
 
The Channel Coding Theorem 
It maybe stated in a different form as below: 
 

R ≤ C or rs H(S) ≤ rc I(X,Y)Max or{ H(S)/Ts} ≤{ I(X,Y)Max/Tc} 
 

If a discrete memoryless source with an alphabet ‘’S‟ has an entropy H(S) and 
producessymbols everyT seconds and a discrete memoryless channel has a capacity 
I(X,Y)Max and isused once every Tc seconds then ifthere exists a coding scheme for 
which the source output can be transmitted over the channel andbe reconstructed with 
an arbitrarily small probability of error. The parameter C/Tc is called thecritical rate. 
When this condition is satisfied with the equality sign, the system is said to besignaling 
at the critical rate. 
 
SOURCE CODING 
Encoding of the Source Output: 
Need for encoding  
Encoding involves the use of a code to change original data into a form that can be 
used by an external process. 
Encoding is the process of converting data into a format required for a number of 
information processing needs, including: 
 

 Program compiling and execution 
 Data transmission, storage and compression/decompression 
 Application data processing, such as file conversion 

Encoding can have two meanings: 
 In computer technology, encoding is the process of applying a specific code, such as 

letters, symbols and numbers, to data for conversion into an equivalent cipher. 
 In electronics, encoding refers to analog to digital conversion. 

 
Encoding is also used to reduce the size of audio and video files. 
It reduces redundancy thereby power consumption during transmission and space in 
storage. 
It is  used to enable error detection and error correction in communication 
 Let M – messages = 2N, which are equally likely to occur.  
Then recall that averageinformation per messages interval in H = N.Say further that 
each message is coded into N bits,If the messages are not equally likely, then „H‟ will 
be les s than „N‟ and each bit will carryless than one bit of information,so encoding is 
needed to improve the si 

 

If the encoder operates on blocks of „N‟ symbols, Produces an average bit rate of 
GN bits / symbol 
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Performance measuring factor for the encoder 

 

 

 

 
Shannon‟s Encoding Algorithm: 

 
„q‟ messages : m 1, m2, …..m i, …….., m q 

Probs. of messages : p1, p2, ..…..p i, ……..., p q 

ni: an integer 

The objective of the designer 
^ 

To find „n i‟ and „c i‟ for i = 1, 2, ...., q such that the average number of bits per symbol HN 

used in the coding scheme is as close to GN as possible. 
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Shannon binary encoding procedure: 
We present, first, the Shannon‟s procedure for generating binary codes mainly because 
of itshistorical significance. 
The procedure is as follows: 

 
BLOCK CODES 
 
Linear Block Codes: 
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A block code is said to be linear (n ,k) code if and only if the 2kcode words from a k- 
dimensional sub space over a vector space of all n-Tuples over the field GF(2).Fields 
with 2msymbols are called „Galois Fields‟ (pronounced as Galva fields), GF(2m).Their 
arithmetic involves binary additions and subtractions. For two valued variables, (0, 
1).Themodulo – 2 addition and multiplication is defined in Fig below 

 
The binary alphabet (0, 1) is called a field of two elements (a binary field and is denoted 
byGF (2). 
 
X3+ X2+ 1, X3+ X + 1,   X4+X3+1, X5+X2+1 etc. are irreducible polynomials, whereas 
f(X)=X4+X3+X2+1 is not as f(1) = 0 and hence has afactor X+1) then p(X) is said to be a 
„ primitive polynomial‟. 
If vnrepresents a vector space of all n-tuples, then a subset S of vnis called a subspace 
if (i)the all Zero vector is in S (ii) the sum of any two vectors in S is also a vector in S. To 
be more 
specific, a block code is said to be linear if the following is satisfied. “If v1 and v2 are 
any two codewords of length n of the block code then v1 v2 is also a code word length 
n of the block code”. 
Example: Linear Block code withk= 3, andn = 6 

 

Observe the linearity property:  

 
Remember that n represents the word length of the code words and k represents the 
number ofinformation digits and hence the block code is represented as (n,k) block 
code. 
Thus by definition of a linear block code it follows that if g1, g2… gkare the k linearly 
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independent code words then every code vector, v, of our code is a combination of 
these code words,i.e. 

 

 
The eqn. can be arranged in matrix form by nothing that each gjis an n-tuple, i.e. 
gj= (gj1, gj2,…. gjn)  
Thus we have v = u GWhere: u = (u1, u2… uk) represents the data vector and 

 

Systematic Block Codes (Group Property): 

Here a code word isdivided into two parts –Message part and the redund ant part. If 
either the first k digits or the last kdigits of the code word correspond to the message 
part then we say that the code is a “SystematicBlock Code”. 

fig format of sys. codes 
 

IFis the k kidentity matrix (unit matrix), P is the k (n – k)„ parity generator matrix‟, in 

which pi,jare either 0 or 1 and G is a knmatrix. The (nk) equations given are referred to as 

parity check equations. Observe that the G matrix of Example 6.2 is in the systematic format. 

The n-vectors a= (a1,a2…an) and b= (b1,b2…bn) are said to be orthogonal if their inner product 

defined by: a.b = (a1, a2…a n) (b1, b2 …b n)T
= 0. 

where, „ T‟ represents transposition. Accordingly for any knmatrix, G, with k linearly 

independent rows there exists a (n-k)n matrix H with (n-k) linearly independent rows such that 

any vector in the row space of G is orthogonal to the rows of H and that any vector that is 

orthogonal to the rows of H is in the row space of G. Therefore, we can describe an(n, k)linear 

code generated by G alternatively asfollows: 

“An n – tuple, v is a code word generated by G, if and only if v.HT= O”. 
(Orepresents an all zero row vector.) 

This matrix H is called a “ parity check matrix” of the code. Its dimension is (n–k)n. 

 

If the generator matrix has a systematic format, the parity check matrix takes the following form. 

This matrix H is called a “ parity check matrix” of the code.Its dimension is (n–k)n. 

If the generator matrix has a systematic format, the parity check matrix takes the 

following form. 
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Where Ok(n – k) is an all zero matrix of dimension k(n – k) . 

Further, since the (n–k) rows of the matrix H are linearly independent, the H matrix is a parity 

check matrix of the (n, k) linear systematic code generated by G.  
 
Syndrome and Error Detection: 
Suppose v= (v1,v2…vn) be a code word transmitted over a noisy channel and let: 
r = (r1, r2…. rn)be the received vector. Clearly, r may be different from v owing to the 
channelnoise.The vector sum 
e = r – v = (e1, e2… en) is an n-tuple, where ej= 1 if rjvjand ej= 0 if rj=vj. This n – tuple is 

called the “ error vector”or “ error pattern”. The 1‟s ine are the transmission errors caused by 

the channel noise.  
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r = v e 

When r is received, the decoder computes the following (n-k) tuple: 

s = r. HT= (s1, s2… sn-k) 

s = 0 if and only if r is a code word and s0 iffr isnot a code word. This vector s is called . Thus 

if s = 0, the receiveraccepts r as a valid code word. Notice that there are possibilities of errors 

undetected, whichhappens when e is identical to a nonzero code word. In this case r is the sum 

of two code wordswhich according to our linearity property is again a code word. This type of 

error pattern isreferred to an “ undetectable errorpattern”. Since there are 2k-1
nonzero code 

words, it followsthat there are 2k-1
error patterns aswell. Hence when an undetectable error pattern 

occurs thedecoder makes a “ decoding error”.as below: 

 

 

 

The syndrome is simply thevector sum of the received parity digits (rk+1, rk+2...rn) and 
the parity check digits recomputedfrom the received information digits (r1, r2… rn). 
Example 
We shall compute the syndrome for the (6, 3) systematic code of Example 5.2. We have 
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asv.HT= O. we have the following relationshipbetween the syndrome digits and the error 
digits. 

 

Thus, the syndrome digits are linear combinations of error digits.  

3. Uniquely decodable codes: 
A non-singular code is uniquely decipherable, if every word immersed in a sequence of 
words can be uniquely identified. The nthextension of a code, that maps each message 
into the codewords C, is defined as a code which maps the sequence of messages into 
a sequence of code words. 
This is also a block code, as illustrated in the following example. 
Example: Second extension of the code set given in C = {0, 11, 10, 01} 
S2={s1s1,s1s2,s1s3,s1s4;s2s1,s2s2,s2s3,s2s4,s3s1,s3s2,s3s3,s3s4,s4s1,s4s2,s4s3,s4
s4} 

 

Notice that, in the above example, the codes for the source sequences, s1s3 and s4s1 
are notdistinct and hence the code is “Singular in the Large”. Since such singularity 
properties introduceambiguity in the decoding stage, we therefore require, in general, 
for unique decidability of our codesthat “The nthextension of the code be non-
singular for every finite n.” 
4. Instantaneous Codes: 
A uniquely decodable code is said to be “ instantaneous” if the end of any code word is 
recognizablewith out the need of inspection of succeeding code symbols. That is there 
is no timelagin the process of decoding. To understand the concept, consider the 
following codes: 
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Kraft Inequality:  
Given a source S = {s1, s2…s q}.Let the word lengths of the codes corresponding to 
these symbols bel1, l2 …….l q and let the code alphabet be X = {x1, x2…x r}. Then, an 
instantaneous code for thesource existsiff 

 

The above Eq is called Kraft Inequality (Kraft – 1949). 
Example: 
A six symbol source is encoded into Binary codes shown below. Which of these codes 
areinstantaneous? 
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As a first test we apply the Kraft Inequality and the result is accordingly tabulated. Code 
E doesNotsatisfy Kraft Inequality and it is not an instantaneous code. 
Next we test the prefix property. For Code D, notice that the complete code word for the 
symbol s4 isa prefix of the code word for the symbol s3. Hence it is not an 
instantaneous code. However, Code A,Code B and Code C satisfy the prefix property 
and are therefore they are instantaneous codes. 
 
 
Code Efficiency and Redundancy: 
Consider a zero memory source, S with q-symbols {s1, s2… sq} and symbol 
probabilities {p1, p2… pq} respectively. Let us encode these symbols into r- ary codes 
(Using a code alphabet ofsymbols) with word lengths l1, l2…l q.We shall find a lower 
bound for the average length of thecodewords and hence define efficiency and 
redundancy of the code.QLet Q1, Q2 … Qqbe any set of numbers such that Qk≥ 0 and 
 

 
 
Consider the quantity 
Equality holds iffQk= pk. Eq. (5.21) is valid for any set of numbers Qkthat are non 
negative andsum to unity. We may then choose: 
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Defining 
 

 
Which gives the average length of the code words, and  
 

 
LHS of the Eq. is simply (The entropy of the source in bits per source symbol) ÷ (no. of 
codesymbols per source symbol) or bits per code symbol; which is nothing but the 
actual entropy of thecode symbols. RHS is the maximum value of this entropy when the 
code symbols are all equiprobable.Thus we can define the code efficiency as 
“Code efficiency is the ratio of the average information per symbol of the encoded 
language tothemaximum possible information per code symbol”. Mathematically, w 
ewrite 
Code efficiency 
 

 
or 
 

 
Accordingly, Redundancy of the code, 

 
Example: 
Let the source have four messages S= {s1, s2, s3, s4} with P=1/2,1/4,1/8,1/8 
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So,the equality L= H(S) /log r is strict since lk= log1/pk 
 
 
CYCLIC CODES 
A binary code is said to be "cyclic" if it satisfies: 
1. Linearity property – sum of two code words is also a code word. 
2. Cyclic property – Any lateral shift of a code word is also a code word. 
For example, if we move in a counter clockwise direction then starting at „ A‟ the code 
wordis 110001100 while if we start at B it would be 011001100. Clearly, the two code 
words are related inthatone is obtained from the other by a cyclic shift. 
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If the n - tuple, read from „ A‟ in the CW direction in Fig illustrating cyclic property, 
v = (vo, v1, v2, v3, vn-2, vn-1) 
is a code vector, then the code vector, read from B, in the CW direction, obtained by a 
one bit cyclicright shift: 
V1 = (vo, v1, v2, v3, vn-2, vn-1)  
is also a code vector. In this way, the n - tuples obtained by successive cyclic right 
shifts: 
v(2) = (vn-2, vn-1, vn, v0, v1… vn-3)  
v(3) = (vn-3 ,vn-2, vn-1, vn, .... vo, v1, vn-4)  
 
v(i)= (vn-i, vn-i+1,…v n-1, vo, v1,…. v n-i-1)  

 

 
are all code vectors. This property of cyclic codes enables us to treat the elements of 
each code vectoras the co-efficients of a polynomial of degree (n-1). 
This is the property that is extremely useful in the analysis and implementation of these 
codes. Thus we write the "code polynomial' V(X) for the codeas a vector polynomial as: 
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Generator Polynomial for Cyclic Codes: 

An (n, k) cyclic code is specified by the complete set of code polynomials of degree (n-
1)and contains a polynomial g(X), of degree (n-k) as a factor, called the "generator 
polynomial" of thecode. This polynomial is equivalent to the generator matrix G, of 
block codes. Further, it is the onlypolynomial of minimum degree and is unique. Thus 
we have an important theorem 
Theorem 1 "Ifg(X)is a polynomial of degree(n-k)and is a factor 
of(Xn+1)theng(X)generatesan(n, k)cyclic code in which the code polynomial V(X) for a 
data vector u = (u0, u1… uk -1) is generated by 

V(X) = U(X) g(X)  
Where 

 
is the data polynomial of degree (k-1).The theorem can be justified by Contradiction: - If 
there is another polynomial of same degree, thenadd the two polynomials to get a 
polynomial of degree <(n, k) (use linearity property and binaryarithmetic). Not possible 
because minimum degree is (n-k). Hence g(X) is uniqueClearly, there are 2kcode 
polynomials corresponding to 2kdata vectors. The code vectorscorresponding to these 
code polynomials form a linear (n, k) code. We have then, from the theorem 
 

 
Suppose u0=1 and u1=u2= …=uk-1=0. Then it follows g(X) is a code word 
polynomialof degree(n-k). This is treated as a „ basis code polynomial‟ (All rows of 
the G matrix of a block code,being linearly independent, are also valid code vectors and 
form „ Basis vectors‟ of the code). 

 
 
Therefore from cyclic property Xig(X) is also a code polynomial. Moreover, from the 
linearityproperty - a linear combination of code polynomials is also a code polynomial. It 
follows thereforethat any multiple of g(X) as  a code polynomial. Conversely, any 

(n-1) is a code polynomial if and only if it is a multiple of 
g(X). The codewords generated are in non-systematic form. Non systematic cyclic 
codes can begenerated by simple binary multiplication circuits using shift registers. here 
we have described cyclic codes with right shift operation. Left shift version canbe 
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obtained by simply re-writing the polynomials. Thus, for left shift operations, the 
variouspolynomials take the following form 
 
U(X) = uoXk-1+ u1Xk-2+…… + u k-2X + uk-1 ………………….. (a) 
V(X) = v0 Xn-1+ v1Xn-2+…. + v n-2X + vn-1 ……………… (b) 
g(X) = g0Xn-k+ g1Xn-k-1+…..+g n-k-1 X + gn-k……………… ( c) 

…………..(d) 
  
Multiplication Circuits: 
Construction of encoders and decoders for linear block codes are usually constructed 
withcombinational logic circuits with mod-2 adders. Multiplication of two polynomials 
A(X) and B(X)and the division of one by the other are realized by using sequential logic 
circuits, mod-2 adders andshift registers. In this section we shall consider multiplication 
circuits. 
For the polynomial: A(X) = a0+ a1X + a2X2+...+ an-1Xn-1where ai‟sare either a ' 0' or 
a '1', the right most bit in the sequence (a0, a1, a2... an-1) is transmittedfirst in any 
operation. The product of the two polynomials A(X) and B(X) yield: 
C(X) = A(X) *B(X) 
= (a0 + a1 X + a2 X2+… .................. + a n-1Xn-1) (b0 + b1 X + b2X2+…+ b m-1 Xm-1) 
= a0b0+ (a1b0+a0b1) X + (a0b2 + b0a2+a1b1) X2+…. + (a n-2bm-1+ an-1bm-2) Xn+m -

3+an-1bm-1Xn+m -2 

 
This product may be realized with the circuits as in fig below illustrate the concepts 
described so far. 
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Example :Consider the generation of a (7, 4) cyclic code. Here(n- k)= (7-4) =3and we 
have tofind agenerator polynomial of degree 3 which is a factor of Xn+ 1 = X7+ 1.To 
find the factors of‟ degree 3, divide X7+1 by X3+aX2+bX+1, where 'a' and 'b' are 
binarynumbers, to get the remainder as abX2+ (1 +a +b) X+ (a+b+ab+1). Only 
condition for the remainderto be zero is a +b=1 which means either a = 1, b = 0 or a = 
0, b = 1. Thus we have two possiblepolynomials of degree 3, namelyg1 (X) = X3+ X2+ 1 
and g2 (X) = X3+X+1In fact, X7+ 1 can be factored as:(X7+1) = (X+1) (X3+X2+1) 
(X3+X+1)Thus selection of a 'good' generator polynomial seems to be a major problem 
in the design of cycliccodes. No clear-cut procedures are available. Usually computer 
search procedures are followed. 
Let us choose g (X) = X3+ X + 1 as the generator polynomial. The encoding circuits are 
shown in 
Fig below (a) and (b). 

 
To understand the operation, Let us consider u = (10 1 1) i.e. 
U (X) = 1 +X2+X3. 
We have V (X) = (1 +X2+X3) (1 +X+X3). 
= 1 +X2+X3+X+X3+X4+X3+X5+X6 

= 1 + X + X2+ X3+ X4+ X5+ X6 
because (X3+ X3=0) 
=> v = (1 1 1 1 1 1 1) 
 
theproduct polynomial is: 
V (X) = 1 +X+X2+X3+X4+X5+X6 
and hence out put code vector is v = (1 1 1 1 1 1 1), as obtained by direct multiplication. 
The readercan verify the operation of the circuit  in the same manner. Thus the 
multiplicationcircuits of can be used for generation of non-systematic cyclic codes. 
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Dividing Circuits: 
As in the case of multipliers, the division of A (X) by B (X) can be accomplished by 
using shiftregisters and Mod-2 adders, as shown in Fig. below In a division circuit, the 
first co-efficient of thequotient is (an-1/(bm -1) = q1, and q1.B(X) is subtracted from A 
(X). This subtraction is carried out bythe feed back connections shown. This process will 
continue for the second and subsequent terms.However, remember that these 
coefficients are binary coefficients. After (n-1) shifts, the entirequotient will appear at the 
output and the remainder is stored in the shift registers. 
 

 

 
 
It is possible to combine a divider circuit with a multiplier circuit to build a “composite 
multiplier-divider circuit” which is useful in various encoding circuits.  
Example: 

Let  
We want to find the quotient and 
remainder after dividing A(X) by B(X). The circuit to perform this division is shown in Fig 
below. The operation of the divider circuit is listed in the table 
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The quotient co-efficients will be available only after the fourth shift as the first three 
shiftsresult in entering the first 3-bits to the shift registers and in each shift out put of the 
last register, SR3,iszero.The quotient co-efficient serially presented at the out put are 
seen to be (1111) and hence thequotient polynomial isQ(X) =1 + X + X2+ X3 

The remainder co-efficients are (1 0 0) and theremainder polynomial is R(X) = 1. after 
the (n-k)thshift register the result is the division of Xn-k A (X) by B (X).Accordingly, we 
have the following scheme to generate systematic cyclic codes. The 
generatorpolynomial is written as: 
 

 
 
The circuit below does the job of dividing Xn-k U (X) by g(X). The following steps 
describe the encoding operation. 
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1. The switch S is in position 1 to allow transmission of the message bits directly to an 
out put shift register during the first k-shifts. 
2. At the same time the 'GATE' is 'ON' to allow transmission of the message bits into the 
(n-k) stage encoding shift register 
3. After transmission of the kthmessage bit the GATE is turned OFF and the switch S is 
moved to position 2. 
4. (n-k) zeroes introduced at "A" after step 3, clear the encoding register by moving 
theparity bits to the output register 
5. The total number of shifts is equal to n and the contents of the output register is the 
code word polynomial V (X) =P (X) + Xn-kU (X). 
6. After step-4, the encoder is ready to take up encoding of the next message input 
Clearly, the encoder is very much simpler than the encoder of an (n, k) linear block 
code and the 
memory requirements are reduced. The following example illustrates the procedure. 
Example: 
Let u = (1 0 1 1) and we want a (7, 4) cyclic code in the systematic form. The generator 
polynomialchosen is g (X) = 1 + X + X3 
 

 
From direct division observe that 
p0=1, p1=p2=0. Hence the code word in systematic format is: 
v = (p0, p1, p2; u0, u1, u2, u3) = (1, 0, 0, 1, 0, 1, 1) 
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The encoder circuit for the problem on hand is shown   operational steps are as follows: 

 
 
After the Fourth shift GATE Turned OFF, switch S moved to position 2, and the parity 
bits 
contained in the register are shifted to the output. The out put code vector is v = (100 
1011) whichagrees with the direct hand calculation. 
 
Syndrome Calculation - Error Detection and Error Correction: 
Suppose the code vector v= (v0, v1, v2…vn-1) is transmitted over a noisy channel. 
Hence the 
received vector may be a corrupted version of the transmitted code vector. Let the 
received code 
vector be r = (r0, r1, r2…rn-1). The received vector may not be anyone of the 2kvalid 
code vectors.The function of the decoder is to determine the transmitted code vector 

20



based on the received vector.The decoder, as in the case of linear block codes, first 
computes the syndrome to check whether ornot the received code vector is a valid code 
vector. In the case of cyclic codes, if the syndrome iszero, then the received code word 
polynomial must be divisible by the generator polynomial. If thesyndrome is non-zero, 
the received word contains transmission errors and needs error correction. Letthe 
received code vector be represented by the polynomial 

 
Let A(X) be the quotient and S(X) be the remainder polynomials resulting from the 
division of 
R(X) by g(X) i.e. 
 

 
The remainder S(X) is a polynomial of degree (n-k-1) or less. It is called the "Syndrome 
polynomial". 
If E(X) is the polynomial representing the error pattern caused by the channel, then we 
have: 
R(X) =V(X) + E(X)  
And it follows as V(X) = U(X) g(X), that: 
E(X) = [A(X) + U(X)] g(X) +S(X)  
That is, the syndrome of R(X) is equal to the remainder resulting from dividing the error 
pattern bythe generator polynomial; and the syndrome contains information about the 
error pattern, which canbe used for error correction. Hence syndrome calculation can be 
accomplished using divider circuits.A“ Syndrome calculator” is shown in Fig below. 

 
The syndrome calculations are carried out as below: 
1 The register is first initialized. With GATE 2 -ON and GATE1- OFF, the received 
vector isentered into the register 
2 After the entire received vector is shifted into the register, the contents of the register 
will bethe syndrome, which can be shifted out of the register by turning GATE-1 ON and 
GATE-2OFF. The circuit is ready for processing next received vector. 
Theerror correction procedure consists of the following steps: 
Step1. Received data is shifted into the buffer register and syndrome registers with 
switches 
SINclosed and SOUTopen and error correction is performed with SINopen and SOUT 
closed. 
Step2. After the syndrome for the received code word is calculated and placed in 
thesyndrome 
register, the contents are read into the error detector. The detector is a 
combinatorialcircuit designed to output a „ 1‟ if and only if the syndrome corresponds to 
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a correctableerror pattern with an error at the highest order position Xn-l. That is, if the 
detector outputis a '1' then the received digit at the right most stage of the buffer register 
is assumed to bein error and will be corrected. If the detector output is '0' then the 
received digit at the rightmost stage of the buffer is assumed to be correct. Thus the 
detector output is the estimateerror value for the digit coming out of the buffer register. 
Step3. In the third step, the first received digit in the syndrome register is shifted right 
once. Ifthefirst received digit is in error, the detector output will be '1' which is used for 
errorcorrection. The output of the detector is also fed to the syndrome register to modify 
thesyndrome. This results in a new syndrome corresponding to the „ altered „received 
codeword shifted to the right by one place. 
Step4. The new syndrome is now used to check and correct the second received digit, 
whichisThe multiplication operation, performed by the circuit, is listed in the Table below 
step by step. In shift number 4, „ 000‟ is introduced to flush the registers. As seen from 
the tabulationnow at the right most position, is an erroneous digit. If so, it is corrected, a 
new syndromeis calculated as in step-3 and the procedure is repeated. 
Step5. The decoder operates on the received data digit by digit until the entirereceived 
code wordis shifted out of the buffer. 
 
 
CONVOLUTIONAL CODES 
In block codes, a block of n-digits generated by the encoder depends only on the block 
of kdatadigits in a particular time unit. These codes can be generated by combinatorial 
logic circuits. In aconvolutional code the block of n-digits generated by the encoder in a 
time unit depends on not onlyon the block of k-data digits with in that time unit, but also 
on the preceding „ m‟ input blocks. An (n,k, m) convolutional code can be implemented 
with k-input, n-output sequential circuit withinputmemory m. Generally, k and n are 
small integers with k < n but the memory order m must be madelarge to achieve low 
error probabilities. In the important special case when k = 1, the informationsequence is 
not divided into blocks but can be processed continuously. 
 
 
Connection Pictorial Representation: 
The encoder for a (rate 1/2, K = 3) or (2, 1, 2) convolutional code is shown in. 
Bothsketches shown are one and the same. 
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Fig.Con1 
 
At each input bit time one bit is shifted into the left most stage and the bits that were 
present in theregisters shifted to the right by one position. Output switch (commutator 
/MUX) samples the outputof each X-OR gate and forms the code symbol pairs for the 
bits introduced. The final code is obtainedafter flushing the encoder with "m" zero's 
where 'm'- is the memory order (In Fig.con.1, m = 2). Thesequence of operations 
performed by the encoder of Fig.con.1 for an input sequence u = (101) areillustrated 
diagrammatically in Fig con.2. 

 
 
Fig Con2 
From Fig con.2, gives the encoding procedure. 
. 
Convolutional Encoding – Time domain approach: 
The encoder for a (2, 1, 3) code is shown in Fig. con3. Here the encoder consists of 
m=3 stageshift register, n=2 modulo-2 adders (X-OR gates) and a multiplexer for 
serializing the encoderoutputs. Notice that module-2 addition is a linear operation and it 
follows that all convolutionencoders can be implemented using a “ linear feed forward 
shift register circuit”. 
The “information sequence‟ u = (u1, u2, u3…….) enters the encoder one bit at a time 
starting fromu1. As the name implies, a convolutional encoder operates by performing 
convolutions on theinformation sequence. Specifically, the encoder output sequences, 
in this casev(1)={v1(1), v2(1), v3(1)…}and v(2)= {v1(2),v2(2),v3(2)… }are obtained by the 
discrete convolution of the information sequencewith the encoder "impulse responses'. 
The impulse responses are obtained by determining the outputsequences of the 
encoder produced by the input sequence u= (1, 0, 0, 0…) .The impulse responses 
sodefined are called 'generator sequences' of the code. Since the encoder has a m-
time unit memory theimpulse responses can last at most (m+ 1) time units (That is a 
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total of (m+ 1) shifts are necessary fora message bit to enter the shift register and finally 
come out) and are written as:g(i)= {g1(i), g2(i),g3(i)…g m+1(i)}. 
 

 
 
Fig Con3 
For the encoder of Fig.con.3, we require the two impulse responses, 
g(1)= {g1(1), g2(1), g3(1), g4(1)}and g(2)= {g1(2), g2(2), g3(2), g4(2)} 
By inspection, these can be written as: g(1)= {1, 0, 1, 1} and g(2)= {1, 1, 1, 1} 
Observe that the generator sequences represented here is simply the 'connection 
vectors' of theencoder. In the sequences a '1' indicates a connection and a '0' indicates 
no connection to thecorresponding X - OR gate. If we group the elements of the 
generator sequences so found in to pairs,we get the overall impulse response of the 
encoder, Thus for the encoder of Fig con.3, the „over-allimpulse response‟ will be: 
v = (11, 01, 11, 11) 
The encoder outputs are defined by the convolution sums: 
v (1) = u * g (1) …………………. (eqn con.1 a) 
v (2) = u * g (2) …………………. (eqn con1.b) 
Where * denotes the „discrete convolution‟, which i mplies: 

(eqn con2) 
forj = 1, 2 and where ul-i= 0 for all l<i and all operations are modulo - 2. Hence for the 
encoder ofFig (con3), we have: 
vl(1)= ul+ ul – 2+ ul - 3 
vl(2)= ul+ ul – 1+ ul – 2 + ul - 3 
This can be easily verified by direct inspection of the encoding circuit. After encoding, 
the 
two output sequences are multiplexed into a single sequence, called the "code word" 
for transmissionover the channel. The code word is given by: 
v = {v1(1)v1(2), v2(1)v2(2), v3(1)v3(2)…} 
Fig.con.4. Here, as k =2, the encoder consists of two m = 1 stage shift registers 
together with n = 3modulo -2 adders and two multiplexers. The information sequence 
enters the encoder k = 2 bits at atime and can be written as u= {u1 (1) u1(2), u2 (1) 
u2(2), u3 (1) u3 (2) … } or as two separate inputsequences: 
u(1)= {u1(1), u2(1), u3 (1) … } andu(2)= {u1(2), u2(2), u3 (2) … }. 
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Fig con 4 
There are three generator sequences corresponding toeach input sequence. Letting 
gi( j)= {gi,1( j), gi,2( j), gi,3( j)… g i,m+1( j)} 
inputi and output j. The generator sequences for the encoder are: 
g1(1)= (1, 1), g1(2)= (1, 0), g1(3)= (1, 0),g2(1)= (0, 1), g2(2)= (1, 1), g2(3)= (0, 0) 
The encoding equations can be written as: 
v (1) = u (1) * g1 (1) + u(2)* g2 (1)……………………. (eqn con.5 a) 
 
v (2) = u(1)* g1 (2) + u (2) * g2 (2) ……………………. (eqn con5b) 
 
v (3) = u (1) * g1 (3) + u (2) * g2 (3) …………………… (eqn con.5 c) 
 
The convolution operation implies that: 
v l(1)= u l(1)+ u l-1(1)+ u l-1(2)v l(2)= u l(1)+ u l(2)+ u l-1(2)v l(3)= u l(1) 
as can be seen from the encoding circuit. 
After multiplexing, the code word is given by: 
v = { v 1( 1)v 1( 2)v 1( 3), v 2( 1)v 2( 2)v 2( 3), v 3( 1)v 3( 2)v 3( 3)… } 

 
Fig con 5 
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Since each information bit remains in the encoder up to (m + 1) time units and during 
eachtime unit it can affect any of the n-encoder outputs (which depends on the shift 
register connections)it follows that "the maximum number of encoder outputs that 
can be affected by a singleinformation bit" is 
 

(eqn con8) 
 
„ nA‟ is called the 'constraint length" of the code output isusually denoted as K. For the 
encoders of Fig con.3, con.4 and con.5 have values of K = 4, 2 and 3respectively. The 
encoder in Fig con.3 will be accordingly labeled as a „ rate 1/2, K = 4‟ 
convolutionalencoder. The term K also signifies the number of branch words in the 
encoder‟s impulse response. 
 

 
 
and is called "fractional rate loss". Therefore, in order to keep the fractional rate loss 
at a minimum(near zero), „ L‟ is always assumed to be much larger than „ m‟. For the 
information 'sequence of Example we have L = 5, m =3 and fractional rate loss = 3/8 = 
37.5%. If L is made 1000, thefractional rate loss is only 3/1003≈0.3%. 
 
Encoding of Convolutional Codes; Transform Domain Approach: 
In any linear system, we know that the time domain operation involving the convolution 
integral can be replaced by the more convenient transform domain operation, involving 
polynomialmultiplication. Since a convolutional encoder can be viewed as a 'linear time 
invariant finite statemachine, we may simplify computation of the adder outputs by 
applying appropriate transformation. 
As is done in cyclic codes, each 'sequence in the encoding equations can' be replaced 
by acorresponding polynomial and the convolution operation replaced by polynomial 
multiplication. Forexample, for a (2, 1, m) code, the encoding equations become: 
v(2)(X) = v1(2)+ v2(2)X + v3(2)X2+.....are the encoded polynomials. 
g(1)(X) = g1(1)+ g2(1)X + g3(1)X2+ ....., andg(2)(X) = g1(2)+ g2(2)X + g3(2)X2+ ..... 
are the “generator polynomials” of' the code; and all operations are modulo-2. After 
multiplexing, thecode word becomes: 
v(X) = v(1)(X2) + X v(2)(X2) 
The indeterminate 'X' can be regarded as a “unit-delay operator”, the power of X 
defining thenumber of time units by which the associated bit is delayed with respect to 
the initial bit in thesequence. 
Example: 
For the (2, 1, 3) encoder of Fig con.3, the impulse responses were: g(1)= (1,0, 1, 1), and  
g(2)= (1,1, 1, 1) 
The generator polynomials are: g(l)(X) = 1 + X2+ X3, and g(2)(X) = 1 + X + X2+ X3 
For the information sequence u = (1, 0, 1, 1, 1); the information polynomial is:  
u(X) = 1+X2+X3+X4 
The two code polynomials are then: 
v(1)(X) = u(X) g(l)(X) = (1 + X2+ X3+ X4) (1 + X2+ X3) = 1 + X7v(2)(X) = u(X) g(2)(X)  
= (1 + X2+ X+ X4) (1 + X + X2+ X3) = 1 + X + X3+ X4+ X5+ X7 

26



From the polynomials so obtained we can immediately write: 
v(1)= ( 1 0 0 0 0 0 0 1), and v(2)= (1 1 0 1 1 1 0 1) 
Pairing the components we then get the code word v = (11, 01, 00, 01, 01, 01, 00, 11). 
We may use the multiplexing technique of the last code word equation and write: 
v(1)(X2) = 1 + X14 
andv(2)(X2) = 1+X2+X6+X8+X10+X14; Xv(2)(X2) = X + X3+ X7+ X9+ X11+ X15; 
and the code polynomial is: v(X) = v(1)(X2) + X v(2)(X2) = 1 + X + X3+ X7+ X9+ X11+ X14+ 
X15 
Hence the code word is: v = (1 1, 0 1, 0 0, 0 1, 0 1, 0 1, 0 0, 1 1); this is exactly the 
same as obtainedearlier. 
 
 
Shannon – Fano Binary Encoding Method: 
Shannon – Fano procedure is the simplest available. Code obtained will be optimum if and only 

if pkrlk.The procedure is as follows: 

1. List the source symbols in the order of decreasing probabilities. 

2. Partition this ensemble into almost two equi- probable groups. 

Assign a „ 0‟ to one group and a „ 1‟ to the other group. These form the starting code symbols 

of the codes. 

3. Repeat steps 2 and 3 on each of the subgroups until the subgroups contain only one source 

symbol, to determine the succeeding code symbols of the code words. 

4. For convenience, a code tree may be constructed and codes read off directly. 

Example 
Consider the message ensemble S = {s1, s2, s3, s4, s5, s6, s7, s8} with 
P = ¼, ¼, 1/8 ,1/8 ,1/16, 1/16, 1/16, 1/16    X { 0 ,1 } 

The procedure is clearly indicated in the Box diagram shown below. The Tree diagram for the 

steps followed is also shown in Fig below. The codes obtained are also clearly shown. For this 

example, 
L = 21/4 + 21/4 + 31/8 + 31/8 + 41/16 + 41/16 + 41/16 + 41/16 = 2.75 binits / symbol 
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Incidentally, notice from tree diagram that the codes originate from the same source 
and divergeintodifferent tree branches and hence it is clear that no complete code 
can be a prefix of any othercode word. 
 
Thus the Shannon- Fano algorithm provides us a means for constructing optimum, 
instantaneous codes. 
 
In making the partitions, remember that the symbol with highest probability should be 
made 
to correspond to a code with shortest word length. Consider the binary encoding of the 
following 

28



message ensemble. 
Example: 
S = {s1, s2, s3, s4, s5, s6, s7, s8} 

P = 0.4 , 0.2 , 0.12 , 0.08 , 0.08 , 0.08 , 0.04
Method - I 

 
 
Method – II 
 

 
For the partitions adopted, we find L=2.52 binits / sym. for the Method – I 

L=2.48 binits/symfor the Method – II 
 
For this example, H(S) =2.420504 bits/symand 

For the first method, c196.052% 

For the second method,c 297.6 
 

This example clearly illustrates the logical reasoning required while making partitions. 
TheShannon – Fano algorithm just says that the message ensemble should be 
partitioned into two almostequi-probable groups. While making such partitions care 
should be taken to make sure that thesymbol with highest probability of occurrence will 
get a code word of minimum possible length. Inthe example illustrated, notice that even 
though both methods are dividing the message ensemble intotwo almost equi-probable 
groups, the Method – II as signs a code word of smallest possible length tothe symbol 
s1. 
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Compact code: Huffman‟s Minimum Redundancy code: 
for an optimum coding we require: 

1) Longer code word should correspond to a message with lowest probability. 
1) Longer code word should correspond to a message with lowest probability. 

2) 2) lklk1k 1,2 ,......qr1 
3) (3) lp-r= lq-r-1 = lq-r-2 = …..= l(4) The codes must satisfy the prefix property. 

Huffman has suggested a simple method that guarantees an optimal code. The 
procedure consists of step- by- step reduction of the original source followed by acode 
construction, starting with the final reduced source and working backwards to the 

originalsource. The procedure requires steps, where 

q = r + (r-1)  
The procedure is as follows: 

1. List the source symbols in the decreasing order of probabilities. 

2. Check if q = r +(r-1) is satisfied and find the integer „ ‟ . Otherwise add suitable number 

of dummy symbols of zero probability of occurrence to satisfy the equation. This step is not 

required if we are to determine binary codes. 
3. Club the last r symbols into a single composite symbol whose probability of occurrence is 

equal to the sum of the probabilities of occurrence of the last r – symbols involved in the step. 

4. Repeat steps 1 and 3 respectively on the resulting set of symbols until in the final step exactly 
r- symbols are left. 

5. Assign codes freely to the last r-composite symbols and work backwards to the original 

source to arrive at the optimum code. 

6. Alternatively, following the steps carefully a tree diagram can be constructed starting from the 

final step and codes read off directly. 

7. Discard the codes of the dummy symbols. 

Example 6.12: (Binary Encoding) 
S = {s1, s2, s3, s4, s5, s6}, X = {0, 1}; 

 
there can be as many as 2. (2.2+2.2) = 16 possible instantaneous code patterns. For example we 

can take thecompliments of First column, Second column, or Third column and combinations 

there of asillustrated below. 
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Code I is obtained by taking complement of the first column of the original code. Code II is 

obtained by taking complements of second column of Code I. Code III is obtained by taking 

complements of third column  

Code II. However, notice that, lk, the word length of the code word for skis a constant for all 

possible codes. 

For the binary code generated, we have: 
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