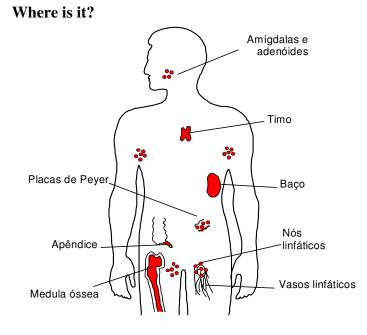
SCS5107 Computational Intelligence Unit IV

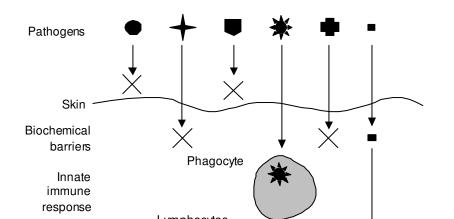
Artificial Immune System

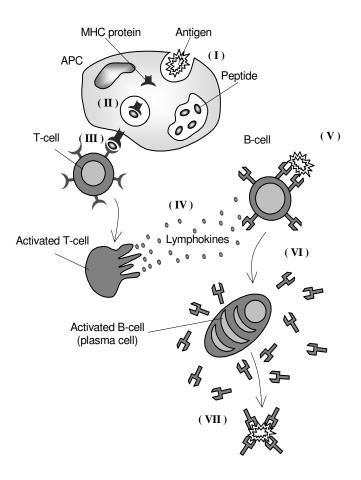

Novel paradigms are proposed and accepted not necessarily for being faithful to their sources of inspiration, but for being useful and feasible.

Give you a taster of what AIS is all about

- Define an AIS
- Why do we find the immune system useful?
- Explain what AIS are
- Show you where they are being used
- Some high level case studies
- Comments for the future

AIS are adaptive systems inspired by theoretical immunology and observed immune functions, principles and models, which are applied to complex problem domains.


- Developed from the field of theoretical immunology in the mid 1980's.
 - Suggested we 'might look' at the IS
- 1990 Bersini first use of immune algos to solve problems
- Forrest et al Computer Security mid 1990's
- Hunt et al, mid 1990's Machine learning

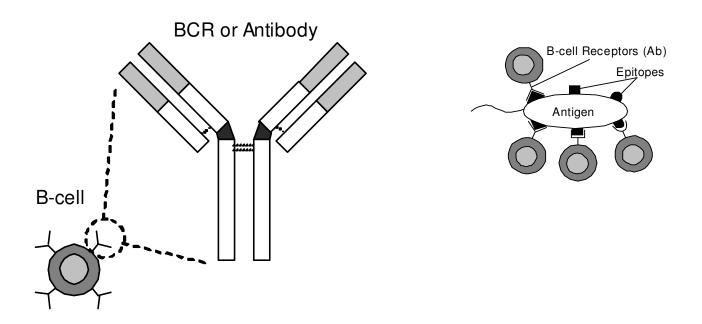

Protect our bodies from pathogen and viruses

- Primary immune response
 - Launch a response to invading pathogens
- Secondary immune response
 - Remember past encounters
 - Faster response the second time around

Multiple layers of the immune system

Immune cells

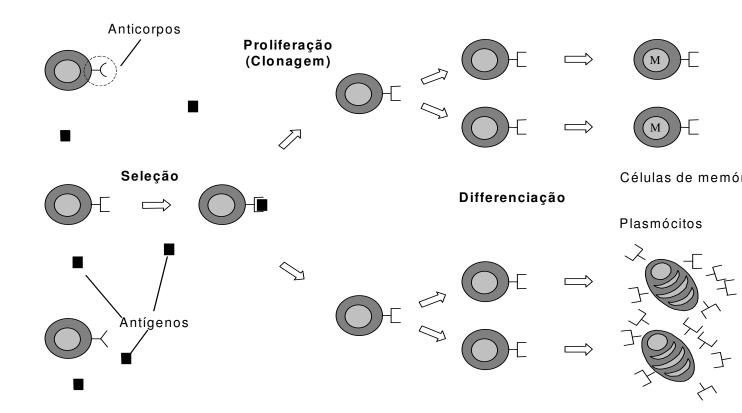
- There are two primarily types of lymphocytes:
 - B-lymphocytes (B cells)
 - T-lymphocytes (T cells)
- Others types include macrophages, phagocytic cells, cytokines, etc.


Immune system needs to be able to differentiate between self and non-self cells

- Antigenic encounters may result in cell death, therefore
- Some kind of positive selection
- Some element of negative selection

Antigen

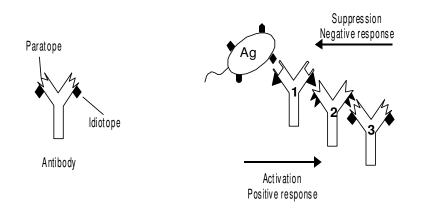
- Substances capable of starting a specific immune response commonly are referred to as **antigens**
- This includes some pathogens such as viruses, bacteria, fungi etc.


Immune Pattern Recognition

• The immune recognition is based on the *complementarity* between the binding region of the receptor and a portion of the antigen called *epitope*.

- Antibodies present a single type of receptor, antigens might present several epitopes.
 - This means that each antibody can recognize a single antigen

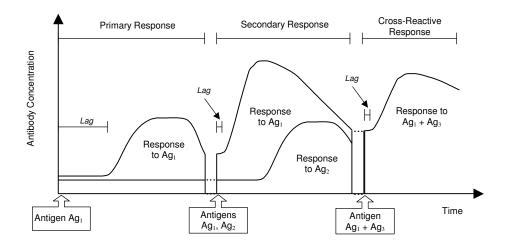
Clonal Selection


Main Properties of Clonal Selection

- Elimination of *self antigens*
- Proliferation and differentiation on contact of mature lymphocytes with antigen

- Restriction of one pattern to one differentiated cell and retention of that pattern by clonal descendants;
- Generation of new random genetic changes, subsequently expressed as diverse antibody patterns by a form of accelerated somatic mutation

Immune Network Theory


- Idiotypic network (Jerne, 1974)
- B cells co-stimulate each other
 Treat each other a bit like antigens
- Creates an immunological memory

Reinforcement Learning and Immune Memory

- Repeated exposure to an antigen throughout a lifetime
- Primary, secondary immune responses
- Remembers encounters
 - No need to start from scratch
 - Memory cells

• Continuous learning

Representation of Antigens

 $\mathbf{Ab} = \langle Ab_1, Ab_2, ..., Ab_L \rangle$

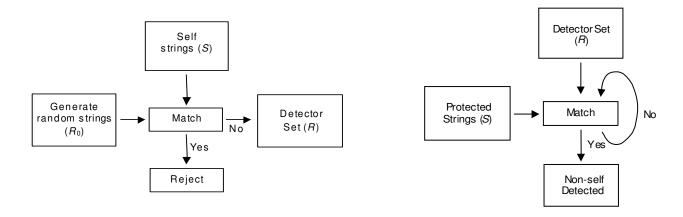
 $\mathbf{Ag} = \langle Ag_1, Ag_2, ..., Ag_L \rangle$

- Real-valued shape-space
- Integer shape-space
- Binary shape-space
- Symbolic shape-space
- Define the term **Affinity**
- Distance measures such as Hamming, Manhattan etc. etc.
- Affinity Threshold

Basic Immune Models and Algorithms

- Negative Selection Algorithms
- Clonal Selection Algorithm

• Immune Network Models


Negative Selection (NS) Algorithm

Forrest 1994: Idea taken from the negative selection of T-cells in the thymus

Applied initially to computer security

Split into two parts:

- Censoring
- Monitoring

Clonal Selection Algorithm

1. Initialisation: Randomly initialise a population (P)

2. Antigenic Presentation: for each pattern in Ag, do:

2.1 Antigenic binding: determine affinity to each P'

2.2 Affinity maturation: select n highest affinity from P and clone and mutate prop. to affinity with Ag, then add new mutants to P

3. Metadynamics:

3.1 select highest affinity P to form part of M

- 3.2 replace *n* number of random new ones
- 4. Cycle: repeat 2 and 3 until stopping criteria

Immune Network Models

- 1. Initialisation: create an initial network from a sub-section of the antigens
- 2. Antigenic presentation: for each antigenic pattern, do:

2.1 Clonal selection and network interactions: for each network cell, determine its stimulation level (based on antigenic and network interaction)2.2 Metadynamics: eliminate network cells with a low stimulation

2.3 Clonal Expansion: select the most stimulated network cells and

reproduce them proportionally to their stimulation

2.4 Somatic hypermutation: mutate each clone

2.5 Network construction: select mutated clones and integrate

3. Cycle: Repeat step 2 until termination condition is met.