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UNIT - I 

Number Systems - Binary Numbers - Number base conversions - Octal and Hexa Decimal Numbers - 
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Correction. 

 

1. Number System 

A number system relates quantities and symbols.In digital system  how information is represented is key 

and there are different radices, i.e. number bases, that a numbering system can use.  

1.1 Digital computer 

Any class of devices capable of solving problems by processing information in discrete form.It operates on 

data,including letters and symbols,that are expressed in binary form i.e using only two digits 0 and 1. 

The block diagram of digital computer is given below: 

 

 

 

 

 

 

 

 

 

 

The memory unit stores programs as well as input, output and intermediate data. The processor unit 

performs arithmetic and other data processing tasks as specified by the program.The control unit 

supervises the flow of information between various units. The program and data prepared by the user 

are transferred into the memory unit by means of an input device such as punch card reader (or) tele 

typewriter. An output device, such as printer, receives the result of the computations and the printed 

results are presented to the user. 

1.2 Number Representation: 
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It can have different base values like: binary (base-2), octal (base-8), decimal (base 10) and 

hexadecimal (base 16),here the  base number represents the number of digits used in that numbering 

system. As an example, in  decimal numbering system the digits used  are: 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9. 

Therefore the digits for binary are: 0 and 1, the digits for octal are: 0, 1, 2, 3, 4, 5, 6 and 7. For the 

hexadecimal numbering system, base 16, the digits are: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. 

2. Binary numbers 

Numbers that contain only two digit 0 and 1 are called Binary Numbers. Each 0 or 1 is called a Bit, 

from binary digit. A binary number of 4 bits is called a Nibble. A binary number of 8 bits is called a 

Byte. A binary number of 16 bits is called a Word on some systems, on others a 32-bit number is called 

a Word while a 16-bit number is called a Halfword. 

Using 2 bit 0 and 1 to form 

a binary number of 1 bit,  numbers are 0 and 1 

a binary number of 2 bit,  numbers are 00, 01, 10, 11 

a binary number of 3 bit, such numbers are 000, 001, 010, 011, 100, 101, 110, 111 

a binary number of 4 bit, such numbers are 0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 

1001, 1010, 1011, 1100,1101,1110,1111 

Therefore , using n bits there are 2n binary numbers of n bits 

Each digit in a binary number has a value or weight. The LSB has a value of 1. The second from the right 

has a value of 2, the next 4 , etc.,  

16 8 4 2 1 

2
4
 2

3
 2

2
 2

1
 2

0
 

 

The binary equivalent for some decimal numbers are given below. 

Decimal 0 1 2 3 4 5 6 7 8 9 10 11 

Binary 0 1 10 11 100 101 110 111 1000 1001 1010 1011 

 

3. Number Base Conversions 
 

3.1 Conversion of decimal number to any number system 
Step 1 convert the integer part by doing successive division using the radix of asked number systems. 
Step 2 convert the fractional part by doing successive multiplication using radix of asked number system  
 
3.2 Conversion of decimal to binary number system  
   The radix of asked number system is 2  

Convert 8710 to (  )2 



  
                                ( 1010111)2 

 

Convert (14.625)10 decimal number to binary number  

(1110)2 

1st Multiplication Iteration 
Multiply 0.625 by 2 
0.625 x 2 = 1.25(Product)         Fractional part=0.25          Carry=1    (MSB) 
 
2nd Multiplication Iteration 
Multiply 0.25 by 2 
     0.25 x 2 = 0.50(Product)         Fractional part = 0.50        Carry = 0    
 
3rd Multiplication Iteration 
Multiply 0.50 by 2 
      0.50 x 2 = 1.00(Product)       Fractional part = 1.00    Carry = 1  (LSB)     
   (101)2 

     The binary number of (16.625)10 is (1110.101)2 

 

3.3 Conversion of decimal to octal number system  
   The radix of asked number system is 8 

Convert (264)10 decimal number to octal number  

 

 
 
 (410)8 

     The octal number of (264)10 is (410)8 

MSB 



Convert (105.589)10 decimal number to octal number  

                  ( 0.4554) 
     The octal number of (105.589)10 is (151.4554)8 

 
3.4 Conversion of decimal to Hexadecimal  number system  
   The radix of asked number system is 16 
Convert (1693)10 decimal number to Hexadecimal number  

1693/16  = 105       Reminder   (13)  D  (LSB) 
105/16  =  6            Reminder            9 
6/16  =     0             Reminder            6   (MSB) 
 
(1693)10  (69D)16 

Convert (1693.0628)10 decimal fraction to hexadecimal fraction (?)16   
1693/16  = 105       Reminder   (13)  D  (LSB) 
105/16  =  6            Reminder            9 
6/16  =     0             Reminder            6   (MSB)  
(69D) 
 

Multiply 0.0628 by 16 
0.0628 x 16 = 1.0048(Product)    Fractional part=0.0048   Carry=1    (MSB) 

Multiply 0.0048 by 16 
   0.0048 x 16 = 0.0768(Product)         Fractional part = 0.0768         Carry = 0  
Multiply 0.0768 by 16 

   0.0768 x 16 = 1.2288(Product)       Fractional part = 0.2288     Carry = 1     

   
Multiply 0.2288 by 16 

    0.2288 x 16 = 3.6608(Product)         Fractional part = 0.6608    Carry = 3 (LSB)  
(.1013) 

 
(1693.0628)10 = (69D.1013)16 

 

3.5 Conversion of any number system to  decimal number system 

1 

LSB                           (151) 

MSB 

MSB 

LSB 



In general the numbers can be represented as  
N= A n-1r n-1  + = A n-2r n-2  +……..+ A1 r

1 + A0 r
0 + A-1 r-

1+ A-2 r-
2+……… 

Where n= number in decimal 
A= digit 
r= radix of  number system 
n= The number of digits in the integer portion of number 
m= the number of digits in the fractional portion of number 
 

3.6 Conversion of binary to decimal number system  
Convert ( 101.101 )2= ( ? )10 
 
 101.101  
= 1 x 22 + 0 x 21 + 1 x 20 .  1 x 2-1 + 0 x 2-2  + 1 x 2-3  
 

= 1 x 4 + 0 x 2 + 1 x 1 .  1 x ( 1 / 2 ) + 0 x ( 1 / 4 )  + 1 x ( 1 / 8 )   
 
=  4 + 0  + 1  .  ( 1 / 2 ) +  0   +  ( 1 / 8 )    
 
= 5  +  0.5  +  0.125 
= 5 . 625 
Therefore  ( 1 0 1 . 1 0 1 )2 =  ( 5.625 )10 
 
3.7 Conversion of octal to decimal number system  

Convert (128)8= ( ? )10 
1238 = 1*82 + 2*81 + 3*80 = 64 + 16 + 3 = 73  

the decimal equivalent of the number 1238 is 7310 
Convert (2 1. 2 1)8= (? )10 
2 1. 2 1 

= 2 x 81 + 1 x 80.  2 x 8-1 + 1 x 8-2   
= 2 x 8 + 1 x 1.  2 x ( 1 / 8 ) + 1 x ( 1 / 64 )   
= 16 +  1  .  (0. 2 5) + (0. 0 1 5 6 2 5)    
= 17 + 0. 265625 
= 17. 265625 

         Therefore (2 1. 2 1)8 = (1 7. 2 6 5 6 2 5)10 

 
3.8 Conversion of hexadecimal to decimal number system 
 
Convert (E F. B 1)16= (?)10 

 

= E x 161 + F x 160.  B x 16-1 + 1 x 16-2   
= 14 x 16 + 15 x 1   .  11 x (1 / 16) + 1 x (1 / 256)   
= 224   +    15 +  (0. 6 8 7 5) + (0. 0 0 3 9 0 6 2 5)    
= 239 + 0. 6914 
= 239. 691406 
Therefore (E F. B 1)16 = (2 3 9.  6 9 1 4 0 6)10 
 
Convert ( 0.9D9 )16= ( ? )10 
 
= 0 x 160.  9 x 16-1 + D x 16-2 + 9 x 16-3 
= 0 x 1.  9 x ( 1 / 16 ) + 13 x ( 1 / 256 )  + 9 x ( 1 / 4096 )  
=  0  .  (0. 5625) + (0. 050781)   + (0. 0021972 )    
= 0.  (0. 6154782 ) 



= 0. 6154782 

 
3.9  Conversion of  binary to octal number system  

Convert  (101101001)2 to (   )8 
Divide the binary  into group of three digits from LSB we will find the following pattern 
101|101|001 Now writing the equivalent decimal number of each group we get 5 | 5 | 1 So the 
equivalent octal number is 5518 

 
Convert 11001100.101 to (   )8 

011|001|100. |101| 
3        1      4   . 5 
So the equivalent octal number is 314.5 
 

3.10 Conversion of  binary to hexadecimal number system 
Convert 111100010 to (   )16 

    Divide the binary  into group of four digits from LSB  
0001|1110|0010 
Now writing the equivalent hexadecimal number of each group  

1|E|2 
So the equivalent Hexa decimal number is 1E216 

     Convert 11000011001.101 to (   )16 
0110|0001|1001|.1010| 
6         1      9       .  A 

       So the equivalent Hexa decimal number is 619.A16 

 
3.11  Conversion of octal number system to hexa decimal number system 

 Convert  ( 25)8    to  (  )16 
First convert octal to binary 
The binary equivalent of 25 is 010101 
Divide the binary into group of four digits from LSB  

          0001|0101 
             1    5 
      So the equivalent Hexa decimal number is 1516 

 

3.12    Conversion of hexa decimal number system to octal number system 
       Convert  ( 1A.2B)16    to  (  )8 

First convert hexadecimal to binary 
The binary equivalent of 1A.2B  is  00011010.00101011 
Divide the binary  into group of Three digits  
011|010|.|001|010|110 
3       2    . 1      2   6  

so the equivalent octal number  is 32.1268   

 

4. COMPLEMENTS 
In digital computers to simplify the subtraction operation and for logical manipulation complements 

are used . There are two types of complements for  each radix system the radix complement and diminished 
radix complement. The first is referred to as the r’s complement and the second as the (r-1)’s complement.  

r’s Complement 
              Given a positive number N in base r with an integer part of n digits, the r’s complement of N is 
defined as rn-N if N≠0 and 0 if N=0 



(r-1)’s Complement 

                Given a positive number N in base r with an integer part of n digits and a fraction part of m 

digits, the (r-1)’s complement of N is defined as rn-r-m-N 

Subtraction with r’s complement 

 The direct method of subtraction uses the borrow concept 

 When subtraction is implemented by means of digital components, this method is found to be 

less efficient. So, instead the following procedure can be followed. 

  The subtraction of two positive numbers (M-N), both of base r, may be done as follows. 

(1) Add the minuend M to the r’s complement of the subtrahend N. 
(2) Inspect the result obtained in step 1 for an end carry. 

 If an end-carry occurs, discard it. 

 If an end-carry does not occurs, take the r’s complement of the number obtained in step 

1 and place a negative sign in front. 

 

  

Subtraction with (r-1)’s Complement 

 The procedure for subtraction with (r-1)’s complement is same as r’s complement except for 
end-around carry. 

 The subtraction of M-N, both positive numbers in base r, may be calculated in the following 

manner. 

1. Add the minuend M to the (r-1)’s complement of the subtrahend N. 
2. Inspect the result obtained in step 1 for an end carry. 

 If an end-carry occurs, add 1 to the least significant digit (end-around carry) 

 If an end-carry does not occur, take the (r-1)’s complement of the number 
obtained in step 1 and place a negative sign in front. 

 
               It is classified into four types they are 1’s complement , 2’s complement , 9’s complement  and  
10’s complement. 
4.1   1’s complement representation: The 1’s complement of a binary number is the number that 
results when we change all 1’s to zeros and the zeros to ones. 
2’s complement representation: 
 The 2’s complement is the binary number that results when we add 1 to the 1’s complement. 
Problems related to 1’s complement and 2’s complement : 



 

 

 
4.2   1’s complement subtraction  

Subtraction of binary numbers can be accomplished by the direct method by using the 1’s complement 
method, which allows to perform subtraction using only addition . for subtraction of two numbers we have 
two cases. 

1. Subtraction of smaller number from larger number and 
2. Subtraction of larger number from smaller number. 

 
1’s complement Subtraction of smaller number from larger number 

 
Method: 

1. Determine the 1’s complement of the smaller number. 
2. Add the 1’s complement to the larger number. 
3. Remove the carry and add it to the result. 

This is called end -around carry. 



 
1’s complement Subtraction of larger number from smaller number 

Method: 

1. Determine the 1’s complement of the larger number. 
2. Add the 1’s complement to the smaller number. 
3. Answer is in 1’s complement form. To get the answer in true form take the 1’s complement and 

assign negative sign to the answer. 

  
Advantages of 1’s complement subtraction : 

1. The 1’s complement subtraction can be accomplished with an binary adder. Therefore , this method 
is useful in arithmetic logic circuits. 

2. The 1’s complement of a number is easily obtained by inverting each bit in the number. 
4.3   2’s complement Subtraction: 

Like 1’s complement subtraction, in 2’s complement subtraction, the subtraction is accomplished 
by only addition.  

2’s complement Subtraction of smaller number from larger number 

Method  

1. Determine the 2’s complement of the smaller number. 
2. Add the 2’s complement to the larger number. 
3. Discard  the carry. 

 
2’s complement Subtraction of larger number from smaller number 

Method: 

 
1. Determine the 2’s complement of the larger number. 
2. Add the 2’s complement to the smaller number. 



3. Answer is in 2’s complement form. To get the answer in true form take the 2’s complement and 
assign negative sign to the answer. 

 
4.4    9's complement and 10's complement 

Before knowing about 9's complement and 10's complement we should know why they are used 
and why their concept came into existence. Addition of signed BCD numbers can be performed by using 
9’s and 10’s complement.  The complements are used to make the arithmetic operations in digital system 
easier. Various topics and related problems we going to see here are 

 
1. 9s complement 
2. 10s complement 
3. 9s complement subtraction 
4. 10s complement subtraction 

 
Now first of all let us know what 9's complement is and how it is done. To obtain the 9,s complement 

of any number we have to subtract the number with (10n - 1) where n = number of digits in the number, or 
in a simpler manner we have to divide each digit of the given decimal number with 9. The table 1.  will 
explain the 9's complement more easily.  

 
Table 1.    9’s complement equivalent for decimalo numbers 

 

Decimal digit 
9s 
complement 

0 9 

1 8 

2 7 

3 6 

4 5 

5 4 

6 3 

7 2 

8 1 

9 0 

 



Now coming to 10's complement, it is relatively easy to find out the 10's complement after finding 
out the 9,s complement of that number. We have to add 1 with the 9,s complement of any number to obtain 
the desired 10's complement of that number. Or if we want to find out the 10's complement directly, we can 
do it by following the formula, (10n - number), where n = number of digits in the number. An example is 
given below to illustrate the concept of obtaining 10’s complement 

 

 A decimal number 456, find  9's complement and 10’s complement of this number  

 
10's complement of that no. is  
 

 
 

In 9’s complement subtraction when 9’s complement of smaller number number is added to the 
larger number carry is generated. It is necessary to add this carry to the result. ( this is called an end around 
carry).when larger number is subtracted from the smaller number, there is no carry, and the result is in 9’s 
compliment form and negative. This is explained with following examples. 

 
Subtraction using 9’s complements: 

 

 
Steps for 9’s complement BCD subtraction 

 
1. Find the 9’s complement of a negative number. 
2. Add two numbers using BCD addition 
3. If carry is generated add carry to the result otherwise find the 9’s complement of the result. 

 



 
Subtraction using 10’s complements: 

The 10’s complement of the decimal is equal to 9’s complement plus 1. The 10’s complement can 
be used to perform subtraction by adding the minuend to the 10’s complement of the subtrahend and 
dropping the carry. This is explained with following examples. 

 

 



Steps for ’s o ple e t BCD su tra tio  

1. Fi d the ’s o ple e t of a egative u er. 
2. Add two numbers using BCD addition 

3. If arry is ot ge erated fi d the ’s o ple e t of the result. 
 

5.SIGNED NUMBERS 

 Digital systems like computer, must be able to handle both positive and negative numbers. 

 A signed binary number consists of both sign and magnitude information. 

 The sign indicates whether a number is positive or negative. 

5.1 Representation 

              There are three forms in which the signed integer (whole numbers) can be represented. They 

include, 

1. Sign – Magnitude Form – Rarely used 

2. 1’s Complement Form  
3. 2’s Complement Form – Mostly used 

Note: 

      Sign bit – leftmost bit in a signed binary numbers  

 0 for positive, 1 for negative 

 

5.11   Sign Magnitude Form 

 Here, leftmost bit is the sign bit. 

 Remaining bits are magnitude bits. 

 Magnitude bits are in true binary. 

 
5.12 1’s Complement Form 

 In this Form, positive numbers are represented the same way as positive sign-magnitude 

numbers. 



 Negative numbers, are the 1’s complement of the corresponding positive numbers. 

 (eg) 

              +25 is represented as, 

                     00011001  same as sign-magnitude form 

              -25 is represented as, 

                     11100110  1’s complement of +25 

5.13 2’s Complement Form 

 Positive numbers in 2’s complement form are represented as same as in sign-

magnitude and 1’s Complement Form. 
 Negative numbers are the 2’s  complement of the corresponding positive numbers 

 (eg)  

              +25 is represented as,    

                       00011001  same as sign-magnitude form 

             -25 is represented as, 

                       11100110 + 

                                      1 
        -------------------------------- 
                       111001112      2’s complement of +25 
           -------------------------------          

Decimal value of Signed Numbers  

(1) Sign Magnitude 

 Decimal values of positive and negative numbers in this form are determined by 

summing the weights in all the magnitude – bit positions. 

 The sign is determined by examining the sign bit. 

  

(eg)  1. Determine the decimal value of this signed binary number expressed in sign – 

magnitude. 10010101 

Soln: 

 The seven magnitude bits and their powers of 2 weights are as follows. 

  1 0010101 

   26252423222120 

Sign bit 

 Summing weights where there are 1’s. 
  16+4+1 = 21 

 Since, the sign bit is 1, the decimal number is -21 

  



(2) 1’s Complement 
 Decimal values of positive numbers in this form are determined by summing the 

weights in all bit postions. 

 Decimal values of negative numbers are determined by assigning a negative value to 

the weight of the sign bit, summing all the weights where there are 1’s and adding 1 to 
the result. 

           (eg) Determine the decimal value of the signed binary number expressed in 1’s complement  
11101000 

                   Soln: 

 The bits and their powers- of- two weights are as follows. 

                         Note:  for sign bit, it is -27 (or) -128 

                           1  1  1  0   1   0   0    0 

                          -27 26 25 24 23 22  21  20 

 Summing the weights where there are 1’s  
 

-128+64+32+8 = -24                            ( if +ve, write this as the result) 

 Since, it is a negative number, add 1 to the result 

-24+1 = -23 

(3) 2’s Complement 
 Decimal values of positive and neagative numbers in this form are determined by 

summing the weights in all bit positions. 

 The weight of the sign – bit in a negative number is given a negative value. 

            (eg):  Determine the decimal values of the signed binary numbers expressed in 2’s complement 
from 10101010 

            Soln: 

 The bits and their corresponding powers of -2 weights are as follows 

 

           1    0   1   0   1   0    1   0 

          -27  26  25  24  23  22 21 20 

 Summing weights where there are 1’s 

             -128+32+8+2 = -86 

Range of signed integer numbers that can be Represented 

 Since 8-bit (1byte) grouping is common in most computers, the illustrations are all 8-

bits. With 8-bits, we can represent 256 different numbers. 

 With 16-bits (2 bytes), we can represent 65,536 different numbers. 

 With 32-bits (4 bytes), we can represent 4.295×109 different numbers. 

 



The formula for finding the number of different combinations of n-bits is,  

     

                Total combinations = 2n 

                Range of values for n-bit numbers is, 

 

                      -(2n-1) to + (2n-1 – 1) 

 

So, for 8 bits the range is, 

          -128 to +127 

 

For 16 bits the range is,  

          -32768 to +32767 etc 

5.2 Arithmetic operations with Signed Numbers 

 Here, we use 2’s complement representation  

Addition 

 The two numbers in an addition are the addend and the augend 

 The result is sum. 

 There are four cases that can occur when two signed binary numbers are added. 

(1) Both numbers positive. 

(2) Positive number with  magnitude larger than negative number. 

(3) Negative number with magnitude larger than positive number 

(4) Both numbers negative. 

 

Case 1:  Both numbers +ve 

 



 

Subtraction 

 It is a special case of addition. 

 The two numbers in subtraction are subtrahend and minuend. 

 The result is the difference. 

 To subtract +6 from +9, it is also equivalent to add -6 to +9. 

 So, to subtract two signed numbers, take the 2’s complement of the subtrahend and add. Discard 
any final carry bit. 

 

6.  BINARY ARITHMETIC 
6.1 BINARY ADDITION 

The binary addition table is as follows: 

A+B SUM CARRY 

0+0 0 0 

0+1 1 0 

1+0 1 0 

1+1 0 1 

Illustration 1: 

Add (1010)2 and (0011)2 

1010 (Augend) 
0011 (Addend) 
----------------------- 
1101  (sum) 
----------------------- 

The addition manipulated above as follows. 
Step 1: The least significant bits are added, i.e. 0+1 =1 with a carry of 0 



Step 2: The carry in the previous is added to the next higher significant bits, i.e. 0+1+1= 0 with a carry 1. 
Step 3: The carry in the previous is added to the next higher significant bits, i.e. 1+0+0 =1 with a carry 0. 
Step 4: The preceding carry is added to the most significant bit i.e. 0+1+0 = 1 with a carry 0. 
 Thus the sum is 1101.  
 

6.2 BINARY SUBTRACTION 

The binary subtraction table is as follows: 
 

A-B DIFFERENCE BORROW 

0-0 0 0 

0-1 1 1 

1-0 1 0 

1-1 0 0 

Illustration 1: 

Subtract (0101)2 from (1011)2 
1011 (Minuend) 
0101 (Subtrahend) 
--------------------------- 
0110 (Difference) 
--------------------------- 

The steps are described below 

Step1: the LSB in the first column are 1 and 1. Hence, the difference is 1 - 1 = 0 
Step2: The column, the subtraction is performed as 1 – 0 = 1 
Step3: In the third column, the difference is given by 0 – 1 =1 
Step 4:  In the fourth column (MSB), the difference is given by 0 – 0 = 0 since 1 is borrowed for third 
column.  
 

 

6.3 BINARY MULTIPLICATION 
The binary multiplication table is as follows: 

A *B PRODUCT 

0 * 0 0 

0 * 1 0 

1 * 0 0 

1 * 1 1 

 

 Binary multiplication uses add and shift process 
 Binary multiplication is similar to decimal multiplication. 

Illustration 1: 

Multiplicand * Multiplier 
   10110.1x01001.1 

---------------------------------- 
    101101 
   101101 
    000000  
   000000 
   101101 
   000000 

---------------------------------- 
 011010101.11   (Final product) 

----------------------------------- 
The steps are described below 

Partial Product 



Step 1: The LSB of the multiplier is taken. If multiplier bit is 1, the multiplicand is copied as such and if 
the multiplier bit is 0 zero is placed in all the bit positions. 
Step 2: The next higher significant bit of the multiplier is taken and, the partial product is written with the 
shift to the left, as in step 1. 
Step 3: step 2 is repeated for all other higher significant bits. 
Step 4: The partial product terms are added which gives the actual product of multiplier and the 
multiplicand. 
 

6.4 BINARY DIVISION: 
The binary division table is as follows: 

A÷B Result 

0÷0 Not allowed 

0÷1 0 

1÷0 Not allowed 

1÷1 1 

 
 Binary division uses subtract  and shift process 
 Binary division is similar to decimal division. 
 Division by 0 is meaningless. 

Illustration 1: 

   Dividend ÷ Divisor 

11011.1÷ 101 
    101.1  (QUOTIENT) 

DIVISOR 101 √11011.1 (DIVIDEND)
 

         101 
 -------------- 

     111 
        101 

 -------------- 
     101 

       101 
-------------- 

         0 
 -------------- 

 
 

7.BINARY CODES 
Binary codes are codes which are represented in binary system with modification from the original 

one. The group of symbols is called as a code. The digital data is represented, stored and transmitted as 
group of binary bits. This group is  also called as binary code. The binary code is represented by the 
number as well as alphanumeric letter.  
Advantages of Binary Code  

Following is the list of advantages that binary code offers.  
1. Binary codes are suitable for the computer applications.  
2. Binary codes are suitable for the digital communications.  
3. Binary codes make the analysis and designing of digital circuits if we use the binary codes.  
4. Since only 0 and 1 are being used, implementation becomes easy.  

7.1 Classification of binary codes:The codes are broadly categorized into following four categories.  

 Weighted Codes  

 Non-Weighted Codes  

 Binary Coded Decimal Code  

 Alphanumeric Codes  



 Error Codes 
7.1.1 Weighted codes: Weighted binary codes are those binary codes which obey the positional weight 
principle. Each position of the number represents a specific weight  

Decimal 8421 5421 2421 5211 

0 0000 0000 0000 0000 

1 0001 0001 0001 0001 

2 0010 0010 0010 0011 

3 0011 0011 0011 0101 

4 0100 0100 0100 0111 

5 0101 1000 1011 1000 

6 0110 1001 1100 1010 

7 0111 1010 1101 1100 

8 1000 1011 1110 1110 

9 1001 1100 1111 1111 

 
For example, in 8421BCD code, 1001 the weights of 1, 0, 0, 1 (from left to right) are 8, 4, 2 and 1 
respectively. The codes 8421BCD, 2421BCD, 5211BCD are all weighted codes. 
7.1.2 Non-weighted codes: The non-weighted codes are not positionally weighted. In other words, each 
digit position within the number is not assigned a fixed value (or weight). 
Examples are 

 Excess-3  

 Gray code  
DECIMAL EXCESS - 3 GRAY CODE 

0 0011 0000 

1 0100 0001 

2 0101 0011 

 
6.1.3 EXCESS – 3 CODES:- 

 This is another form of BCD code, in which each decimal digit is coded into a 4-bit binary code. 

 The code for each decimal digit is obtained by adding decimal 3 to the natural BCD code of the 
digit. 

GRAY CONVERSION:- 

 Record the mostsignificant bit add the binary MSB to the next significant bit of the Gray code. 

 Record the result, ignoring carrier continue the process, until the LSB is reached. 
REFLECTIVE CODES: A code is reflective when the code is self-complementing. In otherwords, when the 
code for 9 is the complement the code for 0, 8 for 1, 7 for 2, 6 for 3 and 5 for 4. 2421BCD, 5421BCD and 
Excess-3 code are reflective codes. 
SEQUENTIAL CODES: In sequential codes, each succeeding 'code is one binary number greater than its 
preceding code. This property helps in manipulation of data. 8421 BCD and Excess-3 are sequential codes.  
ALPHANUMERIC CODES: Codes used to represent numbers, alphabetic characters, symbols and various 
instructions necessary for conveying intelligible information. ASCII, EBCDIC, UNICODE are the most-
commonly used alphanumeric codes. 
 

8.Decimal code 
Binary codes for decimal digits require a minimum of four bits. Numerous different codes can be obtained 
by arranging four or more bits in ten distinct possible combinations. A few possibilities are tabulated. 



 
 

9.Error detection code 
In data transmission, Interference and physical defects in the communication medium can cause random bit 
errors. As the signal is transmitted through a media, the signal gets corrupted because of noise and 
distortion. Therefore the media is not reliable. To achieve a reliable communication through this unreliable 
media, there is need for detecting the error in the signal so that suitable mechanism can be devised to take 
corrective actions.  
Error coding is a method of detecting and correcting these errors to ensure information is transferred intact 
from its source to its destination 
The errors can be divided into two types: 
• Single-bit Error: only one bit of given data unit (such as a byte, character, or data unit) is changed from 1 
to 0 or from 0 to 1.  
• Burst Error: two or more bits in the data unit have changed from 0 to 1 or vice-versa. (Here doesn’t 
necessary means that error occurs in consecutive bits) 
Error Detecting Codes: 
Basic approach used for error detection is the use of redundancy, where additional bits are added to 
facilitate detection and correction of errors.  
Popular techniques are:  
• Simple Parity check 
 • Two-dimensional Parity check  
• Checksum  
• Cyclic redundancy check 
Detecting Errors using simple parity check 

Suppose we are transmitting 7-bit ASCII characters. A parity bit is added to each character to make it 8 
bits. Parity can detect all single-bit errors 
 –If even parity is used and a single bit changes, it will change the parity to odd, which will be detected at 
the receiver end  
–The receiver end can detect the error, but cannot correct it because it does not know which bit is erroneous  
Parity can also detect some multiple-bit errors  
Table 1 shows the four bit data word and its corresponding code words 

Decimal value Data block Parity bit Code word 

0 0000 0 00000 

1 0001 1 00011 

2 0010 1 00101 



3 0011 0 00110 

4 0100 1 01001 

5 0101 0 01010 

6 0110 0 01100 

7 0111 1 01111 

8 1000 1 10001 

9 1001 0 10010 

10 1010 0 10100 

11 1011 1 10111 

12 1100 0 11000 

13 1101 1 11011 

14 1110 1 11101 

15 1111 0 11110 

 

10.Gray Code- Reflection and Self Complementary codes 
 Gray Code is a non-weighted code which belongs to a class of codes called minimum change codes. 

 Gray Code is an alternative binary representation, devised such that, between any two adjacent 
numbers, only one bit changes at a time.  

Binary Dec Gray 

00000 0 00000 

00001 1 00001 

00010 2 00011 

00011 3 00010 

00100 4 00110 

00101 5 00111 

00110 6 00101 

00111 7 00100 

01000 8 01100 

01001 9 01101 

01010 10 01111 

01011 11 01110 

01100 12 01010 

01101 13 01011 

01110 14 01001 

01111 15 01000 

 To the left we see three columns of data. These are representations of the same numbers 0-15 in 
different ways. 

o In the middle is the decimal value.  
o On the left is positional notation binary  
o On the right is Gray code. 

 You will notice that, on the right, each adjacent row is different from it's neighbours by no more 
than one bit.  

 The term Gray code is often used to refer to a "reflected" code, or more specifically still, the binary 
reflected Gray code. 

10.1 Self-complementary Code  



• A code is said to be self-complementary if the code for 9’s complement of N i.e. 9-N can be obtained by 
interchanging all 0s and 1s.  
• Decimal 9 is the complement of code for 0, 8 for 1, 7 for 2 and so on.  
• For a code to be self complementing, the sum of all its weights must be 9. digit.8421 and 5421 codes are 
not self complementing codes whereas 5211,2421,3321, 4321 are self complementing. 
 • In general, a code is self-complementary if we produce a code by taking the first complement of the digit 
which is same as 9’s complement of the number. 

10.2 Reflective code 

 Imaged about the centre entries with one bit changed  

 Example ï 9ís complement of a reflected BCD code word is formed by changing only one of its bits 

 In the Gray code example shown below, the MSB bit alone is changing and the remaining bits is 
reflected mirror image about the centre. For clarity, the MSB is removed. 

 Gray code                Reflected property of Gray code 

                       
 

Binary-to-Gray code conversion 

 The MSB in the Gray code is the same as corresponding MSB in the binary number. 

 Going from left to right, add each adjacent pair of binary code bits to get the next Gray code bit. 

 Discard carries. 
       Problem: Convert 10110 to gray code 

  
Gray-to-Binary Conversion  

 The MSB in the binary code is the same as the corresponding bit in the Gray code. 

 Add each binary code bit generated to the Gray code bit in the next adjacent position. 

 Discard carries. 
        Problem: Convert the Gray code word 11011 to binary 

 

 



11.  Binary-Coded Decimal Code 
Although the binary number system is the most natural system for a computer because it is readily 

represented in today’s electronic technology, most people are more accustomed to the decimal system. One 
way to resolve this difference is to convert decimal numbers to binary, perform all arithmetic calculations 
in binary, and then convert the binary results back to decimal. This method requires that we store decimal 
numbers in the computer so that they can be converted to binary. Since the computer can accept only 
binary values, we must represent the decimal digits by means of a code that contains 1’s and 0’s. It is also 
possible to perform the arithmetic operations directly on decimal numbers when they are stored in the 
computer in coded form. 

A binary code will have some unassigned bit combinations if the number of elements in the set is 
not a multiple power of 2. The 10 decimal digits form such a set. A binary code that distinguishes among 
10 elements must contain at least four bits, but 6 out of the 16 possible combinations remain unassigned. 
Different binary codes can be obtained by arranging four bits into 10 distinct combinations. This scheme is 
called binary-coded decimal and is commonly referred to as BCD.  

A number with k decimal digits will require 4k bits in BCD. Decimal 396 is represented in BCD 
with 12 bits as 0011 1001 0110, with each group of 4 bits representing one decimal digit. A decimal 
number in BCD is the same as its equivalent binary number only when the number is between 0 and 9. A 
BCD number greater than 10 looks different from its equivalent binary number, even though both contain 
1’s and 0’s. Note that the BCD code is not self‐complementing. Moreover, the binary combinations 1010 
through 1111 are not used and have no meaning in BCD. Consider decimal 185 and its corresponding value 
in BCD and binary: 
(185)10 = (0001 1000 0101) BCD = (10111001)2 
 

 

Table 1 
In multi digit BCD coding 

 

11.1  BCD addition: 

 The addition of two BCD numbers can be best understood by considering the three cases that occur 
when two BCD digits are added. 
Sum equals 9 or less with carry 0 

Let us consider additions of 3 and 6 in BCD. 



 

Sum greater than 9 with carry 0 

Let us consider addition of 6 and 8 in BCD 

 

The sum 1110 is an invalid BCD number. This has occurred because the sum of the two digits exceeds 9. 
Whenever this occurs this occurs the sum has to be corrected by the addition of six (1110) in the invalid 
BCD number, as shown below 

 

Sum equals 9 or less with carry 1 

Let us consider addition of 8 and 9 in BCD 

 

In this case, result (001 0001) is valid BCD number, but it is incorrect. To get the correct BCD result 
correction factor of 6 has to be added to the least significant digit sum, as shown. 

 

BCD addition procedure 

1. Add two BCD numbers using ordinary binary addition. 
2. If four bit sum is equal to or less than 9, no correction is needed. The sum is in  proper BCD form. 



3. If the four bit sum is greater than 9 or if a carry is generated from the four-bit sum, the sum is 
invalid. 

4. To correct the invalid sum, add 01102 to the four-bit sum. If a carry results from this addition, add it 
to the next higher-order BCD digit. 

 

 

 

 

12.Alphanumeric codes 
Alphanumeric codes are sometimes called character codes due to their certain properties. Now 

these codes are basically binary codes. We can write alphanumeric data, including data, letters of the 
alphabet, numbers, mathematical symbols and punctuation marks by this code which can be easily 
understandable and can be processed by the computers. Input output devices such as keyboards, monitors, 
mouse can be interfaced using these codes. 12-bit Hollerith code is the better known and perhaps the first 
effective code in the days of evolving computers in early days. During this period punch cards were used as 
the inputting and outputting data. But nowadays these codes are termed obsolete as many other modern 
codes have evolved. The most common alphanumeric codes used these days are ASCII code, EBCDIC 

code and Unicode.  
 

12.1 ASCII Character Code 



Many applications of digital computers require the handling not only of numbers, but also of other 
characters or symbols, such as the letters of the alphabet. For instance, consider a high‐tech company with 
thousands of employees. To represent the names and other pertinent information, it is necessary to 
formulate a binary code for the letters of the alphabet. In addition, the same binary code must represent 
numerals and special characters (such as $). An alphanumeric character set is a set of elements that 
includes the 10 decimal digits, the 26 letters of the alphabet, and a number of special characters. Such a set 
contains between 36 and 64 elements if only capital letters are included, or between 64 and 128 elements if 
both uppercase and lowercase letters are included. In the first case, we need a binary code of six bits, and in 
the second, we need a binary code of seven bits. The standard binary code for the alphanumeric characters 
is the American Standard Code for Information Interchange (ASCII), which uses seven bits to code 
128 characters, as shown in Table below. The seven bits of the code are designated by b1 through b7, with 
b7 the most significant bit. The letter A, for example, is represented in ASCII as 1000001 (column 100, row 
0001). The ASCII code also contains 94 graphic characters that can be printed and 34 nonprinting 
characters used for various control functions. 

The graphic characters consist of the 26 uppercase letters (A through Z), the 26 lowercase letters (a 
through z), the 10 numerals (0 through 9), and 32 special printable characters, such as %, *, and 
$.characters. Format effectors are characters that control the layout of printing. They include the familiar 
word processor and typewriter controls such as backspace (BS), horizontal tabulation (HT), and carriage 
return (CR). Information separators are used to separate the data into divisions such as paragraphs and 
pages. They include characters such as record separator (RS) and file separator (FS). The 
communication‐control characters are useful during the transmission of text between remote devices so that 
it can be distinguished from other messages using the same communication channel before it and after it. 
Examples of communication‐control characters are STX (start of text) and ETX (end of text), which are 
used to frame a text message transmitted through a communication channel.  

ASCII is a seven‐bit code, but most computers manipulate an eight‐bit quantity as a single unit 
called a byte. Therefore, ASCII characters most often are stored one per byte. The extra bit is sometimes 
used for other purposes, depending on the application.  

For example, some printers recognize eight‐bit ASCII characters with the most significant bit set to 
0. An additional 128 eight‐bit characters with the most significant bit set to 1 are used for other symbols, 
such as the Greek alphabet or italic type font. 

 

 

 

12.2  EBCDIC 



The EBCDIC stands for Extended Binary Coded Decimal Interchange Code. IBM invented this 
code to extend the Binary Coded Decimal which existed at that time. All the IBM computers and 
peripherals use this code. It is an 8 bit code and therefore can accommodate 256 characters. Below is given 
some characters of EBCDIC code to get familiar with it. 

 

 

 

13.  HAMMING CODE-ERROR DETECTION AND CORRECTION 

 
Hamming code is a set of error-correction code s that can be used to detect and correct bit errors 

that can occur when computer data is moved or stored. 
13.1 Error Detecting Codes 

 Basic approach used for error detection is the use of redundancy, where additional bits are added to 
facilitate detection and correction of errors. Popular techniques are: • Simple Parity check • Two-
dimensional Parity check • Checksum • Cyclic redundancy check 
Simple Parity Checking or One-dimension Parity Check The most common and least expensive mechanism 
for error- detection is the simple parity check. In this technique, a redundant bit called parity bit, is 
appended to every data unit so that the number of 1s in the unit (including the parity becomes even). 
Blocks of data from the source are subjected to a check bit or Parity bit generator form, where a parity of 1 
is added to the block if it contains an odd number of 1’s (ON bits) and 0 is added if it contains an even 
number of 1’s. At the receiving end the parity bit is computed from the received data bits and compared 
with the received parity bit, as shown in Fig 1. This scheme makes the total number of 1’s even, that is why 
it is called even parity checking. Considering a 4-bit word, different combinations of the data words and 
the corresponding code words are given in Table 1. Note that for the sake of simplicity, we are discussing 
here the even-parity checking, where the number of 1’s should be an even number. It is also possible to use 
odd-parity checking, where the number of 1’s should be odd. 



 
Fig 1) Even parity checking scheme 

 
Table 1:Possible 4 bit data words and corresponding code words 

Two-dimension Parity Check  
Performance can be improved by using two-dimensional parity check, which organizes the block of bits in 
the form of a table. Parity check bits are calculated for each row, which is equivalent to a simple parity 
check bit. Parity check bits are also calculated for all columns then both are sent along with the data. At the 
receiving end these are compared with the parity bitcalculated on the received data. This is illustrated in 
Fig. 2. Performance Two- Dimension Parity Checking increases the likelihood of detecting burst errors. As 
we have shown in Fig. 2, that a 2-D Parity check of n bits can detect a burst error of n bits. A burst error of 
more than n bits is also detected by 2-D Parity check with a highprobability. There is, however, one pattern 
of error that remains elusive. If two bits in one data unit are damaged and two bits in exactly same position 
in another data unit are also damaged, the 2-D Parity check checker will not detect an error. For example, if 
two data units: 11001100 and 10101100. If first and second from last bits in each of them is changed, 
making the data units as 01001110 and 00101110, the error cannot be detected by 2-D Parity check. 



 
                                                  Fig 2) Two dimension parity checking 
Example of Hamming Code Generation 

Suppose a binary data 1001101 is to be transmitted. To implement hamming code for this, following steps 
are used: 
 1. Calculating the number of redundancy bits required. Since number of data bits is 7, the value of r is 
calculated as 

2r > m + r + 1 
24 > 7 + 4 + 1 

Therefore no. of redundancy bits = 4 
 2. Determining the positions of various data bits and redundancy bits. The various r bits are placed at the 
position that corresponds to the power of 2 i.e. 1, 2, 4, 8 
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4. Thus data 1 0 0 1 1 1 0 0 1 0 1 with be transmitted. 
13.1 Error Detection & Correction 

Considering a case of above discussed example, if bit number 7 has been changed from 1 to 0.The data will 
be erroneous. 

                               
Data sent: 1 0 0 1 1 1 0 0 1 0 1 
Data received: 1 00 1 0 1 00 1 0 1 (seventh bit changed) 
The receive takes the transmission and recalculates four new VRCs using the same set of bits used by 
sender plus the relevant parity (r) bit for each set as shown in fig. 
Then it assembles the new parity values into a binary number in order of r position (r8, r4, r2, r1). 
In this example, this step gives us the binary number 0111. This corresponds to decimal 7. Therefore bit 
number 7 contains an error. To correct this error, bit 7 is reversed from 0 to 1. 
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