
UNIT 4  
 

DISCRETE PARAMETER MARKOV CHAINS 

 

4.1 Introduction 

 A random process, X(t), is said to be a Markov process if for any time instants, t1 < t2 < · · 

· < tn < tn+1, the random process satisfies 
FX (X(tn+1) ≤ xn+1 X(tn ) = xn , X(tn−1) = xn−1, . . . , X(t1) = x1) 
 
 

 
  

To understand this definition, we interpret tn as the present time so that tn+1 rep-resents 
some point in the future and t1, t2 , . . . , tn−1 represent various points in the past. The 
Markovian property then states that given the present, the future is independent of the 
past. Or, in other words, the future of the random process depends only on where it is now 
and not on how it got there. 

EXAMPLE 1: A classical example of a continuous time Markov process is the 

Poisson counting process. Let X(t) be a Poisson counting process with rate λ. 

Then its probability mass function satisfies 

 
 

 

Clearly, this is independent of {X(tn−1) = xn−1, . . . , X(t1) = x1}. In fact, the 
Markovian property must be satisfied because of the independent increments 
assumption of the Poisson process.To start with, we will focus our attention on 
discrete-valued Markov processes in discrete time, better known as Markov 
chains. Let X[k] be the value of the process at time instant k. Since the process 

is discrete-valued, X[k] ∈ {x1, x2 , x3, . . .} and we say that if X[k] = xn , then the 

process is in state n at time k. A Markov chain is described statistically by its 
transition probabilities which are defined as follows. 
 
DEFINITION 2: Let X[k] be a Markov chain with states {x1, x2 , x3, . . .}, then the 

probability of transitioning from state i to state j in one time instant is 
 

  
 



If the Markov chain has a finite number of states, n, then it is convenient to define a 

transition probability matrix, 

 
One can encounter processes where the transition probabilities vary with time and 
hence need to be explicitly written as a function of k (e.g., pi, j, k ), but we do not 
consider such processes in this text and henceforth it is assumed that transition 
probabilities are independent of time. 
 
 
EXAMPLE 2: Suppose every time a child buys a kid‟s meal at his favorite fast food 
restaurant, he receives one of four superhero action figures. Naturally, the child 
wants to collect all four action figures and so he regularly eats lunch at this restaurant 
in order to complete the collection. This process can be described by a Markov chain. 
In this case, let X[k] ∈ {0, 1, 2, 3, 4} be the number of different action figures that the 
child has collected after purchasing k meals. Assuming each meal contains one of 
the four superheroes with equal probability and that the action figure in any meal is 
independent of what is contained in any previous or future meals, then the transition 
probability matrix easily works. 
Initially (before any meals are bought), the process starts in state 0 (the child has no 
action figures). When the first meal is bought, the Markov chain must move to state 1 
since no matter which action figure is contained in the meal, the child will now have 
one superhero. Hence, p0, 1 = 1 and p 0, j = 0 for all j  = 1. If the child has one distinct 
action figure, when he buys the next meal he has a 25 percent chance of receiving a 
duplicate and a 75 percent chance of getting a new action figure. Hence, p1, 1 = 1/4, 
p1, 2 = 3/4, and p1, j = 0 for j = 1, 2. Similar logic is used to complete the rest of the 
matrix. The child might be interested in knowing the average number of lunches he 
needs to buy until his collection is completed. Or, maybe the child has saved up only 
enough money to buy 10 lunches and wants to know what his chances are of 
completing the set before running out of money. We will develop the theory needed 
to answer such questions. 
The transition process of a Markov chain can also be illustrated graphically using a 
state diagram. Such a diagram is illustrated in Figure 9.1 for the Markov chain in 
Example 2. In the figure, each directed arrow represents a possible transition and the 
label on each arrow represents the probability of making that transition. Note that for 
this Markov chain, once we reach state 4, we remain there forever. This type of state 
is referred to as an absorbing state. 

 
 
 
 
 
 

Figure 1 State diagram for the Markov chain of Example 2. 
 



EXAMPLE 3: (The Gambler’s Ruin Problem) Suppose a gambler plays a 
certain game of chance (e.g., blackjack) against the “house.” Every time the 
gambler wins the game, he increases his fortune by one unit (say, a dollar) and 
every time he loses, his fortune decreases by one unit. Suppose the gambler 
wins each game with probability p and loses with probability q = 1 − p. Let Xn 
represent the amount of the gambler‟s fortune after playing the game n times. If 
the gambler ever reaches the state Xn = 0, the gambler is said to be “ruined” (he 
has lost all of his money). Assuming that the outcome of each game is 
independent of all others, the sequence xn , n = 0, 1, 2, . . . forms a Markov 
chain. The state transition matrix is of the form 

 
 
The state transition diagram for the gambler‟s ruin problem is shown in Figure 
9.2. One might then be interested in determining how long it 
  

 
 
Figure.2 State transition diagram for Example 9 (The Gambler‟s Ruin Problem), with 

one absorbing state (a) and with two absorbing states (b). 
 
 
might take before the gambler is ruined (enters the zero state). Is ruin inevitable for 

any p, or if the gambler is sufficiently proficient at the game, can he avoid ruin 

indefinitely? A more realistic alternative to this model is one where the house also 

has a finite amount of money. Suppose the gambler starts with d dollars and the 

house has b − d dollars so that between the two competitors there is a total of b 

dollars in the game. Now if the gambler ever gets to the state 0 he is ruined, while if 

he gets to the state b he has “broken the bank” (i.e., the house is ruined). Now the 

Markov chain has two absorbing states as shown in part (b) of the figure. It would 

seem that sooner or later the gambler must have a run of bad luck sufficient to send 

him to the 0 state (i.e., ruin) or a run of good luck which will cause him to enter the 



state b (i.e., break the bank). It would be interesting to find the probabilities of each of 

these events. 

The previous example is one of a class of Markov chains known as random walks. 
Random walks are often used to describe the motion of a particle. Of course, there 
are many applications that can be described by a random walk that do not involve the 
movement of a particle, but it is helpful to think of such a particle when describing 
such a Markov chain. In one dimension, a random walk is a Markov chain whose 
states are the integers and whose transition probabilities satisfy pi, j = 0 for any j  = i − 
1, i, i + 1. In other words, at each time instant, the state of the Markov chain can 
either increase by one, stay the same, or decrease by one. If pi, i+1 = pi, i−1, then the 
random walk is said to be symmetric, whereas if pi , i+1  = pi, i −1 the random walk is 
said to have drift. Often the state space of the random walk will be a finite range of 
integers, n, n + 1, n + 1, . . . , m − 1, m (for m > n), in which case the states n and m 
are said to be boundaries, or barriers. The gambler‟s ruin problem is an example of a 
random walk with absorbing boundaries, where pn, n = pm, m = 1. Once the particle 
reaches the boundary, it is absorbed and remains there forever. We could also 
construct a random walk with reflecting boundaries, in which case pn, n+1 = pm, m−1 = 
1. That is, whenever the particle reaches the boundary, it is always reflected back to 
the adjacent state. 
 

 

EXAMPLE 4: (A Queueing System) A common example of Markov chains (and 

Markov processes in general) is that of queueing systems. Consider, for example, a 

taxi stand at a busy airport. A line of taxis, which for all practical purposes can be 

taken to be infinitely long, is available to serve travelers. Customers wanting a taxi 

enter a queue and are given a taxi on a first come, first serve basis. Suppose it takes 

one unit of time (say, a minute) for the customer at the head of the  

queue to load himself and his luggage into a taxi. Hence, during each unit of 

time, one customer in the queue receives service and leaves the queue while 

some random number of new customers enter the end of the queue. Suppose at 

each time instant, the number of new customers arriving for service is described 

by a discrete distribution (p0, p1, p2 , . . .), where pk is the probability of k new 

customers. For such a system, the transition probability matrix of the Markov 

chain would look like 

 

 
The manager of the taxi stand might be interested in knowing the probability 

distribution of the queue length. If customers have to wait too long, they may get 

dissatisfied and seek other forms of transportation. 



4.2 COMPUTATION OF n-STEP TRANSITION PROBABILITIES 

 

 

 

 

 

 



 
 

4.3 Calculating Transition and State Probabilities in Markov Chains 

 

The state transition probability matrix of a Markov chain gives the probabilities of 

transitioning from one state to another in a single time unit. It will be useful to extend 

this concept to longer time intervals. 

 
DEFINITION .3:  The n-step transition probability for a Markov chain is 

pi
(
,
n

j
) = Pr(Xk+n  = j  Xk  = i). (9.4) 

    
Also, define an n-step transition probability matrix P(n) whose elements are the n-step 
transition probabilities just described in Equation 9.4. 
 
Given the one-step transition probabilities, it is straightforward to calculate higher 

order transition probabilities using the following result. 

 
THEOREM .1:  (Chapman-Kolmogorov Equation) 
 
 

 
PROOF: First, condition on the event that in the process of transitioning from state i 

to state j, the Markov chain passes through state k at some intermediate point in 

time. Then, using the principle of total 



probability,

 
This result can be written in a more compact form using transition probability 

matrices. It is easily seen that the Chapman-Kolmogorov equations can be written in 

terms of the n-step transition probability matrices as  

P(n) = P(m)P(n−m).   
Then, starting with the fact that P(1) = P, it follows that P(2) = P(1)P(1) = P2 , and using 
induction, it is established that 

 

P(n) = Pn .  
 

Hence, we can find the n-step transition probability matrix through matrix 
multiplication. If n is large, it may be more convenient to compute Pn via eigen-
decomposition. The matrix P can be expanded as P = U U−1, where is the diagonal 
matrix of eigenvalues and U is the matrix whose columns are the corresponding 
eigenvectors. Then 

 

Pn  = U    n U−1.   
Another quantity of interest is the probability distribution of the Markov chain at some 
time instant k. If the initial probability distribution of the Markov chain is known, then 
the distribution at some later point in time can easily be found. Let πj (k) = Pr(Xk = j) 
and π (k) be the row vector whose jth element is πj (k). Then 

 
 



4.4 Classification of states 

Irreducible Chain: 
If for every i, j ,we can find some n such that pij>0,then every state can be reached 
from every other state, and the Markov chain is said to be irreducible. Otherwise the 
chain is non-irreducible or reducible. 
Return state: 
State I of a Markov chain is called a return state if pi,j>0 for some n>1. 
Periodic state:  
Period di of a return state i is the greatest common divisor of all m such that 
pij>0.State i is periodic with period di,if di>1 and aperiodic  if di=1. 
Recurrent state: 
If fii=1 the return to state i is certain and the state i is said to be persistent or 
recurrent. Otherwise  transient. 
Ergotic state: 
A non-null persistent and aperiodic state are called  ergotic. 
 

4.5 The M/M/1 Queue 

In this section, we investigate Markov processes where the time variable is continu-
ous. In particular, most of our attention will be devoted to the so-called birth-death 
processes which are a generalization of the Poisson counting process studied in the 
previous chapter. To start with, consider a random process X(t) whose state space is 
either finite or countable infinite so that we can represent the states of the process by 
the set of integers, X(t) ∈ {. . . , −3, −2, −1, 0, 1, 2, 3, . . .}. Any process of this sort 
that is a Markov process has the interesting property that the time between any 
change of states is an exponential random variable. To see this, define Ti to be the 
time between the ith and the (i + 1)th change of state and let hi (t) be the complement 
to its CDF, hi (t) = Pr(Ti > t). Then, for t > 0, s > 0,        

 

 

 

Furthermore, for this function to be a valid probability, the constant ρi must not be 
negative. From this, the PDF of the time between change of states is easily found to 
be fTi (t) = ρi e

−ρi t u(t).  
As with discrete time Markov chains, the continuous time Markov process can be 
described  by its transition probabilities. 
 
 
THEOREM 4: For a Markov birth-death process with birth rate λn , n = 0, 1, 2, . . ., 

and death rate µn , n = 1, 2, 3, . . ., the steady state distribution is given by 



 
 

  
If the series in the denominator diverges, then πk = 0 for any finite k. This indicates 
that a steady state distribution does not exist. Likewise, if the series converges, the 
πk will be nonzero, resulting in a well-behaved steady state distribution. 

 
EXAMPLE 5: (The M/M/1 Queue) In this example, we consider the birth-death 

process with constant birth rate and constant death rate. In particular, we take 
 
λn  = λ, n = 0, 1, 2, . . . and µ0 = 0, µn  = µ, n = 1, 2, 3, . . . . 
 

This model is commonly used in the study of queueing systems and, in that 

context, is referred to as the M/M/1 queue. In this nomenclature, the first “M” 

refers to the arrival process as being Markovian, the second “M” refers to the 

departure process as being Markovian, and the “1” is the number of servers. So 

this is a single server queue, where the interarrival time of new customers is an 

exponential random variable with mean 1/λ and the service time for each 

customer is exponential with mean 1/µ. For the M/M/1 queueing system, λi−1/µi = 

λ/µ for all i so that 

 

 

 
    

Hence, if the arrival rate is less than the departure rate, the queue size will have 

a steady state. It makes sense that if the arrival rate is greater than the departure 

rate, then the queue size will tend to grow without bound. 
 

4.6 M/G/1 queue 
 



The number of customers in the system, N (t), does not now constitute a Markov 
process. 
 
 

 The probability per time unit for a transition from the state {N = n} to the state {N 

= n − 1}, i.e. for a departure of a customer, depends also on the time the 

customer in service has already spent in the server; 
 

– this information is not contained in the variable N (t) 
 

– only in the case of an exponential service time the amount of service 
already received does not have any bearing (memoryless property) 

 
 
 

In spite of this, the mean queue length, waiting time, and sojourn time of the M/G/1 

queue can be found. The results (the Pollaczek-Khinchin formulae) will be derived in 

the following.  It turns out that even the distributions of these quantities can be found. 

A derivation based on considering an embedded Markov chain will be presented after 

the mean formulae. 

4.7 Pollaczek-Khinchin mean formula 

 
We start with the derivation of the expectation of the waiting time W . W is the time 

the customer has to wait for the service (time in the “waiting room”, i.e. in the actual 

queue). 

 

• R is the remaining service time of the customer in the server (unfinished work 
expressed as the time needed to discharge the work).  
If the server is idle (i.e. the system is empty), then R = 0. 

 
• In order to calculate the mean waiting time of an arriving customer one needs 

the expec-tation of Nq (number of waiting customers) at the instant of arrival. 
 

• Due to the PASTA property of Poison process, the distributions seen by the 
arriving 

 
• customer are the same as those at an arbitrary instant. 

 



The key observation is that by Little‟s result the mean queue length E[Nq ] can be 

expressed in terms of the waiting time (by considering the waiting room as a black 

box) 

 

 

 

 

The residual service time can be deduced by using similar graphical argument as was 

used in explaining the hitchhiker‟s paradox. The graph represents now the evolution 

of the unfinished work in the server, R(t), as a function of time 

 

 

 



 

 

Remarks on the PK mean formulae 
 
 

• Mean values depend only on the expectation E[S] and variance V[S] of the 
service time distribution but not on higher moments. 

 
• Mean values increase linearly with the variance. 

 
• Randomness, „disarray‟, leads to an increased waiting time and queue length. 

 
• The formulae are similar to those of the M/M/1 queue; the only difference is the 

extra factor (1 + Cv
2)/2. 

 

 

Example. The output buffer of an ATM multiplexer can be modelled as an M/D/1 

queue. Constant service time means now that an ATM cell has a fixed size (53 

octets) and its transmission time to the link is constant. If the link speed is 155 Mbit/s, 

then the transmission time is S = 53 · 8/155 µs = 2.7µs. What is the mean number of 

cells in the buffer (including the cell being transmitted) ant the mean sojourn time of 



the cell in the buffer when the average information rate on the link is 124 Mbit/s? The 

load (utilization) of the link is ρ = 124/155 = 0.8 

 

 

 

 
 
Problems 

1.  A housewife buys 3 kinds of cereals A,B and C. She nssive weever buys the same 

cereal in successive weeks.If she buys cereal A,the next week she buys B.However if 

she buys B or C ,the next week she is 3 times as likely to buy A  as the other cereal. In 

the long run ,how often does she buy each of the three cereals? 

 

P=[0       1      0  

     3/4     0    1/4 

     3 /4    1/4   0]. 

Let Π =[Π1,Π2 ] be the steady state distribution of the Markov chain.Then ΠP= Π 

 

=[Π1,Π2 Π3]     [0       1      0  

        3/4     0    1/4 

       3 /4    1/4   0]   = ( Π1,Π2 Π3). 

Solving  

Π1=15/35 

Π2 =16/35 

 Π3=4/35. 

Prob of buying A=15/35 

Prob of buying B=16/35 

Prob of buying C=4/35 

 



2. Consider the Markov chain with three states, S={1,2,3}S={1,2,3}, that has the 

following transition matrix 

 

P=[1/2       1/4      1/4 

      1/3        0         2/3 

     1/2        1/2       0]. 

If we know P(X1=1)=P(X1=2)=1/4 find P(X1=3,X2=2,X3=1). 

P(X1=3)=1−P(X1=1)−P(X1=2)=1−1/4−1/4=1/2. 
P(X1=3,X2=2,X3=1)=P(X1=3)⋅p32⋅p21=1/2⋅1/2⋅1/3=1/12. 

 

3. Three boys A, B and C are throwing a ball to each other. A always throws the ball to 

B and B always throws the ball to C, but C is just as likely to throw the ball to B as to 

A. Show that the process is Markovian. Find the transition matrix.  

 

The transition matrix  is given by 

P=[0       1       0 

      0        0         1 

      1/2        1/2       0]. 

States of Xn depends only on states of Xn-1,but not on states of Xn-2,Xn-3,…. Or 

earlier states. Therefore Xn is markov chain. 

 

 

 


