Q and Q, and

if the two inputs are now switched “HIGH” again after this condition to logic “1”,

the flip-flop becomes unstable and switches to an unknown data state based upon

the unbalance as shown in the following switching diagram.

S-R Flip-flop Switching Diagram

This unbalance can cause one of the outputs to switch faster than the other

resulting in the flip-flop switching to one state or the other which may not be the

required state and data corruption will exist. This unstable condition is generally

known as its Meta-stable state.

Then, a simple NAND gate SR flip-flop or NAND gate SR latch can be set

by applying a logic “0”, (LOW) condition to its Set input and reset again by then

applying a logic “0” to its Reset input. The SR flip-flop is said to be in an “invalid”

condition (Meta-stable) if both the set and reset inputs are activated

simultaneously.

Latch Flip Flop

The R-S (Reset Set) flip flop is the simplest flip flop of all and easiest to

understand. It is basically a device which has two outputs one output being the

inverse or complement of the other, and two inputs. A pulse on one of the inputs to

take on a particular logical state. The outputs will then remain in this state until a

similar pulse is applied to the other input. The two inputs are called the Set and

Reset input (sometimes called the preset and clear inputs).

Such flip flop can be made simply by cross coupling two inverting gates

either NAND or NOR gate could be used Figure 1(a) shows on RS flip flop using

NAND gate and Figure 1(b) sh ows the same circuit using NOR gate.

Figure 1: Latch R-S Flip Flop Using NAND and NOR Gates

To describe the circuit of Figure 1(a), assume that initially both R and S are

at the logic 1 state and that output is at the logic 0 state.

Now, if Q = 0 and R = 1, then these are the states of inputs of gate B,

therefore the outputs of gate B is at 1 (making it the inverse of Q i.e. 0). The output

of gate B is connected to an input of gate A so if S = 1, both inputs of gate A are at

the logic 1 state. This means that the output of gate A must be 0 (as was originally

specified). In other words, the 0 state at Q is continuously disabling gate B so that

any change in R has no effect. Also the 1 state at is continuously enabling gate A

so that any change S will be transmitted through to Q. The above conditions

constitute one of the stable states of the device referred to as the Reset state since

Q = 0.

Now suppose that the R-S flip flop in the Reset state, the S input goes to 0.

The output of gate A i.e. Q will go to 1 and with Q = 1 and R = 1, the output of

gates B () will go to 0 with now 0 gate A is disabled keeping Q at 1.

Consequently, when S returns to the 1 state it has no effect on the flip flop whereas

a change in R will cause a change in the output of gate B. The above conditions

constitute the other stable state of the device, called the Set state since Q = 1. Note

that the change of the state of S from 1 to 0 has caused the flip flop to change from

the Reset state to the Set state.

There is another input condition which has not yet been considered. That is

when both the R and S inputs are taken to the logic state 0. When this happens both

Q and will be forced to 1 and will remain so far as long as R and S are kept at 0.

However when both inputs return to 1 there is no way of knowing whether the flip

flop will latch in the Reset state or the Set state. The condition is said to be

indeterminate because of this indeterminate state great care must be taken when

using R-S flip flop to ensure that both inputs are not instructed simultaneously.

Table 1: The truth table for the NAND R-S flip flop

Table 2: Simple NAND R-S Flip Flop Truth Table

Table 3: NOR Gate R-S Flip Flop Truth Table

Clocked RS Flip Flop

The RS latch flip flop required the direct input but no clock. It is very use

full to add clock to control precisely the time at which the flip flop changes the

state of its output.

In the clocked R-S flip flop the appropriate levels applied to their inputs are

blocked till the receipt of a pulse from an other source called clock. The flip flop

changes state only when clock pulse is applied depending upon the inputs. The

basic circuit is shown in Figure 2. This circuit is formed by adding two AND gates

at inputs to the R-S flip flop. In addition to control inputs Set (S) and Reset (R),

there is a clock input (C) also.

Figure 2: Clocked RS Flip Flop

Table 4: The truth table for the Clocked R-S flip flop

Table 5: Excitation table for R-S Flip Flop

D Flip Flop

A D type (Data or delay flip flop) has a single data input in addition to the

clock input as shown in Figure 3.

Figure 3: D Flip Flop

Basically, such type of flip flop is a modification of clocked RS flip flop

gates from a basic Latch flip flop and NOR gates modify it in to a clock RS flip

flop. The D input goes directly to S input and its complement through NOT gate, is

applied to the R input.

This kind of flip flop prevents the value of D from reaching the output until

a clock pulse occurs. The action of circuit is straight forward as follows.

When the clock is low, both AND gates are disabled, there fore D can

change values with out affecting the value of Q. On the other hand, when the clock

is high, both AND gates are enabled. In this case, Q is forced equal to D when the

clock again goes low, Q retains or stores the last value of D. The truth table for

such a flip flop is as given below in table 6.

Table 6: Truth table for D Flip Flop

Table 7: Excitation table for D Flip Flop

JK Flip Flop

One of the most useful and versatile flip flop is the JK flip flop the unique features

of a JK flip flop are:

1. If the J and K input are both at 1 and the clock pulse is applied, then the

output will change state, regardless of its previous condition.

2. If both J and K inputs are at 0 and the clock pulse is applied there will be no

change in the output. There is no indeterminate condition, in the operation of

JK flip flop i.e. it has no ambiguous state. The circuit diagram for a JK flip

flop is shown in Figure 4.

Figure 4: JK Flip Flop

When J = 0 and K = 0

These J and K inputs disable the NAND gates, therefore clock pulse have no effect

on the flip flop. In other words, Q returns it last value.

When J = 0 and K = 1,

The upper NAND gate is disabled the lower NAND gate is enabled if Q is 1

therefore, flip flop will be reset (Q = 0 , =1)if not already in that state.

When J = 1 and K = 0

The lower NAND gate is disabled and the upper NAND gate is enabled if is at 1,

As a result we will be able to set the flip flop (Q = 1, = 0) if not already set

When J = 1 and K = 1

If Q = 0 the lower NAND gate is disabled the upper NAND gate is enabled. This

will set the flip flop and hence Q will be 1. On the other hand if Q = 1, the lower

NAND gate is enabled and flip flop will be reset and hence Q will be 0. In other

words , when J and K are both high, the clock pulses cause the JK flip flop to

toggle. Truth table for JK flip flop is shown in table 8.

Table 8: The truth table for the JK flip flop

Table 6: Excitation table for JK Flip Flop

T Flip Flop

A method of avoiding the indeterminate state found in the working of RS

flip flop is to provide only one input (the T input) such, flip flop acts as a toggle

switch. Toggle means to change in the previous stage i.e. switch to opposite state.

It can be constructed from clocked RS flip flop be incorporating feedback from

output to input as shown in Figure 5.

Figure 5: T Flip Flop

Such a flip flop is also called toggle flip flop. In such a flip flop a train of

extremely narrow triggers drives the T input each time one of these triggers, the

output of the flip flop changes stage. For instance Q equals 0 just before the

trigger. Then the upper AND gate is enable and the lower AND gate is disabled.

When the trigger arrives, it results in a high S input.

This sets the Q output to 1. When the next trigger appears at the point T, the

lower AND gate is enabled and the trigger passes through to the R input this forces

the flip flop to reset.

Since each incoming trigger is alternately changed into the set and reset

inputs the flip flop toggles. It takes two triggers to produce one cycle of the output

waveform. This means the output has half the frequency of the input stated another

way, a T flip flop divides the input frequency by two. Thus such a circuit is also

called a divide by two circuit.

A disadvantage of the toggle flip flop is that the state of the flip flop after a

trigger pulse has been applied is only known if the previous state is known. The

truth table for a T flip flop is as given table 7.

Table 7: Truth table for T Flip Flop

Table 8: Excitation table for T Flip Flop

Generally T flip flop ICs are not available. It can be constructed using JK, RS or D

flip flop. Figure 6 shows the relation of T flip flop using JK flip flop.

A D-type flip flop may be modified by external connection as a T-type stage

as shown in Figure 7. Since the Q logic is used as D-input the opposite of the Q

output is transferred into the stage each clock pulse. Thus the stage having Q - 0

transistors = 1, Providing a toggle action, if the stage had Q = 1 the clock pulse

would result in Q = 0 being transferred, again providing the toggle operation. The

D-type flip flop connected as in Figure 6 will thus operate as a T-type stage,

complementing each clock pulse.

Master Slave Flip Flop

Figure 8 shows the schematic diagram of master sloave J-K flip flop

Figure 8: Master Slave JK Flip Flop

A master slave flip flop contains two clocked flip flops. The first is called

master and the second slave. When the clock is high the master is active. The

output of the master is set or reset according to the state of the input. As the slave

is inactive during this period its output remains in the previous state. When clock

becomes low the output of the slave flip flop changes because it become active

during low clock period. The final output of master slave flip flop is the output of

the slave flip flop. So the output of master slave flip flop is available at the end of a

clock pulse.

4. Design of counters

Counter is a sequential circuit. A digital circuit which is used for a counting pulses

is known counter. Counter is the widest application of flip-flops. It is a group of

flip-flops with a clock signal applied. Counters are of two types.

 Asynchronous or ripple counters.

 Synchronous counters

5. Registers

 Flip-flop is a 1 bit memory cell which can be used for storing the digital

data. To increase the storage capacity in terms of number of bits, we have to use a

group of flip-flop. Such a group of flip-flop is known as a Register. The n-bit

register will consist of n number of flip-flop and it is capable of storing an n-bit

word.

6. Shift Register

 The Shift Register is another type of sequential logic circuit that can be used

for the storage or the transfer of data in the form of binary numbers. This

sequential device loads the data present on its inputs and then moves or “shifts” it

to its output once every clock cycle, hence the name “shift register”.

 A shift register basically consists of several single bit “D-Type Data Latches”, one

for each data bit, either a logic “0” or a “1”, connected together in a serial type

daisy-chain arrangement so that the output from one data latch becomes the input

of the next latch and so on.

Data bits may be fed in or out of a shift register serially, that is one after the other

from either the left or the right direction, or all together at the same time in a

parallel configuration.

The number of individual data latches required to make up a single Shift

Register device is usually determined by the number of bits to be stored with the

most common being 8-bits (one byte) wide constructed from eight individual data

latches.

Shift Registers are used for data storage or for the movement of data and are

therefore commonly used inside calculators or computers to store data such as two

binary numbers before they are added together, or to convert the data from either a

serial to parallel or parallel to serial format. The individual data latches that make

up a single shift register are all driven by a common clock (Clk) signal making

them synchronous devices.

Shift register IC’s are generally provided with a clear or reset connection so that

they can be “SET” or “RESET” as required. Generally, shift registers operate in

one of four different modes with the basic movement of data through a shift

register being:

 Serial-in to Parallel-out (SIPO) - the register is loaded with serial data, one bit

at a time, with the stored data being available at the output in parallel form.

http://www.electronics-tutorials.ws/sequential/seq_5.html

 Serial-in to Serial-out (SISO) - the data is shifted serially “IN” and “OUT” of

the register, one bit at a time in either a left or right direction under clock control.

 Parallel-in to Serial-out (PISO) - the parallel data is loaded into the register

simultaneously and is shifted out of the register serially one bit at a time under

clock control.

 Parallel-in to Parallel-out (PIPO) - the parallel data is loaded simultaneously

into the register, and transferred together to their respective outputs by the same

clock pulse.

The effect of data movement from left to right through a shift register can be

presented graphically as:

Also, the directional movement of the data through a shift register can be either to

the left, (left shifting) to the right, (right shifting) left-in but right-out, (rotation) or

both left and right shifting within the same register thereby making it bidirectional.

In this tutorial it is assumed that all the data shifts to the right, (right shifting).

4-bit Serial-in to Parallel-out Shift Register

The operation is as follows. Lets assume that all the flip-flops (FFA to FFD) have

just been RESET (CLEAR input) and that all the outputs QA to QD are at logic

level “0” ie, no parallel data output.

If a logic “1” is connected to the DATA input pin of FFA then on the first clock

pulse the output of FFA and therefore the resulting QA will be set HIGH to logic

“1” with all the other outputs still remaining LOW at logic “0”. Assume now that

the DATA input pin of FFA has returned LOW again to logic “0” giving us one

data pulse or 0-1-0.

The second clock pulse will change the output of FFA to logic “0” and the output

of FFB and QB HIGH to logic “1” as its input D has the logic “1” level on it

from QA. The logic “1” has now moved or been “shifted” one place along the

register to the right as it is now atQA.

When the third clock pulse arrives this logic “1” value moves to the output

of FFC (QC) and so on until the arrival of the fifth clock pulse which sets all the

outputs QA to QD back again to logic level “0” because the input to FFA has

remained constant at logic level “0”.

The effect of each clock pulse is to shift the data contents of each stage one place

to the right, and this is shown in the following table until the complete data value

of 0-0-0-1 is stored in the register. This data value can now be read directly from

the outputs of QA to QD.

Then the data has been converted from a serial data input signal to a parallel data

output. The truth table and following waveforms show the propagation of the logic

“1” through the register from left to right as follows.

Basic Data Movement Through A Shift Register

Clock

Pulse

No

QA QB QC QD

0 0 0 0 0

1 1 0 0 0

2 0 1 0 0

3 0 0 1 0

4 0 0 0 1

5 0 0 0 0

Note that after the fourth clock pulse has ended the 4-bits of data (0-0-0-1) are

stored in the register and will remain there provided clocking of the register has

stopped. In practice the input data to the register may consist of various

combinations of logic “1” and “0”. Commonly available SIPO IC’s include the

standard 8-bit 74LS164 or the 74LS594.

Serial-in to Serial-out (SISO) Shift Register

This shift register is very similar to the SIPO above, except were before the

data was read directly in a parallel form from the outputs QA to QD, this time the

data is allowed to flow straight through the register and out of the other end. Since

there is only one output, the DATA leaves the shift register one bit at a time in a

serial pattern, hence the name Serial-in to Serial-Out Shift Register or SISO.

The SISO shift register is one of the simplest of the four configurations as it

has only three connections, the serial input (SI) which determines what enters the

left hand flip-flop, the serial output (SO) which is taken from the output of the

right hand flip-flop and the sequencing clock signal (Clk). The logic circuit

diagram below shows a generalized serial-in serial-out shift register.

4-bit Serial-in to Serial-out Shift Register

You may think what the point of a SISO shift register is if the output data is

exactly the same as the input data. Well this type of Shift Register also acts as a

temporary storage device or it can act as a time delay device for the data, with the

amount of time delay being controlled by the number of stages in the register, 4, 8,

16 etc or by varying the application of the clock pulses. Commonly available IC’s

include the 74HC595 8-bit Serial-in to Serial-out Shift Register all with 3-state

outputs.

Parallel-in to Serial-out (PISO) Shift Register

The Parallel-in to Serial-out shift register acts in the opposite way to the

serial-in to parallel-out one above. The data is loaded into the register in a parallel

format in which all the data bits enter their inputs simultaneously, to the parallel

input pins PA to PD of the register. The data is then read out sequentially in the

normal shift-right mode from the register at Q representing the data present

at PA to PD.

This data is outputted one bit at a time on each clock cycle in a serial format.

It is important to note that with this type of data register a clock pulse is not

required to parallel load the register as it is already present, but four clock pulses

are required to unload the data.

4-bit Parallel-in to Serial-out Shift Register

As this type of shift register converts parallel data, such as an 8-bit data

word into serial format, it can be used to multiplex many different input lines into a

single serial DATA stream which can be sent directly to a computer or transmitted

over a communications line. Commonly available IC’s include the 74HC166 8-bit

Parallel-in/Serial-out Shift Registers.

Parallel-in to Parallel-out (PIPO) Shift Register

The final mode of operation is the Parallel-in to Parallel-out Shift Register.

This type of shift register also acts as a temporary storage device or as a time delay

device similar to the SISO configuration above. The data is presented in a parallel

format to the parallel input pins PA to PD and then transferred together directly to

their respective output pins QA to QA by the same clock pulse. Then one clock

pulse loads and unloads the register. This arrangement for parallel loading and

unloading is shown below.

4-bit Parallel-in to Parallel-out Shift Register

 The PIPO shift register is the simplest of the four configurations as it has only

three connections, the parallel input (PI) which determines what enters the flip-

flop, the parallel output (PO) and the sequencing clock signal (Clk).

Similar to the Serial-in to Serial-out shift register, this type of register also

acts as a temporary storage device or as a time delay device, with the amount of

time delay being varied by the frequency of the clock pulses. Also, in this type of

register there are no interconnections between the individual flip-flops since no

serial shifting of the data is required.

Universal Shift Register

Today, there are many high speed bi-directional “universal” type Shift

Registers available such as the TTL 74LS194, 74LS195 or the CMOS 4035 which

are available as 4-bit multi-function devices that can be used in either serial-to-

serial, left shifting, right shifting, serial-to-parallel, parallel-to-serial, or as a

parallel-to-parallel multifunction data register, hence the name “Universal”.

These universal shift registers can perform any combination of parallel and

serial input to output operations but require additional inputs to specify desired

function and to pre-load and reset the device. A commonly used universal shift

register is the TTL 74LS194 as shown below.

4-bit Universal Shift Register 74LS194

 Universal shift registers are very useful digital devices. They can be

configured to respond to operations that require some form of temporary memory

storage or for the delay of information such as the SISO or PIPO configuration

modes or transfer data from one point to another in either a serial or parallel

format. Universal shift registers are frequently used in arithmetic operations to

shift data to the left or right for multiplication or division.

7. Binary Synchronous Counter

In Asynchronous binary counter , the output of one counter stage is

connected directly to the clock input of the next counter stage and so on along the

chain, and as a result the asynchronous counter suffers from what is known as

“Propagation Delay” in which the timing signal is delayed a fraction through each

flip-flop.However, with the Synchronous Counter, the external clock signal is

connected to the clock input of EVERY individual flip-flop within the counter so

that all of the flip-flops are clocked together simultaneously (in parallel) at the

same time giving a fixed time relationship. In other words, changes in the output

occur in “synchronisation” with the clock signal.

The result of this synchronisation is that all the individual output bits

changing state at exactly the same time in response to the common clock signal

with no ripple effect and therefore, no propagation delay.

Binary 4-bit Synchronous Up Counter

It can be seen above, that the external clock pulses (pulses to be counted) are

fed directly to each of the J-K flip-flops in the counter chain and that both

the J and K inputs are all tied together in toggle mode, but only in the first flip-

flop, flip-flop FFA(LSB) are they connected HIGH, logic “1” allowing the flip-

flop to toggle on every clock pulse. Then the synchronous counter follows a

predetermined sequence of states in response to the common clock signal,

advancing one state for each pulse.The J and K inputs of flip-flop FFB are

connected directly to the output QA of flip-flopFFA, but the J and K inputs of flip-

flops FFC and FFD are driven from separate AND gates which are also supplied

with signals from the input and output of the previous stage. These

additional AND gates generate the required logic for the JK inputs of the next

stage.If we enable each JK flip-flop to toggle based on whether or not all preceding

flip-flop outputs (Q) are “HIGH” we can obtain the same counting sequence as

with the asynchronous circuit but without the ripple effect, since each flip-flop in

this circuit will be clocked at exactly the same time.Then as there is no inherent

propagation delay in synchronous counters, because all the counter stages are

triggered in parallel at the same time, the maximum operating frequency of this

type of frequency counter is much higher than that for a similar asynchronous

counter circuit.

http://www.electronics-tutorials.ws/sequential/seq_2.html

8. Timing sequence

4-bit Synchronous Counter Waveform Timing Diagram.

Because this 4-bit synchronous counter counts sequentially on every clock

pulse the resulting outputs count upwards from 0 (0000) to 15 (1111). Therefore,

this type of counter is also known as a 4-bit Synchronous Up Counter.

However, we can easily construct a 4-bit Synchronous Down Counter by

connecting the AND gates to the Q output of the flip-flops as shown to produce a

waveform timing diagram the reverse of the above. Here the counter starts with all

of its outputs HIGH (1111) and it counts down on the application of each clock

pulse to zero, (0000) before repeating again.

Binary 4-bit Synchronous Down Counter

As synchronous counters are formed by connecting flip-flops together and

any number of flip-flops can be connected or “cascaded” together to form a

“divide-by-n” binary counter, the modulo’s or “MOD” number still applies as it

does for asynchronous counters so a Decade counter or BCD counter with counts

from 0 to 2
n
-1 can be built along with truncated sequences. All we need to increase

the MOD count of an up or down synchronous counter is an additional flip-flop

and AND gate across it.

Decade 4-bit Synchronous Counter

A 4-bit decade synchronous counter can also be built using synchronous

binary counters to produce a count sequence from 0 to 9. A standard binary counter

can be converted to a decade (decimal 10) counter with the aid of some additional

logic to implement the desired state sequence. After reaching the count of “1001”,

the counter recycles back to “0000”. We now have a decade or Modulo-

10 counter.

Decade 4-bit Synchronous Counter

The additional AND gates detect when the counting sequence reaches

“1001”, (Binary 10) and causes flip-flop FF3 to toggle on the next clock pulse.

Flip-flop FF0 toggles on every clock pulse. Thus, the count is reset and starts over

again at “0000” producing a synchronous decade counter.

We could quite easily re-arrange the additional AND gates in the above

counter circuit to produce other count numbers such as a Mod-12 counter which

counts 12 states from”0000″ to “1011” (0 to 11) and then repeats making them

suitable for clocks, etc.

Triggering A Synchronous Counter

Synchronous Counters use edge-triggered flip-flops that change states on

either the “positive-edge” (rising edge) or the “negative-edge” (falling edge) of the

clock pulse on the control input resulting in one single count when the clock input

changes state.

Generally, synchronous counters count on the rising-edge which is the low

to high transition of the clock signal and asynchronous ripple counters count on the

falling-edge which is the high to low transition of the clock signal.

It may seem unusual that ripple counters use the falling-edge of the clock

cycle to change state, but this makes it easier to link counters together because the

most significant bit (MSB) of one counter can drive the clock input of the

next.This works because the next bit must change state when the previous bit

changes from high to low – the point at which a carry must occur to the next bit.

Synchronous counters usually have a carry-out and a carry-in pin for linking

counters together without introducing any propagation delays.

4-bit Ring Counter

The synchronous Ring Counter example above is preset so that exactly one

data bit in the register is set to logic “1” with all the other bits reset to “0”. To

achieve this, a “CLEAR” signal is firstly applied to all the flip-flops together in

order to “RESET” their outputs to a logic “0” level and then a “PRESET” pulse is

applied to the input of the first flip-flop (FFA) before the clock pulses are applied.

This then places a single logic “1” value into the circuit of the ring counter.

So on each successive clock pulse, the counter circulates the same data bit

between the four flip-flops over and over again around the “ring” every fourth

clock cycle. But in order to cycle the data correctly around the counter we must

first “load” the counter with a suitable data pattern as all logic “0’s” or all logic

“1’s” outputted at each clock cycle would make the ring counter invalid.

This type of data movement is called “rotation”, and like the previous shift

register, the effect of the movement of the data bit from left to right through a ring

counter can be presented graphically as follows along with its timing diagram:

Rotational Movement of a Ring Counter

Since the ring counter example shown above has four distinct states, it is

also known as a “modulo-4” or “mod-4” counter with each flip-flop output having

a frequency value equal to one-fourth or a quarter (1/4) that of the main clock

frequency.

The “MODULO” or “MODULUS” of a counter is the number of states the

counter counts or sequences through before repeating itself and a ring counter can

be made to output any modulo number. A “mod-n” ring counter will require “n”

number of flip-flops connected together to circulate a single data bit providing “n”

different output states.

For example, a mod-8 ring counter requires eight flip-flops and a mod-16

ring counter would require sixteen flip-flops. However, as in our example above,

only four of the possible sixteen states are used, making ring counters very

inefficient in terms of their output state usage.

Johnson Ring Counter

The Johnson Ring Counter or “Twisted Ring Counters”, is another shift

register with feedback exactly the same as the standard Ring Counter above, except

that this time the inverted output Q of the last flip-flop is now connected back to

the input D of the first flip-flop as shown below.

The main advantage of this type of ring counter is that it only needs half the

number of flip-flops compared to the standard ring counter then its modulo number

is halved. So a “n-stage” Johnson counter will circulate a single data bit giving

sequence of 2ndifferent states and can therefore be considered as a “mod-2n

counter”.

4-bit Johnson Ring Counter

 This inversion of Q before it is fed back to input D causes the counter to

“count” in a different way. Instead of counting through a fixed set of patterns like

the normal ring counter such as for a 4-bit counter, “0001”(1), “0010”(2),

“0100”(4), “1000”(8) and repeat, the Johnson counter counts up and then down as

the initial logic “1” passes through it to the right replacing the preceding logic “0”.

A 4-bit Johnson ring counter passes blocks of four logic “0” and then four

logic “1” thereby producing an 8-bit pattern. As the inverted output Q is connected

to the input D this 8-bit pattern continually repeats. For example, “1000”, “1100”,

“1110”, “1111”, “0111”, “0011”, “0001”, “0000” and this is demonstrated in the

following table below.

Truth Table for a 4-bit Johnson Ring Counter

Clock Pulse

No
FFA FFB FFC FFD

0 0 0 0 0

1 1 0 0 0

2 1 1 0 0

3 1 1 1 0

4 1 1 1 1

5 0 1 1 1

6 0 0 1 1

7 0 0 0 1

As well as counting or rotating data around a continuous loop, ring counters

can also be used to detect or recognize various patterns or number values within a

set of data. By connecting simple logic gates such as the AND or the OR gates to

the outputs of the flip-flops the circuit can be made to detect a set number or value.

Standard 2, 3 or 4-stage Johnson Ring Counters can also be used to divide

the frequency of the clock signal by varying their feedback connections and divide-

by-3 or divide-by-5 outputs are also available.

For example, a 3-stage Johnson Ring Counter could be used as a 3-phase,

120 degree phase shift square wave generator by connecting to the data outputs

at A, B and NOT-B.

The standard 5-stage Johnson counter such as the commonly available

CD4017 is generally used as a synchronous decade counter/divider circuit.

Other combinations such as the smaller 2-stage circuit which is also called a

“Quadrature” (sine/cosine) Oscillator or Generator can be used to produce four

individual outputs that are each 90 degrees “out-of-phase” with respect to each

other to produce a 4-phase timing signal as shown below.

http://www.electronics-tutorials.ws/logic/logic_2.html
http://www.electronics-tutorials.ws/logic/logic_3.html

9. Algorithmic State Machines

Algorithm State Machines(ASM) ASM stands for 'Algorithm State Machine 'or

simply state machine is the another name given to sequential network is used to

control a digital system which carries out a step by a step –by step procedure .It

should be noted that ASM charts represent physical hardware and offers several

advantages.

1. Operation of a digital system can be easily understand by inspection of the SM

chart .

 2. ASM charts represent physical hardware.

 3. The ASM chart are equivalent to a state graph, and it leads directly to a

hardware realization . 4. ASM charts can be described the operation of both

combinational and sequential circuits .

 5. ASM charts are easier to understand and can be converted several equivalent

form.

6. The ASM chart may be equivalently expressed as a state and output table .

10. ASM chart

Principal Component Of An ASM Chart

•State Box.

The state of the system is represented by a state box .It is a rectangular box .At the

top left hand corner the name of state is shown ,which at the top right hand corner

the state assignment is given .Within the state box ,the output signals are listed .

• Decision box .It a diamond –shaped box with true false branches .Boolean

condition is placed in the box and the decision is made from the value of one or

more input signals .The decision box must follow and be associated with a state

Conditional output box .A condition output box is shown in Fig. is a rectangular

box with curved ends .It contain conditional output list .The conditional output

depends on both the state of the system and the inputs .Therefore the conditional

output signals are sometimes known as Mealy output .A condition output must

follow a decision box

Equivalent ASM charts ASM charts are not unique, it may have more than one

equivalent form Fig. shown three equivalent ASM charts for combinational

network Z=A(B+C).

11. control implementation

Conversion Of State Diagram To An ASM Chart

ASM chart can be derived derived an ASM from state diagram of machine ,but

certain rules must be followed when constructing an ASM block. First for every

valid combination of input, there must be exactly one exit path defined .Second ,no

internal feedback within an SM block is allowed.

Mealy Machine.

 In case of Mealy machine, output is a function of both present state and input . For

construction of ASM chart from Mealy state diagram, we should follow the

following steps.

1. Represent each state by state boxes.

2. Put input in decision box after each state box.

3. The Mealy output appears in conditional output boxes since they depend on both

the state and input.

4. Mealy circuit output written only when it is equal to '1' i.e. true.

5. Depending on value of input connect the path to next state box.

Moore Machine. In case of Moore machine, output is a function of the present state

only . For construction of ASM chart from Moore state diagram, we should follow

the following steps

1. Represent each states by state boxes.

2. The Moore output are placed in the state boxes since they do not depend on the

input .

 3. After each state box put the input in decision box.

 4. Depending on value of input connect the path to next state box.

Example3 Convert the state diagram of Fig. below to ASM chart.

12. Constructing an ASM Chart from a Timing Diagram

References
 1. “Digital Logic and Computer design” by M. Morris Mano

2. Textbook of Digital Fundamentals by Thomas L. Floyd (9th Edition)

3. Logic and Computer Design Fundamentals (4th Edition) 4th Edition by M. Morris R. Mano ,

Charles R. Kime.

