
UNIT 5: 

CONTINUOUS PARAMETER MARKOV CHAIN 

The Birth and Death process (MM/1, M/M/c, M/M/1/N) 

5.1 Basics of Queueing Processes 

 A queue is a waiting line; queues are formed whenever the demand for service 

exceeds the service availability. A queuing system is composed of customers arriving 

for service, waiting in a queue for the service if necessary, and after being served, 

leaving the system. The term customer is generic and does not imply a human 

customer necessarily; any unit which needs a form of service is considered a customer. 

  A Queueing system is usually described by five basic characteristics of queueing 

processes: (1) arrival pattern of customers, (2) service pattern of customers, (3) queue 

discipline, (4) system capacity, and (5) number of service channels. 

5.2 M/M/1 Queue 

 In Queueing theory, a discipline within the mathematical theory of probability, 

an M/M/1 queue represents the queue length in a system having a single server, where 

arrivals are determined by a Poisson process and job service times have an exponential 

distribution. The model name is written in Kendall's notation. The model is the most 

elementary of queueing models and an attractive object of study as closed-form 

expressions can be obtained for many metrics of interest in this model. 

 An extension of this model with more than one server is the M/M/c queue. 

5.3 An M/M/1 Queueing Node 

 

a.Model Definition 

An M/M/1 queue is a stochastic process whose state space is the set {0,1,2,3,...} where 

the value corresponds to the number of customers in the system, including any currently 

in service. 

 Arrivals occur at rate λ according to a Poisson process and move the process from 

state i to i + 1. 
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 Service times have an exponential distribution with rate parameter μ in the M/M/1 

queue, where 1/μ is the mean service time. 

 A single server serves customers one at a time from the front of the queue, 

according to a first-come, first-served discipline. When the service is complete the 

customer leaves the queue and the number of customers in the system reduces by 

one. 

 The buffer is of infinite size, so there is no limit on the number of customers it can 

contain. 

The state space diagram for this chain is as below. 

 

 

 

M/M/1 Queueing System is a single-server queueing system with Poisson input, 

exponential service times and unlimited number of waiting positions. 

Thus, an M/M/1 system has the following characteristics: 

1. There is a single server with exponential service times and the service rate μ 

customers 

per time unit 

2. Customers arriving according a Poisson process with the arrival rate λ 
customers per time unit 

3. Number of waiting positions = ∞ 
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Rate transition diagram for an M/M/1 Queueing System 

 

 

5.4 Notations & Description 

 

N Average number of customers in the system , N = N q  + 

N s N q Average number of customers in the queue 

N s Average number of customers in the service facilities 

~x Random variable which describes time spent in the 
service 
facility by a customer x Average service time for a customer, x = E(~x ) 

w~ Random variable which describes time spent in the 
waiting 
queue by a customer W Average waiting time spent in the queue by a customer 

W = E(w~) 

~s Random variable which describes time spent in the 
system by a customer;  ~s = ~x + w~ 

T Average time spent in the system by a customer T = 
E(~s ) , 

T = W + x λ Arrival rate 

λeff The effective arrival rate 

μ Service rate 
ρ ρ = 

λ 
, offered load (offered traffic) 

μ 

pk Stationary probabilities;  pk is the probability that there 

are k 

customers in the system  



5.5 Performance Measures of the M/M/1 Model 

 

 

5.6 M/M/C Queue 

 In a M|M|c queue, there are c parallel servers, each serving customers, (c>1).  

The arrival process and service process follow Poisson distribution.  All arriving 

customers after entering the service system join a single queue.  If all c servers are 

already busy in serving customers, the first customer in the queue will be served by any 

of the c servers as soon as any server will be free from serving previous customer. The 

service rate in the case will be (μc ).  Hence the utilization factor for the M|M|c service 

system will be  

 

 



 In M|M|c queues, the arrival rate remains same as M|M|1 queues but the service 

rate will depend on the number of servers. The service rate will be nμ for n<=c. As soon 

as the number of customers exceeds c, the service rate becomes μc. 

Transition of states in M/M/C Queueing Model is given as follows 

 

5.7 Performance measures of M/M/C Model 

1.The number of customers in the queue, Lq 

 

2.Customers waiting in the service system will be addition of Wq and service time 

 

 



5.8 M/M/1/N Queue 

 It is a queueing model with finite queues. In real cases, queues never become 

infinite, but are limited due to space, time or service operating policy. Such queuing 

model falls under the category of finite queues.   

 Examples:  (1) Parking of vehicles in a supermarket is restricted to the space of 

the parking area. (2) Limited seating arrangement in a restaurant. 

  Finite queue models restrict the number of customers allowed in service system. 

That means if N represents the maximum number of customers allowed in the service 

system, then the (N+1)th arrival will depart without being part of the service system or 

seeking service. 

5.9 Performance Measures of M/M/1/N Queueing System 

Average number of customers in the system, Ls can be determined using probability of 

having finite, N, customers in the service system 

 

The number of customers in queue can determined as given below. 

 

Average waiting time in the queuing system, Ws 

 

Average waiting time in the queue, Wq 

 

5.10 The Pure Birth Process: 

If the death rates µk=0 for all k=1, 2… we have a Pure birth process. If, in addition, we 

impose the condition of constant birth rates—that is,         k=(k=0,1,2….)—then we 

have the familiar Poisson process. The reduced equation is given by: 
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Where we have assumed that the initial state N(0)=0, so that: 
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One method of solving such differential equation is to use the Laplace transform, which 

simplifies the system of differential equation to a system of algebraic equations. The 

Laplace transform of   Pk(t)   denoted by ( )kP s


     is defined in the usual way, namely: 
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And the Laplace transform of the derivative   dPk /dt     is given by  
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Using (3) and rearranging, we get: 

 0

1
P s

s 






 

And 



   1k kP s P s
s





 




 

From which we have 

  1( )

k

k k
P s

s










             ,   
0k   

  In order to invert this transform, we note that if Y is a (k+1)- stage Erlang random 

variable with parameter , then: 
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Thus, X (t)is Poisson distributed with parameter t  . 

     The Poisson process can be generalized to the case where the birth rate  is varying 
with time. Such a process is called a Nonhomogeneous Poisson process. The 
generalized version of equation (5) .In this case is given by: 
 

 
 
 
 
 
 
 

The non homogeneous Poisson process finds its use in reliability computations when 
the constant- failure- rate assumptions cannot be tolerated.  
 

Thus, for instance, 
1( )t c t   (α>0), then the time to failure of each component is 

Weibull distributed with parameters c and   , and the pmf of the number of failures N (t) 
in the interval (0, t) is: 
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5.11 Pure Death Processes 

Another special case of a birth-death process occurs when the birth rates are all 

assumed to be zero; that is k=0 for all k. The system starts in some state n > 0 at time t 

=0 and eventually decays to state 0.Thus, state 0 is an absorbing state. We consider 

two special cases of interest. 

a. Death Process with a Constant Rate 

                                                   Besides i=0 for all i, we have µi=µ for all i. This implies 

that the differential difference equation reduce to: 
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    Where we have assumed that the initial state N (0) = n, so that: 

     (0) 1nP      (0) 0kP                    0≤ k≤ n-1. 

 

Taking Laplace transforms and rearranging, we reduce the above system of equations 

to: 

      ,           k=n 

 

     1≤ k≤ n-1. 
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P0(t) is easily recognized to be the CDF an n-stage Erlang random variable with mean 

n/µ. 
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