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1. FLIP-FLOP 

 In electronics, a flip-flop or latch is a circuit that has two stable states and 

can be used to store state information. Flip-flops and latches are used as data 

storage elements. A flip-flop stores a single bit (binary digit) of data; one of its two 

states represents a "one" and the other represents a "zero". Such data storage can be 

used for storage of state, and such a circuit is described as sequential logic. When 

used in a finite-state machine, the output and next state depend not only on its 

current input, but also on its current state (and hence, previous inputs). It can also 

be used for counting of pulses, and for synchronizing variably-timed input signals 

to some reference timing signal. 

Flip-flops can be either simple (transparent or opaque) or clocked (synchronous or 

edge-triggered). Although the term flip-flop has historically referred generically to 

both simple and clocked circuits, in modern usage it is common to reserve the term 

flip-flop exclusively for discussing clocked circuits; the simple ones are commonly 

called latches. 

Using this terminology, a latch is level-sensitive, whereas a flip-flop is edge-

sensitive. That is, when a latch is enabled it becomes transparent, while a flip flop's 

output only changes on a single type (positive going or negative going) of clock 

edge. 

Flip-flop types 

Flip-flops can be divided into common types 

1.  SR ("set-reset") 

2.  D ("data" or "delay"
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3.  T ("toggle") 

4. JK types are the common ones. 

2. Analysis of clocked sequential circuit 

Sequential Logic Circuits 

Unlike Combinational Logic circuits that change state depending upon the actual 

signals being applied to their inputs at that time, Sequential Logic circuits have 

some form of inherent “Memory” built in to them as they are able to take into 

account their previous input state as well as those actually present, a sort 

of “before” and “after” effect is involved with sequential logic circuits. 

 
 

In other words, the output state of a “sequential logic circuit” is a function of 

the following three states, the “present input”, the “past input” and/or the “past 

output”. Sequential Logic circuits remember these conditions and stay fixed in 

their current state until the next clock signal changes one of the states, giving 

sequential logic circuits “Memory”. 

Sequential logic circuits are generally termed as two state or Bistable 

devices which can have their output or outputs set in one of two basic states, a 

logic level “1” or a logic level “0” and will remain “latched” (hence the name 

latch) indefinitely in this current state or condition until some other input trigger 

pulse or signal is applied which will cause the bistable to change its state once 

again. 

The word “Sequential” means that things happen in a “sequence”, one after 

another and in Sequential Logic circuits, the actual clock signal determines when 
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things will happen next. Simple sequential logic circuits can be constructed from 

standard Bistable circuits such as: Flip-flops, Latches and Counters and which 

themselves can be made by simply connecting together universal NAND Gates 

and/or NOR Gates in a particular combinational way to produce the required 

sequential circuit 

 

3. Flip flop excitation tables - Flip flop excitation tables 

- Design Procedure of SR, Jk, D T flipflops 

SR Flip-Flop 

The SR flip-flop, also known as a SR Latch, can be considered as one of the 

most basic sequential logic circuit possible. This simple flip-flop is basically a one-

bit memory bistable device that has two inputs, one which will “SET” the device 

(meaning the output = “1”), and is labelled S and another which will “RESET” the 

device (meaning the output = “0”), labelled R. 

Then the SR description stands for “Set-Reset”. The reset input resets the 

flip-flop back to its original state with an output Q that will be either at a logic 

level “1” or logic “0” depending upon this set/reset condition. 

A basic NAND gate SR flip-flop circuit provides feedback from both of its 

outputs back to its opposing inputs and is commonly used in memory circuits to 

store a single data bit. Then the SR flip-flop actually has three inputs, Set, Reset 

and its current output Q relating to it’s current state or history. The term “Flip-

flop” relates to the actual operation of the device, as it can be “flipped” into one 

logic Set state or “flopped” back into the opposing logic Reset state. 

The Basic SR Flip-flop 
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The Set State 

Consider the circuit shown above. If the input R is at logic level “0” (R = 0) 

and input S is at logic level “1” (S = 1), the NAND gate Y  has at least one of its 

inputs at logic “0” therefore, its output Q must be at a logic level “1” (NAND Gate 

principles). Output Q is also fed back to input “A” and so both inputs to NAND 

gate X are at logic level “1”, and therefore its output Q must be at logic level “0”. 

Again NAND gate principals. If the reset input R changes state, and goes 

HIGH to logic “1” with S remaining HIGH also at logic level “1”, NAND gate Y 

inputs are now R = “1” and B = “0”. Since one of its inputs is still at logic level “0” 

the output at Q still remains HIGH at logic level “1” and there is no change of 

state. Therefore, the flip-flop circuit is said to be “Latched” or “Set” with Q = “1” 

and Q = “0”. 

Reset State 

In this second stable state, Q is at logic level “0”, (not Q = “0”) its inverse 

output at Q is at logic level “1”, (Q = “1”), and is given by R = “1” and S = “0”. As 

gate X has one of its inputs at logic “0” its output Q must equal logic level “1” 

(again NAND gate principles). Output Q is fed back to input “B”, so both inputs to 

NAND gate Y are at logic “1”, therefore, Q = “0”. 

If the set input, S now changes state to logic “1” with input R remaining at 

logic “1”, output Q still remains LOW at logic level “0” and there is no change of 

state. Therefore, the flip-flop circuits “Reset” state has also been latched and we 

can define this “set/reset” action in the following truth table. 

Truth Table for this Set-Reset Function 

 



It can be seen that when both inputs S = “1” and R = “1” the outputs Q and 

Q can be at either logic level “1” or “0”, depending upon the state of the inputs S 

or R BEFORE this input condition existed. Therefore the condition of S = R = “1” 

does not change the state of the outputs Q and Q. 

However, the input state of S = “0” and R = “0” is an undesirable or invalid 

condition and must be avoided. The condition of S = R = “0” causes both outputs 

Q and Q to be HIGH together at logic level “1” when we would normally want Q 

to be the inverse of Q. The result is that the flip-flop looses control of Q and Q, and 

if the two inputs are now switched “HIGH” again after this condition to logic “1”, 

the flip-flop becomes unstable and switches to an unknown data state based upon 

the unbalance as shown in the following switching diagram. 

S-R Flip-flop Switching Diagram 

 

  

This unbalance can cause one of the outputs to switch faster than the other 

resulting in the flip-flop switching to one state or the other which may not be the 

required state and data corruption will exist. This unstable condition is generally 

known as its Meta-stable state. 

Then, a simple NAND gate SR flip-flop or NAND gate SR latch can be set 

by applying a logic “0”, (LOW) condition to its Set input and reset again by then 

applying a logic “0” to its Reset input. The SR flip-flop is said to be in an “invalid” 

condition (Meta-stable) if both the set and reset inputs are activated 

simultaneously. 



Latch Flip Flop 

The R-S (Reset Set) flip flop is the simplest flip flop of all and easiest to 

understand. It is basically a device which has two outputs one output being the 

inverse or complement of the other, and two inputs. A pulse on one of the inputs to 

take on a particular logical state. The outputs will then remain in this state until a 

similar pulse is applied to the other input. The two inputs are called the Set and 

Reset input (sometimes called the preset and clear inputs). 

Such flip flop can be made simply by cross coupling two inverting gates 

either NAND or NOR gate could be used Figure 1(a) shows on RS flip flop using 

NAND gate and Figure 1(b) sh ows the same circuit using NOR gate. 

 

Figure 1: Latch R-S Flip Flop Using NAND and NOR Gates 

To describe the circuit of Figure 1(a), assume that initially both R and S are 

at the logic 1 state and that output is at the logic 0 state. 

Now, if Q = 0 and R = 1, then these are the states of inputs of gate B, 

therefore the outputs of gate B is at 1 (making it the inverse of Q i.e. 0). The output 

of gate B is connected to an input of gate A so if S = 1, both inputs of gate A are at 

the logic 1 state. This means that the output of gate A must be 0 (as was originally 

specified). In other words, the 0 state at Q is continuously disabling gate B so that 



any change in R has no effect. Also the 1 state at  is continuously enabling gate A 

so that any change S will be transmitted through to Q. The above conditions 

constitute one of the stable states of the device referred to as the Reset state since 

Q = 0. 

Now suppose that the R-S flip flop in the Reset state, the S input goes to 0. 

The output of gate A i.e. Q will go to 1 and with Q = 1 and R = 1, the output of 

gates B ( ) will go to 0 with  now 0 gate A is disabled keeping Q at 1. 

Consequently, when S returns to the 1 state it has no effect on the flip flop whereas 

a change in R will cause a change in the output of gate B. The above conditions 

constitute the other stable state of the device, called the Set state since Q = 1. Note 

that the change of the state of S from 1 to 0 has caused the flip flop to change from 

the Reset state to the Set state. 

There is another input condition which has not yet been considered. That is 

when both the R and S inputs are taken to the logic state 0. When this happens both 

Q and  will be forced to 1 and will remain so far as long as R and S are kept at 0. 

However when both inputs return to 1 there is no way of knowing whether the flip 

flop will latch in the Reset state or the Set state. The condition is said to be 

indeterminate because of this indeterminate state great care must be taken when 

using R-S flip flop to ensure that both inputs are not instructed simultaneously. 

Table 1: The truth table for the NAND R-S flip flop 

 

Table 2: Simple NAND R-S Flip Flop Truth Table 



 

Table 3: NOR Gate R-S Flip Flop Truth Table 

 

Clocked RS Flip Flop 

The RS latch flip flop required the direct input but no clock. It is very use 

full to add clock to control precisely the time at which the flip flop changes the 

state of its output. 

In the clocked R-S flip flop the appropriate levels applied to their inputs are 

blocked till the receipt of a pulse from an other source called clock. The flip flop 

changes state only when clock pulse is applied depending upon the inputs. The 

basic circuit is shown in Figure 2. This circuit is formed by adding two AND gates 

at inputs to the R-S flip flop. In addition to control inputs Set (S) and Reset (R), 

there is a clock input (C) also. 

 

Figure 2: Clocked RS Flip Flop 



Table 4: The truth table for the Clocked R-S flip flop 

 

Table 5: Excitation table for R-S Flip Flop 

 

D Flip Flop 

A D type (Data or delay flip flop) has a single data input in addition to the 

clock input as shown in Figure 3. 

 

Figure 3: D Flip Flop 



Basically, such type of flip flop is a modification of clocked RS flip flop 

gates from a basic Latch flip flop and NOR gates modify it in to a clock RS flip 

flop. The D input goes directly to S input and its complement through NOT gate, is 

applied to the R input. 

This kind of flip flop prevents the value of D from reaching the output until 

a clock pulse occurs. The action of circuit is straight forward as follows. 

When the clock is low, both AND gates are disabled, there fore D can 

change values with out affecting the value of Q. On the other hand, when the clock 

is high, both AND gates are enabled. In this case, Q is forced equal to D when the 

clock again goes low, Q retains or stores the last value of D. The truth table for 

such a flip flop is as given below in table 6. 

Table 6: Truth table for D Flip Flop 

 

Table 7: Excitation table for D Flip Flop 

 

JK Flip Flop 

One of the most useful and versatile flip flop is the JK flip flop the unique features 

of a JK flip flop are: 

1. If the J and K input are both at 1 and the clock pulse is applied, then the 

output will change state, regardless of its previous condition. 

2. If both J and K inputs are at 0 and the clock pulse is applied there will be no 

change in the output. There is no indeterminate condition, in the operation of 

JK flip flop i.e. it has no ambiguous state. The circuit diagram for a JK flip 

flop is shown in Figure 4. 



 

Figure 4: JK Flip Flop 

When J = 0 and K = 0 

These J and K inputs disable the NAND gates, therefore clock pulse have no effect 

on the flip flop. In other words, Q returns it last value. 

When J = 0 and K = 1, 

The upper NAND gate is disabled the lower NAND gate is enabled if Q is 1 

therefore, flip flop will be reset (Q = 0 ,  =1)if not already in that state. 

When J = 1 and K = 0 

The lower NAND gate is disabled and the upper NAND gate is enabled if  is at 1, 

As a result we will be able to set the flip flop ( Q = 1,  = 0) if not already set 

When J = 1 and K = 1 

If Q = 0 the lower NAND gate is disabled the upper NAND gate is enabled. This 

will set the flip flop and hence Q will be 1. On the other hand if Q = 1, the lower 

NAND gate is enabled and flip flop will be reset and hence Q will be 0. In other 

words , when J and K are both high, the clock pulses cause the JK flip flop to 

toggle. Truth table for JK flip flop is shown in table 8. 

Table 8: The truth table for the JK flip flop 

 



Table 6: Excitation table for JK Flip Flop 

 

T Flip Flop 

A method of avoiding the indeterminate state found in the working of RS 

flip flop is to provide only one input ( the T input ) such, flip flop acts as a toggle 

switch. Toggle means to change in the previous stage i.e. switch to opposite state. 

It can be constructed from clocked RS flip flop be incorporating feedback from 

output to input as shown in Figure 5. 

 

Figure 5: T Flip Flop 

Such a flip flop is also called toggle flip flop. In such a flip flop a train of 

extremely narrow triggers drives the T input each time one of these triggers, the 

output of the flip flop changes stage. For instance Q equals 0 just before the 

trigger. Then the upper AND gate is enable and the lower AND gate is disabled. 

When the trigger arrives, it results in a high S input. 

This sets the Q output to 1. When the next trigger appears at the point T, the 

lower AND gate is enabled and the trigger passes through to the R input this forces 

the flip flop to reset. 

Since each incoming trigger is alternately changed into the set and reset 

inputs the flip flop toggles. It takes two triggers to produce one cycle of the output 

waveform. This means the output has half the frequency of the input stated another 

way, a T flip flop divides the input frequency by two. Thus such a circuit is also 

called a divide by two circuit. 



A disadvantage of the toggle flip flop is that the state of the flip flop after a 

trigger pulse has been applied is only known if the previous state is known. The 

truth table for a T flip flop is as given table 7. 

Table 7: Truth table for T Flip Flop 

 
Table 8: Excitation table for T Flip Flop 

 

Generally T flip flop ICs are not available. It can be constructed using JK, RS or D 

flip flop. Figure 6 shows the relation of T flip flop using JK flip flop. 

 

A D-type flip flop may be modified by external connection as a T-type stage 

as shown in Figure 7. Since the Q logic is used as D-input the opposite of the Q 



output is transferred into the stage each clock pulse. Thus the stage having Q - 0 

transistors  = 1, Providing a toggle action, if the stage had Q = 1 the clock pulse 

would result in Q = 0 being transferred, again providing the toggle operation. The 

D-type flip flop connected as in Figure 6 will thus operate as a T-type stage, 

complementing each clock pulse. 

Master Slave Flip Flop 

Figure 8 shows the schematic diagram of master sloave J-K flip flop 

 

Figure 8: Master Slave JK Flip Flop 

A master slave flip flop contains two clocked flip flops. The first is called 

master and the second slave. When the clock is high the master is active. The 

output of the master is set or reset according to the state of the input. As the slave 

is inactive during this period its output remains in the previous state. When clock 

becomes low the output of the slave flip flop changes because it become active 

during low clock period. The final output of master slave flip flop is the output of 

the slave flip flop. So the output of master slave flip flop is available at the end of a 

clock pulse. 

4. Design of counters 

Counter is a sequential circuit. A digital circuit which is used for a counting pulses 

is known counter. Counter is the widest application of flip-flops. It is a group of 

flip-flops with a clock signal applied. Counters are of two types. 

 Asynchronous or ripple counters. 

 Synchronous counters 

5. Registers 

 Flip-flop is a 1 bit memory cell which can be used for storing the digital 

data. To increase the storage capacity in terms of number of bits, we have to use a 

group of flip-flop. Such a group of flip-flop is known as a Register. The n-bit 



register will consist of n number of flip-flop and it is capable of storing an n-bit 

word. 

 

6. Shift Register 

  The Shift Register is another type of sequential logic circuit that can be used 

for the storage or the transfer of data in the form of binary numbers. This 

sequential device loads the data present on its inputs and then moves or “shifts” it 

to its output once every clock cycle, hence the name “shift register”. 

 A shift register basically consists of several single bit “D-Type Data Latches”, one 

for each data bit, either a logic “0” or a “1”, connected together in a serial type 

daisy-chain arrangement so that the output from one data latch becomes the input 

of the next latch and so on. 

Data bits may be fed in or out of a shift register serially, that is one after the other 

from either the left or the right direction, or all together at the same time in a 

parallel configuration. 

The number of individual data latches required to make up a single Shift 

Register device is usually determined by the number of bits to be stored with the 

most common being 8-bits (one byte) wide constructed from eight individual data 

latches. 

Shift Registers are used for data storage or for the movement of data and are 

therefore commonly used inside calculators or computers to store data such as two 

binary numbers before they are added together, or to convert the data from either a 

serial to parallel or parallel to serial format. The individual data latches that make 

up a single shift register are all driven by a common clock ( Clk ) signal making 

them synchronous devices. 

Shift register IC’s are generally provided with a clear or reset connection so that 

they can be “SET” or “RESET” as required. Generally, shift registers operate in 

one of four different modes with the basic movement of data through a shift 

register being: 

  Serial-in to Parallel-out (SIPO)  -  the register is loaded with serial data, one bit 

at a time, with the stored data being available at the output in parallel form. 
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  Serial-in to Serial-out (SISO)  -  the data is shifted serially “IN” and “OUT” of 

the register, one bit at a time in either a left or right direction under clock control. 

  Parallel-in to Serial-out (PISO)  -  the parallel data is loaded into the register 

simultaneously and is shifted out of the register serially one bit at a time under 

clock control. 

  Parallel-in to Parallel-out (PIPO)  -  the parallel data is loaded simultaneously 

into the register, and transferred together to their respective outputs by the same 

clock pulse. 

The effect of data movement from left to right through a shift register can be 

presented graphically as: 

 
  

Also, the directional movement of the data through a shift register can be either to 

the left, (left shifting) to the right, (right shifting) left-in but right-out, (rotation) or 

both left and right shifting within the same register thereby making it bidirectional. 

In this tutorial it is assumed that all the data shifts to the right, (right shifting). 

4-bit Serial-in to Parallel-out Shift Register 



 
  

The operation is as follows. Lets assume that all the flip-flops ( FFA to FFD ) have 

just been RESET ( CLEAR input ) and that all the outputs QA to QD are at logic 

level “0” ie, no parallel data output. 

If a logic “1” is connected to the DATA input pin of FFA then on the first clock 

pulse the output of FFA and therefore the resulting QA will be set HIGH to logic 

“1” with all the other outputs still remaining LOW at logic “0”. Assume now that 

the DATA input pin of FFA has returned LOW again to logic “0” giving us one 

data pulse or 0-1-0. 

The second clock pulse will change the output of FFA to logic “0” and the output 

of FFB and QB HIGH to logic “1” as its input D has the logic “1” level on it 

from QA. The logic “1” has now moved or been “shifted” one place along the 

register to the right as it is now atQA. 

When the third clock pulse arrives this logic “1” value moves to the output 

of FFC ( QC ) and so on until the arrival of the fifth clock pulse which sets all the 

outputs QA to QD back again to logic level “0” because the input to FFA has 

remained constant at logic level “0”. 

The effect of each clock pulse is to shift the data contents of each stage one place 

to the right, and this is shown in the following table until the complete data value 

of  0-0-0-1 is stored in the register. This data value can now be read directly from 

the outputs of QA to QD. 



Then the data has been converted from a serial data input signal to a parallel data 

output. The truth table and following waveforms show the propagation of the logic 

“1” through the register from left to right as follows. 

Basic Data Movement Through A Shift Register 

Clock 

Pulse 

No 

QA QB QC QD 

0 0 0 0 0 

1 1 0 0 0 

2 0 1 0 0 

3 0 0 1 0 

4 0 0 0 1 

5 0 0 0 0 

  



 
  

Note that after the fourth clock pulse has ended the 4-bits of data ( 0-0-0-1 ) are 

stored in the register and will remain there provided clocking of the register has 

stopped. In practice the input data to the register may consist of various 

combinations of logic “1” and “0”. Commonly available SIPO IC’s include the 

standard 8-bit 74LS164 or the 74LS594. 

Serial-in to Serial-out (SISO) Shift Register 

This shift register is very similar to the SIPO above, except were before the 

data was read directly in a parallel form from the outputs QA to QD, this time the 

data is allowed to flow straight through the register and out of the other end. Since 

there is only one output, the DATA leaves the shift register one bit at a time in a 

serial pattern, hence the name Serial-in to Serial-Out Shift Register or SISO. 

The SISO shift register is one of the simplest of the four configurations as it 

has only three connections, the serial input (SI) which determines what enters the 

left hand flip-flop, the serial output (SO) which is taken from the output of the 

right hand flip-flop and the sequencing clock signal (Clk). The logic circuit 

diagram below shows a generalized serial-in serial-out shift register. 

 



4-bit Serial-in to Serial-out Shift Register 

 
  

You may think what the point of a SISO shift register is if the output data is 

exactly the same as the input data. Well this type of Shift Register also acts as a 

temporary storage device or it can act as a time delay device for the data, with the 

amount of time delay being controlled by the number of stages in the register, 4, 8, 

16 etc or by varying the application of the clock pulses. Commonly available IC’s 

include the 74HC595 8-bit Serial-in to Serial-out Shift Register all with 3-state 

outputs. 

Parallel-in to Serial-out (PISO) Shift Register 

The Parallel-in to Serial-out shift register acts in the opposite way to the 

serial-in to parallel-out one above. The data is loaded into the register in a parallel 

format in which all the data bits enter their inputs simultaneously, to the parallel 

input pins PA to PD of the register. The data is then read out sequentially in the 

normal shift-right mode from the register at Q representing the data present 

at PA to PD. 

This data is outputted one bit at a time on each clock cycle in a serial format. 

It is important to note that with this type of data register a clock pulse is not 

required to parallel load the register as it is already present, but four clock pulses 

are required to unload the data. 

 

 

 



4-bit Parallel-in to Serial-out Shift Register 

 
  

As this type of shift register converts parallel data, such as an 8-bit data 

word into serial format, it can be used to multiplex many different input lines into a 

single serial DATA stream which can be sent directly to a computer or transmitted 

over a communications line. Commonly available IC’s include the 74HC166 8-bit 

Parallel-in/Serial-out Shift Registers. 

Parallel-in to Parallel-out (PIPO) Shift Register 

The final mode of operation is the Parallel-in to Parallel-out Shift Register. 

This type of shift register also acts as a temporary storage device or as a time delay 

device similar to the SISO configuration above. The data is presented in a parallel 

format to the parallel input pins PA to PD and then transferred together directly to 

their respective output pins QA to QA by the same clock pulse. Then one clock 

pulse loads and unloads the register. This arrangement for parallel loading and 

unloading is shown below. 

4-bit Parallel-in to Parallel-out Shift Register 

 



 The PIPO shift register is the simplest of the four configurations as it has only 

three connections, the parallel input (PI) which determines what enters the flip-

flop, the parallel output (PO) and the sequencing clock signal (Clk). 

Similar to the Serial-in to Serial-out shift register, this type of register also 

acts as a temporary storage device or as a time delay device, with the amount of 

time delay being varied by the frequency of the clock pulses. Also, in this type of 

register there are no interconnections between the individual flip-flops since no 

serial shifting of the data is required. 

Universal Shift Register 

Today, there are many high speed bi-directional “universal” type Shift 

Registers available such as the TTL 74LS194, 74LS195 or the CMOS 4035 which 

are available as 4-bit multi-function devices that can be used in either serial-to-

serial, left shifting, right shifting, serial-to-parallel, parallel-to-serial, or as a 

parallel-to-parallel multifunction data register, hence the name “Universal”. 

These universal shift registers can perform any combination of parallel and 

serial input to output operations but require additional inputs to specify desired 

function and to pre-load and reset the device. A commonly used universal shift 

register is the TTL 74LS194 as shown below. 

4-bit Universal Shift Register 74LS194 

 



  Universal shift registers are very useful digital devices. They can be 

configured to respond to operations that require some form of temporary memory 

storage or for the delay of information such as the SISO or PIPO configuration 

modes or transfer data from one point to another in either a serial or parallel 

format. Universal shift registers are frequently used in arithmetic operations to 

shift data to the left or right for multiplication or division. 

 

 

 

7. Binary Synchronous Counter 

In Asynchronous binary counter , the output of one counter stage is 

connected directly to the clock input of the next counter stage and so on along the 

chain, and as a result the asynchronous counter suffers from what is known as 

“Propagation Delay” in which the timing signal is delayed a fraction through each 

flip-flop.However, with the Synchronous Counter, the external clock signal is 

connected to the clock input of EVERY individual flip-flop within the counter so 

that all of the flip-flops are clocked together simultaneously (in parallel) at the 

same time giving a fixed time relationship. In other words, changes in the output 

occur in “synchronisation” with the clock signal. 

The result of this synchronisation is that all the individual output bits 

changing state at exactly the same time in response to the common clock signal 

with no ripple effect and therefore, no propagation delay. 

 

 

 

 



Binary 4-bit Synchronous Up Counter 

 

It can be seen above, that the external clock pulses (pulses to be counted) are 

fed directly to each of the J-K flip-flops in the counter chain and that both 

the J and K inputs are all tied together in toggle mode, but only in the first flip-

flop, flip-flop FFA(LSB) are they connected HIGH, logic “1” allowing the flip-

flop to toggle on every clock pulse. Then the synchronous counter follows a 

predetermined sequence of states in response to the common clock signal, 

advancing one state for each pulse.The J and K inputs of flip-flop FFB are 

connected directly to the output QA of flip-flopFFA, but the J and K inputs of flip-

flops FFC and FFD are driven from separate AND gates which are also supplied 

with signals from the input and output of the previous stage. These 

additional AND gates generate the required logic for the JK inputs of the next 

stage.If we enable each JK flip-flop to toggle based on whether or not all preceding 

flip-flop outputs (Q) are “HIGH” we can obtain the same counting sequence as 

with the asynchronous circuit but without the ripple effect, since each flip-flop in 

this circuit will be clocked at exactly the same time.Then as there is no inherent 

propagation delay in synchronous counters, because all the counter stages are 

triggered in parallel at the same time, the maximum operating frequency of this 

type of frequency counter is much higher than that for a similar asynchronous 

counter circuit. 
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8. Timing sequence 

4-bit Synchronous Counter Waveform Timing Diagram. 

 

 

Because this 4-bit synchronous counter counts sequentially on every clock 

pulse the resulting outputs count upwards from 0 ( 0000 ) to 15 ( 1111 ). Therefore, 

this type of counter is also known as a 4-bit Synchronous Up Counter. 

However, we can easily construct a 4-bit Synchronous Down Counter by 

connecting the AND gates to the Q output of the flip-flops as shown to produce a 

waveform timing diagram the reverse of the above. Here the counter starts with all 

of its outputs HIGH ( 1111 ) and it counts down on the application of each clock 

pulse to zero, ( 0000 ) before repeating again. 

 

 

 

 

 



Binary 4-bit Synchronous Down Counter 

 

 

As synchronous counters are formed by connecting flip-flops together and 

any number of flip-flops can be connected or “cascaded” together to form a 

“divide-by-n” binary counter, the modulo’s or “MOD” number still applies as it 

does for asynchronous counters so a Decade counter or BCD counter with counts 

from 0 to 2
n
-1 can be built along with truncated sequences. All we need to increase 

the MOD count of an up or down synchronous counter is an additional flip-flop 

and AND gate across it. 

Decade 4-bit Synchronous Counter 

A 4-bit decade synchronous counter can also be built using synchronous 

binary counters to produce a count sequence from 0 to 9. A standard binary counter 

can be converted to a decade (decimal 10) counter with the aid of some additional 

logic to implement the desired state sequence. After reaching the count of “1001”, 

the counter recycles back to “0000”. We now have a decade or Modulo-

10 counter. 

 

 

 



Decade 4-bit Synchronous Counter 

 

 

The additional AND gates detect when the counting sequence reaches 

“1001”, (Binary 10) and causes flip-flop FF3 to toggle on the next clock pulse. 

Flip-flop FF0 toggles on every clock pulse. Thus, the count is reset and starts over 

again at “0000” producing a synchronous decade counter. 

We could quite easily re-arrange the additional AND gates in the above 

counter circuit to produce other count numbers such as a Mod-12 counter which 

counts 12 states from”0000″ to “1011” (0 to 11) and then repeats making them 

suitable for clocks, etc. 

Triggering A Synchronous Counter 

Synchronous Counters use edge-triggered flip-flops that change states on 

either the “positive-edge” (rising edge) or the “negative-edge” (falling edge) of the 

clock pulse on the control input resulting in one single count when the clock input 

changes state. 

Generally, synchronous counters count on the rising-edge which is the low 

to high transition of the clock signal and asynchronous ripple counters count on the 

falling-edge which is the high to low transition of the clock signal. 



 

It may seem unusual that ripple counters use the falling-edge of the clock 

cycle to change state, but this makes it easier to link counters together because the 

most significant bit (MSB) of one counter can drive the clock input of the 

next.This works because the next bit must change state when the previous bit 

changes from high to low – the point at which a carry must occur to the next bit. 

Synchronous counters usually have a carry-out and a carry-in pin for linking 

counters together without introducing any propagation delays. 

4-bit Ring Counter 

 
  

The synchronous Ring Counter example above is preset so that exactly one 

data bit in the register is set to logic “1” with all the other bits reset to “0”. To 

achieve this, a “CLEAR” signal is firstly applied to all the flip-flops together in 

order to “RESET” their outputs to a logic “0” level and then a “PRESET” pulse is 

applied to the input of the first flip-flop ( FFA ) before the clock pulses are applied. 

This then places a single logic “1” value into the circuit of the ring counter. 

So on each successive clock pulse, the counter circulates the same data bit 

between the four flip-flops over and over again around the “ring” every fourth 



clock cycle. But in order to cycle the data correctly around the counter we must 

first “load” the counter with a suitable data pattern as all logic “0’s” or all logic 

“1’s” outputted at each clock cycle would make the ring counter invalid. 

This type of data movement is called “rotation”, and like the previous shift 

register, the effect of the movement of the data bit from left to right through a ring 

counter can be presented graphically as follows along with its timing diagram: 

Rotational Movement of a Ring Counter 

 
  

 
  

Since the ring counter example shown above has four distinct states, it is 

also known as a “modulo-4” or “mod-4” counter with each flip-flop output having 

a frequency value equal to one-fourth or a quarter (1/4) that of the main clock 

frequency. 



The “MODULO” or “MODULUS” of a counter is the number of states the 

counter counts or sequences through before repeating itself and a ring counter can 

be made to output any modulo number. A “mod-n” ring counter will require “n” 

number of flip-flops connected together to circulate a single data bit providing “n” 

different output states. 

For example, a mod-8 ring counter requires eight flip-flops and a mod-16 

ring counter would require sixteen flip-flops. However, as in our example above, 

only four of the possible sixteen states are used, making ring counters very 

inefficient in terms of their output state usage. 

Johnson Ring Counter 

The Johnson Ring Counter or “Twisted Ring Counters”, is another shift 

register with feedback exactly the same as the standard Ring Counter above, except 

that this time the inverted output Q of the last flip-flop is now connected back to 

the input D of the first flip-flop as shown below. 

The main advantage of this type of ring counter is that it only needs half the 

number of flip-flops compared to the standard ring counter then its modulo number 

is halved. So a “n-stage” Johnson counter will circulate a single data bit giving 

sequence of 2ndifferent states and can therefore be considered as a “mod-2n 

counter”. 

4-bit Johnson Ring Counter 

 

 



  This inversion of Q before it is fed back to input D causes the counter to 

“count” in a different way. Instead of counting through a fixed set of patterns like 

the normal ring counter such as for a 4-bit counter, “0001”(1), “0010”(2), 

“0100”(4), “1000”(8) and repeat, the Johnson counter counts up and then down as 

the initial logic “1” passes through it to the right replacing the preceding logic “0”. 

A 4-bit Johnson ring counter passes blocks of four logic “0” and then four 

logic “1” thereby producing an 8-bit pattern. As the inverted output Q is connected 

to the input D this 8-bit pattern continually repeats. For example, “1000”, “1100”, 

“1110”, “1111”, “0111”, “0011”, “0001”, “0000” and this is demonstrated in the 

following table below. 

Truth Table for a 4-bit Johnson Ring Counter 

Clock Pulse 

No 
FFA FFB FFC FFD 

0 0 0 0 0 

1 1 0 0 0 

2 1 1 0 0 

3 1 1 1 0 

4 1 1 1 1 



5 0 1 1 1 

6 0 0 1 1 

7 0 0 0 1 

As well as counting or rotating data around a continuous loop, ring counters 

can also be used to detect or recognize various patterns or number values within a 

set of data. By connecting simple logic gates such as the AND or the OR gates to 

the outputs of the flip-flops the circuit can be made to detect a set number or value. 

Standard 2, 3 or 4-stage Johnson Ring Counters can also be used to divide 

the frequency of the clock signal by varying their feedback connections and divide-

by-3 or divide-by-5 outputs are also available. 

For example, a 3-stage Johnson Ring Counter could be used as a 3-phase, 

120 degree phase shift square wave generator by connecting to the data outputs 

at A, B and NOT-B. 

The standard 5-stage Johnson counter such as the commonly available 

CD4017 is generally used as a synchronous decade counter/divider circuit. 

Other combinations such as the smaller 2-stage circuit which is also called a 

“Quadrature” (sine/cosine) Oscillator or Generator can be used to produce four 

individual outputs that are each 90 degrees “out-of-phase” with respect to each 

other to produce a 4-phase timing signal as shown below. 
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9. Algorithmic State Machines 

 

Algorithm State Machines(ASM) ASM stands for 'Algorithm State Machine 'or 

simply state machine is the another name given to sequential network is used to 

control a digital system which carries out a step by a step –by step procedure .It 

should be noted that ASM charts represent physical hardware and offers several 

advantages.  

1. Operation of a digital system can be easily understand by inspection of the SM 

chart . 

 2. ASM charts represent physical hardware. 

 3. The ASM chart are equivalent to a state graph, and it leads directly to a 

hardware realization . 4. ASM charts can be described the operation of both 

combinational and sequential circuits . 

 5. ASM charts are easier to understand and can be converted several equivalent 

form.  

6. The ASM chart may be equivalently expressed as a state and output table .  

10. ASM chart 

Principal Component Of An ASM Chart 

•State Box.  

The state of the system is represented by a state box .It is a rectangular box .At the 

top left hand corner the name of state is shown ,which at the top right hand corner 

the state assignment is given .Within the state box ,the output signals are listed . 



 

• Decision box .It a diamond –shaped box with true false branches .Boolean 

condition is placed in the box and the decision is made from the value of one or 

more input signals .The decision box must follow and be associated with a state 

 

Conditional output box .A condition output box is shown in Fig. is a rectangular 

box with curved ends .It contain conditional output list .The conditional output 

depends on both the state of the system and the inputs .Therefore the conditional 

output signals are sometimes known as Mealy output .A condition output must 

follow a decision box 

 



Equivalent ASM charts ASM charts are not unique, it may have more than one 

equivalent form Fig. shown three equivalent ASM charts for combinational 

network Z=A(B+C). 

 

11.  control implementation 

Conversion Of State Diagram To An ASM Chart  

ASM chart can be derived derived an ASM from state diagram of machine ,but 

certain rules must be followed when constructing an ASM block. First for every 

valid combination of input, there must be exactly one exit path defined .Second ,no 

internal feedback within an SM block is allowed.  

Mealy Machine. 

 In case of Mealy machine, output is a function of both present state and input . For 

construction of ASM chart from Mealy state diagram, we should follow the 

following steps.  

1. Represent each state by state boxes. 

2. Put input in decision box after each state box. 



3. The Mealy output appears in conditional output boxes since they depend on both 

the state and input. 

4. Mealy circuit output written only when it is equal to '1' i.e. true.  

5. Depending on value of input connect the path to next state box. 

 



 

Moore Machine. In case of Moore machine, output is a function of the present state 

only . For construction of ASM chart from Moore state diagram, we should follow 

the following steps 

1. Represent each states by state boxes.  

2. The Moore output are placed in the state boxes since they do not depend on the 

input . 

 3. After each state box put the input in decision box. 

 4. Depending on value of input connect the path to next state box. 

Example3 Convert the state diagram of Fig. below to ASM chart. 



 

 

 

 

 

 

 



12. Constructing an ASM Chart from a Timing Diagram 
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