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UNIT V LINEAR TIME INVARIANT DISCRETE TIME SYSTEMS      

LTI-DT systems – Characterization using difference equation – Properties of convolution and 

interconnection of LTI Systems – Causality and Stability of LTI Systems – Impulse response, 

Convolution Sum and Frequency response – Computation of Impulse response and Transfer 

function using Z Transform. 

 

LTI – DT Systems: 

A DT System which satisfies Linearity and time invariance property is called LTI DT systems. LTI systems 

comprise a very important class of systems, and they can be described by a standard mathematical 

formalism. 

Characterization using difference equation: 

Systems described by constant-coefficient, linear difference equations are LTI systems. In exploring 

this fact, it is important to keep in mind that our default setting is that all signals are defined for –∞< n < 

∞. The difference equation is a formula for computing an output sample at time n based on past and 

present input samples and past output samples in the time domain.  The difference equation is as 

follows:  

 

 

 

  

    
 

  

  
 

 

 

Where x(n) is the input signal and y(n) is the output signal and constants 

 ,  are called the coefficients. We have a system whose input and output 

signals are related by 

y[n] + ay[n -1] = bx[n] , - ∞ < n < ∞ 

where a and b are real constants. This is called afirst-order, constant-coefficient, linear difference 

equation. Given an input signal x[n], this can be viewed as an equation that must be solved for y[n] for 

each input signal x[n] thereis a unique solution for the output signal y[n].                                             

 ∞ 

y[n] = ∑ (—a)
n-k

bx[k] 

k=-∞ 

Example 1: Find the solution to the following difference equation by using the z-

transformx(k+2)+3x(k+1)+2x(k)=0, x(0)=0,x(1)=1 
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Solution: 

Take the z-transform of both side of the equation, we getz
2 

X (z) − z
2
x(0) − z ⋅x(1) + 3z ⋅X (z) − 3z ⋅x(0) + 

2X (z) = 0 

Substituting in the initial conditions and simplifying gives 

 

Take the inverse Z transform of above equation we get, 

 

Example 2: Using the z-transform to solve the following difference equationx(k + 2) + 0.4x(k +1) − 

0.32x(k) = u(k), where x(0) = 0 and x(1) = 1. The input u(k) is a unit step input, i.e. u(k) = 1, for k ≥ 0. 

Solution: 

Take the z-transform of the difference equation we get 

 

Substituting the initial conditions and simplifying, we obtain 

 

The partial fraction expansion of the solution X(z) is 

 

The corresponding time sequence can be obtained by taking the inverse z-transform of the above 

equation: 

x(k) = 0.926 − 0.3704(−0.8)
k 
− 0.5556(0.4)

k
, for k = 0, 1, 2, … 

 

Convolution Sum: 

To each LTI system there corresponds a signal h[n] such that the input-output behavior of the system is 

described by 

            ∞ 

y[n] = ∑ x[k]h[n — k] 

k=—∞ 
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This expression is called the convolution sum representation for LTI systems. In addition, the shifting 

property easily shows that h[n] is the response of the system to a unit-pulse input signal.  

        ∞                   ∞ 

y[n]= ∑ x[k]h[n — k]= ∑ g[k]h[n — k]= h[n] 

        k=-∞                      k=-∞ 

Thus the input-output behavior of a discrete-time, linear, time-invariant system is completely described 

by the unit-pulse response of the system. If h[n] is known, then the response to anyinput can be 

computed from the convolution sum. 

The system response to this inputsignal is given by 

 

To rewrite this expression, change the summation index from k to 1 = k — N, to obtain 

 

The convolution representation for linear, time-invariant systems can be developed by adopting a 

particular representation for the input signal and then enforcing the properties of linearity and time 

invariance on the corresponding response 

Example, if n = 3, then the right side is evaluated by the sifting property to verify 

∞ 

∑ x[k]h[3 - k] = x[3] 

k=-∞ 

We can use this signal representation to derive an LTI system representation as follows. The response 

of an LTI system to a unit pulse input, x[n] = u[n], is given the special notation y[n] = h[n]. Then by time 

invariance, the response to a k—shifted unit pulse, u[n] = δ[n — k] = h[n — k]. Furthermore, by linearity, 

the response to a linear combination of shifted unit pulses is the linear combination of the responses to 

the shifted unit pulses. That is, the response to x[n], as written above, is 

             ∞ 

y[n]= ∑x[k] h[n —  k] 

        k=-∞ 
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Thus have arrived at the convolution sum representation for LTI systems. The convolution representation 

follows directly from linearity and time invariance An alternate expression for the convolution sum is 

obtained by changing the summation variable from k to 1 = n - k:                                        

            ∞ 

y[n]= ∑h[ l ]x [n -  l ]  

        k=-∞ 

It is clear from the convolution representation that if the unit-pulse response of an LTI system is known, 

then we can compute the response to any other input signal by evaluating the convolution sum. Indeed, we 

specifically label LTI systems with the unit-pulse response in drawing block diagrams, as shown below 

 X(n) y(n) 

 

Example: convolve the following signals using matrix method x(n)={ 1 1 2  2}, h(n)={1 2 3 4} 

Ans: y(n)={1 3 7 12 14 14 8} 

 

Properties of Convolution – Interconnections of DT LTI Systems 

Convolution of two signals given by                   

∞ 

y[n] = x(n) * h(n) = ∑ x[k]h[n – k] 

                             k=-∞ 

For any n, the value of y[n] in general depends on all values of the signals x[n] and h[n], y[n] = x[n]* 

h[n], for example, y[2] = x[2]* h[2] . 

 Commutativity: Convolution is commutative. That is, x(n) * h(n) = h(n) * x(n) 

∞∞ 

∑ x[k ]h[n- k ]=∑h[k ]x[n-  k ]  ,  for  a l l  n  

k—∞k—∞ 

∞                      ∞ 

(x* h)[n]= ∑ x[k]h[n- k]= ∑ x[n- q]h[q] 

k=-∞                     q=∞ 

     ∞ 

= ∑h[q]x[n- q]= h(n)* x(n) 

q=
-
∞ 

Using this result, there are two different ways to describe in words the role of the unit-pulse response 

values in the input-output behavior of an LTI system. The value of h[n – k] determineshow the n
th
 value 

of the output signal depends on the k
th
 value of the input signal. Or, the value of h[q] determines how 

the value of y[n] depends on the value of x[n – q]. 

LTI      h(n) 
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 Associativity:Convolution is associative. That is,  

(x* h1 * h2))[n] = ((x* h1)* h2)[n] 

 Distributivity: Convolution is distributive (with respect to addition). That is, (x* (h1 + 
h2))[n]= (x* hi)[n]+ (x* h2)[n] 

For any constant b,((bx)* h)[n] = b (x* h)[n] 

 Shifting Property:This is simply a restatement of the time-invariance property. For any integer no , 
if i[n] = x[n — no], then 

h[n] = (x* h)[n — no] 

 Identity: It is worth noting that the "star" operation has the unit pulse as an identity 
element. Namely, 
(x* S)[n] = x[n] 

This can be interpreted in system-theoretic terms as the fact that the identity system, y[n] = x[n] has the 

unit-pulse response h[n] = δ[n] .Also we can write (δ* δ)[n]= g[n]. The unit pulse is the unit-pulse 

response of the system whose unit-pulse response is a unit pulse. 

These algebraic properties of the mathematical operation of convolution lead directly to methods for 

describing the input-output behavior of interconnections of LTI systems. For example, 

x(n) y(n) 

has the same input-output behavior as the system 

 

 x(n) y(n) 

 

both have the same input-output behavior as the system 

 x(n) y(n) 

 

 

Transfer Function and Impulse Response Sequence 

The transfer function for the continuous-time system relates the Z transform of the continuous-time output 

to that of the continuous-time input. For discrete-time systems, the transfer function relates the z-

transform of the output at the sample instance to that of the sampled input.Consider a linear time-

invariant discrete-time system characterized by the following lineardifference equation: 

LTI Systems 

 h(n) 

h1(n)+h2(n) 

LTI 

(h1*h2)(n) 
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where u(k) and y(k) are the system input and output, respectively, at the k
th
 sample instances. If we take 

the z-transform and by using the time shift property of the z-transform, we obtain 

 

which can be written as 

 

where 

 

Consider the response of the linear discrete-time system described by Equation, initially atrest (y(k) = 0, k 

< 0), when the input u(k) is the Kronecker delta function δ0(k), i.e. 

 

Since 

 

then 

 

Thus, G(z) is the z-transform of the response of the system to the Kronecker delta function input. The 

function G(z) is called the transfer function of the discrete-time system. In the above derivation, the role of 

the Kronecker delta function in discrete-time system is similar to that of the unit impulse function (the 

Dirac delta function) in continuous-time systems.The inverse transform of G(z) as given by Eq.  
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is called the impulse response function (sequence).The system described by the difference equation 

 

where the system is initially at rest (y(k) = 0, k < 0) and the input u(k) = 0, for k < 0, can berepresented by 

the transfer function G(z). 

 

Example Consider the difference equationy(k + 2) + a y(k +1) + a y(k) = b u(k + 2) + b u(k +1) + b u(k). 

Assuming that the system is initially at rest and u(k) = 0 for k < 0, find the transfer function. 

Solution: 

The z-transform of the difference equation is 

 

Collect common terms 

 

To determine the initial conditions y(0) and y(1), we substitute k = −2 into the original difference equation 

and obtain 

 

which implies 

 

By substitute k = −1 into the original difference equation and obtain 
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which impliesy(1) =-a y(0)+ b u(1)+ b u(0)  

By substituting Equations we get 

 

Hence, if both y(k) and u(k) are zero for k < 0, then the system’s input and output are related by the above 

Equation.The transfer function G(z) = Y(z) / U(z) can be written as 

 

The above Equation is the same transfer function for the system described by the difference equation 

y(k) + a y(k − 1) + a y(k − 2) = b u(k) + b u(k − 1) + b u(k −2 ). 

 

Causality and Stability of LTI Systems 

A DT system is said to be a causal if the output of the system at any time depends only on the present 

input, past input but does not depend on future input and output 

Ex: y(n)=x(n), x(n-1), x(n-2)…. 

A system is said to be stable if and only if every bounded input produces a bounded output condition for 

stability is given by 

   |ℎ 𝑛 |∞
−∞ <∞ 

 

Computation of Impulse response and Transfer function using Z Transform. 

Example: Assuming that the system is initially at rest, find the impulse response of the following discrete 

time system: 

y(k + 3) = 2u(k + 3) − u(k + 2) + 4u(k +1) + u(k). Find the transfer function 

Solution: 

Transfer function of the system can be written as 

 

The impulse response of the system with zero initial condition is then the inverse z-transform of the pulse 

transfer function, 
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Henceg(0) = 2, g(1) = −1, g(2) = 4, g(3) = 1, g(k) = 0, for k >3 

 

 

Frequency Response of Discrete-Time Systems 

In order for systems to possess a steady-state response to a sinusoidal input, in must be stable (all the 

poles of the transfer function must lie within the unit circle of the complex z plane). Let the system of 

interest be defined by 

 

where pi are the complex poles of the system. We further assume that the system is stable, i.e. pi <1 for 

all i. 

Let the input to the system be a cosine sequence of radian frequency ω, i.e. 

 

The corresponding z-transform of the input sequence is 

− 

Substituting the input equations the output Y(z) is given by 

 

A partial fraction expansion of the above equation can be written as 

 

Each term in the summation on the right hand side of equation yields a time domain sequence of the form 

Di (pi) k, which if pi <1 will vanish when k gets larger and hence does not contribute to the steady-state 

response. The coefficients B and C in Eq. can be evaluated by the following formula 

j T 
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Substituting Y(Z) in the above formula gives 

 

Thus the steady state response YSS(s) is 

 

Since G(z) is a rational function of the complex variable z, G(e 
jωT

) is a complex number that can be 

written in polar forma as 

 

where φ is the phase angle of the complex number G(e jωT). With similar reasoning, G(e 
−jωT

) will have 

the same magnitude and conjugate phase angle as G(e 
jωT

), i.e. 

 

Substituting the values, the steady-state response can be written as 

 

Taking inverse z-transform of the above equation, we can obtain the time sequence of the steadystate 

sinusoidal response to be 

Using 

the Euler identity, the above equation can be further simplified and the steady-state 

sinusoidal response is 

 

From the above Equationwe see that, similar to the continuous-time case, the steady-state response of 

the system G(z) to a sinusoidal input is still sinusoidal with the same frequency but scaled in amplitude 

and shifted in phase. The amplitude of the steady-state response is scaled by a factor of G|e
jwt|

,which will 

be referred to as the system gain associated with G(z) at frequency ω . The complex function of ω, G(e 
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jωT), is called the frequency response function of the system G(z). The frequency response function of a 

system can be obtained by replacing the z-transform complex variable z with e 
jωT

, i.e. 

 

As in the continuous-time case, we are usually interested in the magnitude and phasecharacteristics of 

this function as a function of frequency. It is interesting to note that the DC gain of the system 

corresponds to the magnitude of the frequency response function at ω = 0, 

DC Gain=  

This is slightly different from the continuous-time case where the DC gain is evaluated bysubstituting the 

Laplace variable s by 0. 

 

Example: Find the frequency response for the discrete-time system described by the following difference 

equation: 

y(k) = e
−2T 

y(k −1) + u(k), where T =π/5 

Solution: 

The impulse transfer function of the system can be found by taking the z-transform of thedifference 

equation and assuming zero initial conditions 

 

which implies 

 

The frequency response of the system is 

 

PART - A 

1. Define transfer function. 

2. What is Frequency response? 

3. Define shift invariant system. 

4. Define causal and stable system with suitable example. 

5. Test whether the system y(n)=x(n)-bx(n-1) is linear. 

6. Define a casual system. 
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7. State the properties of convolution. 

8. What is the relationship between input and output of an LTI system 

9. Determine the system function of the system described by the differential equation 

y(n)=1/2y(n-1)-1/4y(n-2)=x(n)-x(n-1) 

10.Is the output sequence of a LTI system finite or infinite when the input x(n)  is  finite? Justify your 

answer  

 

PART - B 

1. With an example discuss LTI and causality 

2. Find the frequency response of a system described by the difference equation y(n)=1/5y(n-1)+x(n) for 

y(-1)=0 

3. If a system is represented by the following equation y(n)-3y(n-2) = x(n)+4x(n+1)-2x(n+2) for n>0 

a)Is the system linear explain. 

b)Is c)Is the system causal. 

4. Explain whether the following system are stable  y(n)=cosx(n)       &   y(n)=x(n-2) 

5. Determine circular convolution of the two sequences x(n)=(1,1,-1,-1) and y(n)=(1,-1,2,1) and compare 

with linear convolution 

6. Determine the system function and unit impulse of the system described by the differential equation 

        y(n)-1/2y(n-1)=2x(n); y(-1)=0 


	eq:tpnine

