SMTX 1011 APPLIED NUMERICAL METHODS

COMMON TO ALL ENGINEERINGS EXCEPT BIO MED AND BIO INFO

III YEAR V SEMESTER (BATCH 2010 ONWARDS)

COURSE MATERIAL

COURSE OBJECTIVE: The ability to identify, reflect upon, evaluate and apply different types of information and knowledge to form independent judgments. Analytical, logical thinking and conclusions based on quantitative information will be the main objective of learning this subject.

UNIT I- CURVE FITTING

Curve Fitting –Method of group averages-Principle of least squares- Method of moments –Finite Difference – Operators E &D – Relationship between Operators.

APPLIED NUMERICAL METHODS

Subject code: SMTX1011

UNIT-I- Curve Fitting

Concepts:

The Method of Group Averages is based on the assumption that the Sum of the residuals is zero.

The Method of Least Square is based on the principle that the Sum of the Squares of the residuals is Ninimum.

The Normal equations to fit a Straight dine of the form y = axtb are Sy = a Sx+nb Sny = a Sx+nb

The normal equations to fit a parabola of the form $y = ax^2 + bx + c$ are $Sy = a Sx^2 + b Sx + nc$ $Sny = a Sx^3 + b Sx^2 + c Sx$ $Sn^2y = a Sx^3 + b Sx^2 + c Sx^2$

The Method of Moments is based on the Principle that the Calculated moments (mi) and the expected Moments (Di) are equal for all i. UNIT-1 SMTX1011 APPLIED NUMERICAL METHODS (COMMON TO ALL ENGINEERING EXCEPT CSE, ITAND BIO GROUPS)

Operators
Horw and difference operator (A), Backward
difference operator (
$$\nabla$$
), Central difference operator (δ)
Shifting operator (E), Averaging operator (μ) and the
Differential operator (D) are all (Satify the like as daw,
A (a fix) + bg(x)) = a A fix) + b & g(x) where
a and & are constants.
A [fix) g(x)] = f(x+h) Ag(x) + g(x) Af(x)
A [fix)] = g(x) A fix) - fix) Ag(x)
If $y = f(x)$ is a polynomial of degree n
then its nth differences are constants.
($U > \Delta^n [f(x)]$ is a constant
Ath $f(x) = 0$.
det $f(x) = a_0 x^n + a_1 x^{n-1} + \cdots + a_n$
then $\Delta^n f(x) = a_0 x^n + a_1 x^{n-1} + \cdots + a_n$
then $\Delta^n f(x) = a_0 x^n + a_1 x^{n-1} + \cdots + a_n$
then $\Delta^n f(x) = a_0 x^n + a_1 x^{n-1} + \cdots + a_n$
then $\Delta^n f(x) = a_0 x^n + a_1 x^{n-1} + \cdots + a_n$
then $\Delta^n f(x) = a_0 x^n + a_1 x^{n-1} + \cdots + a_n$
then $\Delta^n f(x) = a_0 x^n + a_1 x^{n-1} + \cdots + a_n$
then $\Delta^n f(x) = a_0 x^n + a_1 x^{n-1} + \cdots + a_n$
then $\Delta^n f(x) = a_0 x^n + a_1 x^{n-1} + \cdots + a_n$
then $\Delta^n f(x) = a_0 x^n + a_1 x^{n-1} + \cdots + a_n$
then $\Delta^n f(x) = a_0 x^n + a_1 x^{n-1} + \cdots + a_n$
then $\Delta^n f(x) = a_0 x^n + a_1 x^{n-1} + \cdots + a_n$
then $\Delta^n f(x) = a_0 x^n + a_1 x^{n-1} + \cdots + a_n$
then $\Delta^n f(x) = a_0 x^n + a_1 x^{n-1} + \cdots + a_n$
then $\Delta^n f(x) = a_0 x^n + a_1 x^{n-1} + \cdots + a_n$
then $\Delta^n f(x) = a_0 x^n + a_1 x^{n-1} + \cdots + a_n$
then $\Delta^n f(x) = a_0 x^n + a_1 x^{n-1} + \cdots + a_n$
then $\Delta^n f(x) = a_0 x^n + a_1 x^{n-1} + \cdots + a_n$
then $\Delta^n f(x) = a_0 x^n + a_1 x^{n-1} + \cdots + a_n$
then $\Delta^n f(x) = a_0 x^n + a_1 x^{n-1} + \cdots + a_n$
then $\Delta^n f(x) = a_0 x^n + a_1 x^{n-1} + \cdots + a_n$
A fix $A^n = a_0 x^n + a_1 x^{n-1} + \cdots + a_n$
A fix $A^n = a_0 x^n + a_1 x^{n-1} + \cdots + a_n$
A fix $A^n = a_0 x^n + a_1 x^{n-1} + \cdots + a_n$
A fix $A^n = a_0 x^n + a_1 x^{n-1} + \cdots + a_n$
A fix $A^n = a_0 x^n + a_1 x^n + a_0 x^n + a_0$

3

Group I

$$\chi_1$$
 y_1 χ_2 y_2
 0 10 20 31
 5 14 25 36
 15 25 30 39
 30 68 75 106
Hence $\chi_1 = \frac{30}{4} = 7.5$, $\overline{y}_1 = \frac{68}{4} = 17$
 $\overline{\chi_2} = \frac{75}{3} = 25$ $\overline{y}_2 = \frac{106}{3} = 35.33$
Substituting in O
 $7.5a+b = 17 - 2$
 $25a+b = 35.33 - 3$
 $\Im - \Im \Rightarrow 17.5a = 18.33$
 $\therefore a = \frac{18.33}{17.5} = 1.0474$
Substituting the value of a in \Im
 $\Im \Rightarrow b = 9.1745$
Hence the required Straight line is
 $\overline{Y} = 1.0474 \times 19.1445$
* Fit a curve of the form $y = ax^{b} + c$ by the Method
 4 Group Averages for the following data
 $\chi_1 = 250$ 500 900 1200 1600 2000

Y: 0.25 0.38 0.80 1.38 2.56 4.10 Solution! The value of c Should be evaluated first. Choose 3 values of x from the given data which are in G.P

.

SATHYABAMA UNIVERSITY

Choose
$$x_1 = 900$$
, $x_2 = 1200$ and $x_3 = 1600$.
Hence $y_1 = 0.80$, $y_2 = 1.38$ and $y_3 = 2.56$

$$C = \frac{y_1 y_3 - y_2^2}{y_1 + y_3 - 2y_2}$$

= $(0.80)(2.51) - (1.38)^2$
 $0.80 + 2.55 - 2(1.38)$

Hence the required curve $y = ax^{b} + c$ can be written as $y = 0.2393 = ax^{b}$ which is not linear. Taking log10 on looth sides

log (y-0.2393) = log , a + b log , x - @ Let x = log x and Y = log (y-0.2393) By dividing the data into 2 Groups we can for the above linear form which can be used to evaluate a, b

Group I	Group I	
x_1 x_1 y_1 Y_1	×2 ×2 ×2	
250 2.3979 0.25 -1.9706	1200 3.0792 0.0572	5
500 arb990 0:38 -0.8517	1600 3.2041 0.3656	
900 <u>2.9542</u> 0.80 -0.2513 8.0511 - 3.0736	2000 3.3010 0.5867 9.5843 1.0095	
$\frac{1}{2} = \frac{1}{2} = \frac{1}$	$\overline{X_2} = \frac{9.5843}{3} = 3.1948$ $\overline{Y_2} = \frac{1.0095}{3} = 0.3365$	

5

A+ 2.68376 = -1.0245 - 0 A+ 3.19486 = 0.3365 - 1 (B-B=> 0.5111b = 1.3610 > b = 2.6629 Substituting b is & we have A = -8.1709 : @ > a = Antilog of ,- 8.1709 = 10 8+1709 = 6×109 Hence the required relation is $y = (6xio^9) x^{2.6629} + 0.2393$ & Fot a curve of the form y=ab by the method of Group Averages for the following data 2: 2 3 4 5 6 9: 144 172.8 207.4 248.8 298.5 Botution! Given equation is y=ab^x _ D Taking log 10 on both stdes log 10 = log 10 + x log 10 Y = A+xB-2 Group T Group II y, Y, 22 42 1/2 x, 144 2.1584 2 172.8 2.2375 3 207.4 2.3168

$$\overline{x_1} = 9 = 3, \quad \overline{y_1} = 6 \cdot 7127 = 2 \cdot 2376$$

 $\overline{x_2} = 4 = 5 \cdot 5 \quad \overline{y_2} = 4 \cdot 6708 = 2 \cdot 4354$

 \bigcirc

Э, Substituting in @ 2.2376 = A + 3B - 32.4354 = A + 5.5B - 4(A) - 3 > 2.5B = 0.1978 B = 0.1978 - 0.07912 l= dn+tlog100.07912 = 100.07912 = 1.19 Substituting b=1.19 in D we get the required Curve. Also Substituting B in 3 we have A = 2.2376 - 3 (0.07912) = 2.00024 a = Antelog 102.00024 = 100 " The required curve y= 100 (1.19) A fit a straight line of the form y= arith by the method of least square for the following data x: 0 1 2 3 4 Y: 1 5 10 22 38 Solution Let the required Straight line be y=asith -O Let the wormal equations are SY = a Sx+nb - @ Sxy=azx+bsx-3 Here Sx = 10, SY = 76, Sx = 30, Sxy = 243

Ért= 220, 5y=12733, 5xy=1616 ∑x³=1800, ≤x²y = 14,120, ≤x⁴ = 15,664 Substituting the required values in @, 3×€ \$ => 197 = 220a+30b+6c-\$ (n=6) 1616 = 1800a + 2206+30C - 6 3 => 14,120 = 15,664 a + 1800 b + 220 c - 7 $\mathbb{H} \ge$ Sotving 5, 6 and @ for the values of a, b and c we have a= .86, b= -.81 & c= .98 Hence O => y = .86x2-.81x+.98 (Note: Since the Values of En?, Enyetc are -huge values the origin can be shifted by some transformations. Let $u = \frac{\chi - 2}{2}$. Using this we can evaluate the values of a, b and c using y = an + butc. After Calculating R, b, c and replacing u interms of x, the required parabola can be evaluated) APPLIED NUMERICAL METHODS (COMMON TO ALL ENGINEERING EXCEPT CSE, ITAND BIO GROUPS)

Fit a straight line to the following data by the meltion of moments: 2:012345 Y: 0.4 0.7 101 1.6 1.9 2.3 2.6 Solution: Let y = anto be the shought line The values of 2 are equally spaced with h=1 21 = 0, 2n - L The moment equations are [マ=ス,-か, スカ+カテ月] (i) $\frac{a}{2}(\beta^2-a^2) + b(\beta-a) = h \leq y \longrightarrow (2)$ (ii) a (B3-03) + b (B2-02) = h = ny ->3 Now $q = 0 - \frac{1}{2} = -0.5$, $\beta = 6 + \frac{1}{2} = 6.5$ $\begin{array}{c} \beta^{2} - \alpha^{2} = (6.5)^{2} - (-0.5)^{2} = (6.5) - (0.5)^{2} = 42\\ \beta^{3} - \alpha^{3} = (6.5)^{3} - (-0.5)^{3} = (6.5)^{3} + (0.5)^{3} = 274\\ \Xi y = 10.6; \quad \Xi xy = 42.4\\ \end{array}$ > 21a+7b= 10.b -> (#) (3) ⇒ 274 a + 42 b = 42.4 > 91.58 a+216 = 42.4 -> @ solving (Dand (3) a = 0.3786, b=0.385 " Best At of the sharght line is H= 0-3786x+0.3785

9

* Find the missing values in the following table
x: 2 4 6 8 10
y: 568.6 3.9 - 35.6
solution
we know that if (n+1) values of y are duen
y may be a polynomial of degree n.
Here 4 values are known.
The polynomial is of degree 3.
(e)
$$\Delta^4 y_0 = 0$$
.
 $(E - D^4 y_0 = 0)$
 $\Rightarrow (E^4 - 4Cte^3 + 4C2e^2 - 4C3E + 4C4e^6) y_0 = 0$
 $\Rightarrow (E^4 - 4Cte^3 + 4C2e^2 - 4C3E + 4C4e^6) y_0 = 0$
 $\Rightarrow (E^4 - 4Cte^3 + 4C2e^2 - 4C3E + 4C4e^6) y_0 = 0$
 $\Rightarrow (E^4 - 4Cte^3 + 4C2e^2 - 4C3E + 4C4e^6) y_0 = 0$
 $\Rightarrow (E^4 - 4Cte^3 + 4C2e^2 - 4C3E + 4C4e^6) y_0 = 0$
 $\Rightarrow (E^4 - 4Cte^3 + 4C2e^2 - 4C3E + 4C4e^6) y_0 = 0$
 $\Rightarrow (E^4 - 4E^3 + 6E^2 - 4E+1) y_0 = 0$
 $\Rightarrow (E^4 - 4E^3 + 6E^2 - 4E+1) y_0 = 0$
 $\Rightarrow (E^4 - 4E^3 + 6E^2 - 4E+1) y_0 = 0$
 $\Rightarrow 4y_3 - 4y_3 + 6y_2 - 4y_1 + y_0 = 0$
 $\Rightarrow 4y_4 - 4y_3 + 6y_2 - 4y_1 + y_0 = 0$
 $\Rightarrow 4y_5 = 35.6 + 6(13.9) - 4(8.6) + 5.6 = 0$
 $\Rightarrow 4y_5 = 35.6 + 6(13.9) - 4(8.6) + 5.6$
 $\Rightarrow 4y_5 = \frac{1}{4} [35.6 + 83.4 - 34.4 + 5.6]$
 $y_3 = 22.55$.

* 2

Prove that
$$\Delta = \frac{1}{2}\delta^2 + \delta\sqrt{1+\delta^2}$$

solution:-
 $R.H.S = \frac{1}{2}\delta^2 + \delta\sqrt{1+\delta^2} = \frac{\delta^2}{2} + \delta\sqrt{\frac{4+\delta^2}{4}}$
 $= \frac{\delta}{2}\left[\delta + \sqrt{4+\delta^2}\right]$

SATHYABAMA UNIVERSITY

UNIT-1 SMTX1011 APPLIED NUMERICAL METHODS (COMMON TO ALL ENGINEERING EXCEPT CSE, ITAND BIO GROUPS)

$$= \frac{1}{2} \delta \left[\left(E^{\frac{1}{2}} - E^{\frac{1}{2}} \right) + \left(E^{\frac{1}{2}} - E^{\frac{1}{2}} \right)^{\frac{1}{2}} \right]$$

$$= \frac{1}{2} \delta \left[E^{\frac{1}{2}} - E^{\frac{1}{2}} + \left(\frac{1}{4} + E + E^{\frac{1}{2}} - 2E^{\frac{1}{2}} + E^{\frac{1}{2}} \right)^{\frac{1}{2}} \right]$$

$$= \frac{1}{2} \delta \left[E^{\frac{1}{2}} - E^{\frac{1}{2}} + \int E + E^{\frac{1}{2}} + 2E^{\frac{1}{2}} + E^{\frac{1}{2}} + E^{\frac{1}{2}} \right]$$

$$= \frac{1}{2} \delta \left[E^{\frac{1}{2}} - E^{\frac{1}{2}} + \left(\frac{E^{\frac{1}{2}} - E^{\frac{1}{2}} + 2E^{\frac{1}{2}} + E^{\frac{1}{2}} + E^{\frac{1}{2}} \right)^{\frac{1}{2}} \right]$$

$$= \frac{1}{2} \delta \left[E^{\frac{1}{2}} - E^{\frac{1}{2}} + E^{\frac{1}{2}} + E^{\frac{1}{2}} + E^{\frac{1}{2}} \right]$$

$$= \frac{1}{2} \delta \cdot 2E^{\frac{1}{2}} = \left(E^{\frac{1}{2}} - E^{\frac{1}{2}} + E^{\frac{1}{2}} \right) E^{\frac{1}{2}}$$

$$= \frac{1}{2} \delta \cdot 2E^{\frac{1}{2}} = \left(E^{\frac{1}{2}} - E^{\frac{1}{2}} \right) E^{\frac{1}{2}}$$

$$= \frac{1}{2} \delta \cdot 2E^{\frac{1}{2}} = \left(E^{\frac{1}{2}} - E^{\frac{1}{2}} \right) E^{\frac{1}{2}}$$

* poove that
$$\left(\frac{\Delta^2}{E}\right)y_n \neq \frac{\Delta^2 y_n}{E y_n}$$

Solution:-
L.H.S
$$\left(\begin{array}{c} \Delta^{2} \\ E \end{array} \right) \begin{array}{l} Y_{X} = \left(\begin{array}{c} \Delta^{2} \\ E \end{array} \right) \begin{array}{c} Y_{X} \\ = \\ \Delta^{2} \left(\begin{array}{c} E \\ Y_{X} \end{array} \right) = \\ \Delta^{2} \left(\begin{array}{c} E \\ Y_{X} \end{array} \right) = \\ \Delta^{2} \left(\begin{array}{c} E \\ Y_{X} \end{array} \right) = \\ \Delta^{2} \left(\begin{array}{c} \Delta \\ Y_{X} - h \end{array} \right) \\ = \\ \Delta \begin{array}{c} \Delta \\ Y_{X} - h \end{array} \right) \\ = \\ \Delta \begin{array}{c} Y_{X} - h \\ Y_{X} - h \end{array} \right) \\ = \\ \begin{array}{c} Y_{X} + h \\ Y_{X} - h \end{array} \right) \\ = \\ \begin{array}{c} Y_{X} + h \\ Y_{X} - h \end{array} \right) \\ = \\ \begin{array}{c} Y_{X} + h \\ Y_{X} - h \end{array} \right) \\ = \\ \begin{array}{c} Y_{X} + h \\ Y_{X} - h \end{array} \right) \\ \end{array}$$
Now R.H.S
$$\begin{array}{c} \begin{array}{c} \Delta \\ Y_{X} \\ Z_{Y} \\ E \\ Y_{X} \end{array} = \\ \begin{array}{c} (E - 1) \begin{array}{c} Y_{X} \\ Y_{X} + h \end{array} \right) \\ = \\ \begin{array}{c} (E - 1) \begin{array}{c} Y_{X} \\ Y_{X} + h \end{array} \right) \\ = \\ \begin{array}{c} Y_{X} + h \\ Y_{X} - h \end{array} \right) \\ \end{array}$$

$$= \underbrace{e^{2}(y_{n}) - 2E(y_{n}) + y_{n}}_{y_{n}+h}$$

$$= \underbrace{y_{n+2h} - 2y_{n+h} + y_{n}}_{y_{n}+h} \longrightarrow \textcircled{D}.$$
From \underbrace{O} and \textcircled{D}

$$\underbrace{\left(\frac{A^{2}}{E}\right)y_{n} + \frac{\Delta^{2}y_{n}}{E(y_{n})}}_{E(y_{n})}$$

* Express 2213+2+32+4 interns of factorial polynomicals, taking h=3 and hence find its forward differences. Solution

for) can be divided successively by 21, 21-3, 21-6, The successive remainders are the coefficients on the factorial polynomial expression of for) in the reverse order.

SATHYABAMA UNIVERSITY

	Assignment Problems
	The following data satisfies the law y=atts? x: 20 30 35 40 45 50 y: 10 11 11.8 12.4 13.5 14.4 Using the Method of Group Averages find the Using the Method of Group Averages find the lest Value of a and b LANS: y=9.15+0.0022)
*	Fit a straight line to the following data by the method of least square. The square square square. The square square square square square. The square
	Fit a parabota to the data geven record. $\chi: 1.0$ 1.5 2.0 2.5 3.0 3.5 4.0 $\chi: 1.0$ 1.3 1.6 2.0 2.7 3.4 4.1 $\chi: 1.1$ 1.3 1.6 2.0 2.7 3.4 4.1 CANS: $Y=1.02x+.24x^2$
*	Fit a law of the type $y = ae^{bx}$ to the following data x: 0 1 2 3 y: 1.05 2.10 3.85 8.30 0.6808x (Ans: y=0.7386e)
9¢	Fit a Straight line by the method of moments to the data x: 1 2 3 4 y: 16 19 23 26 (Ans: Y=3, 188 x+ 13,03)

- # By the Method of moments fit a Second degree parabola to the data
 - x: 1 2 3 4 y: 1.7 1.8 2.3 3.2 (Ans: y=0.01x²+:45x +1:09)

Missing terms in the following table. 采 Find the 40 35 x: 10 30 15 25 20 164 148 9: 270 ddd 200 (Ans: 246 and 180.8)

* Prove that
$$\Delta = M\delta + \frac{1}{2}\delta^2$$

* Prove that $N = \frac{2+\Delta}{2\sqrt{1+\Delta}} + \sqrt{1+\frac{\delta^2}{4}}$

* Prove that
$$1+\sigma^2\mu^2 = (1+\frac{\sigma^2}{2})^2$$

* Show that $\beta^2\pi^2 = 2$

* Evaluate
$$\Delta(e^{3\chi}log2\chi)$$

* Express x³+x²+x+1 in factorial polynomial and get its successive forward differences taking h=1.