
UNIT I 

PROBABILITY THEORY 

1.1 Introduction  

The theory of probability deals with averages of mass phenomena occurring 

sequentially or simultaneously: electron emission, telephone calls, radar detec-

tion, quality control, system failure, games of chance, statistical mechanics, 

turbulence, noise, birth and death rates, and queuing theory, among many 

others. It has been observed that in these and other fields certain averages 

approach a constant value as the number of observations increases and this 

value remains the same if the averages are evaluated over any subsequence 

specified before the experiment is performed. In the coin experiment, for 

example, the percentage of heads approaches 0.5 or some other constant, and 

the same average is obtained if we consider every fourth, say, toss (no betting 

system can beat the roulette).The purpose of the theory is to describe and 

predict such averages in terms of probabilities of events. The probability of 

an event a is a number assigned to this event.  

An experiment is a procedure we perform (quite often hypothetical) that produces 

some result.  

An experiment whose outcome or result can be predicted with certainity is called 

deterministic experiment. For eg if the potential difference(E) between the two 

end of a conductor and the resistance(R) is known then the current flowing in the 

conductor is determined using Ohms law(I=E/R). 

 An outcome is a possible result of an experiment.  

An event is a certain set of outcomes of an experiment. 

The sample space is the collection or set of “all possible” distinct (collectively 

exhaustive and mutually exclusive) outcomes of an experiment. The letter S is 

used to designate the sample space, which is the universal set of outcomes of an 

experiment. A sample space is called discrete if it is a finite or a countably infinite 

set otherwise It is called continuous.  

Apriori definition of probability 



Let S be the sample space and A be an event associated with a random 

experiment. Let n(S) and n(A) be the number of elements of S and A. Then the 

probability of event A occurring denoted by P(A) is defined by 

     
    

    
 

                               

                               
 

Consider the example of flipping a fair coin once, where fair means that the coin is 

not biased in weight to a particular side. There are two possible outcomes, 

namely, a head or a tail. Thus, the sample space, S, consists of two outcomes, 

event1 = H to indicate that the outcome of the coin toss was heads and event2 = 

T to indicate that the outcome of the coin toss was tails. 

1.2 Axioms of Probability  

Let S be the sample space and A be an event associated with a random 

experiment. Then the probability of event A occurring denoted by P(A) is defined 

as a real number satisfying the following axioms 

1.         

2.       

3.If A and B are mutually excusive events,                 

4.If A1,A2,A3,………An are a set of mutually exclusive events,              

                 . 

A set of events is said to be mutually exclusive if occurrence of any one of them 

excludes the occurrence of the others. i.e.,          

1.2.1 Theorem 1 

The probability of the impossible event is zero that is if   is the sub set containing 

no sample point ,        

Proof 

The certain event S and the impossible event   are mutually exclusive. 

Hence                  axiom 3 



But       

Therefore               ,       . 

1.2.2 Theorem 2  

If    is the complement event of A,                

Proof 

               axiom 2 

That is              axiom 3 

Hence ,             ,since ,        therefore  ,         

1.2.3 Theorem 3(Addition theorem of probability) 

If A and B are any two events,                                   

Proof 

 If A is the union of mutually exclusive events      and    

If A is the union of mutually exclusive events      and    

Therefore                   and                    axiom 3 

Hence                                                    

The result follows                                    

1.2.4 Theorem 4 

If               

Proof 

B and       are mutually exclusive events such that            

               that  is                    axiom 3. 

Therefore            



1.3 Conditional probability 

The conditional probability of an event B assuming that the event A has happened 

is denoted by        is defined as 

       
      

    
 provided       .Rearrangiing we get  

                   (Product theorem of probability) 

1.3.1 Properties based on conditional probability 

1.If      ,          since       

2.If      ,             since       and 
    

    
       as              

3.If A and B are mutually exclusive events         since           

4.If P(A)>P(B),P(A/B)>P(B/A) 

5.If        ,                

1.3.2 Independent events 

 A set of events are said to be independent if the occurrence of any one of them 

does not depend on the occurrence or non occurrence of the other. 

1.3.3 Theorem1: 

If the events A and B are independent the events    and B are also independent. 

1.3.4 Theorem2: 

If the events A and B are independent so also are    and   . 

1.3.5 Theorem of Total Probability 

Let B1, B2, . . . , Bn be a set of mutually exclusive and exhaustive events and A is 

another event associated with Bi then 

                  

 

   

 

 



1.4 Bayes’s Theorem 

Let B1, B2, . . . , Bn be a set of mutually exclusive and exhaustive events and A is 

another event associated with Bi then 

        
            

             
 
   

 

1.5 Bernoulli Random Variable  

This is the simplest possible random variable and is used to represent 

experiments that have two possible outcomes. These experiments are called 

Bernoulli trials and the resulting random variable is called a Bernoulli random 

variable. It is most common to associate the values {0,1} with the two outcomes of 

the experiment. If X is a Bernoulli random variable, its probability mass function is 

of the form 

PX(0) = 1 − p, PX(1) = p 

The coin tossing experiment would produce a Bernoulli random variable. In that 

case, we may map the outcome H to the value X = 1 and T to X = 0. Also, we 

would use the value p = 1/2 assuming that the coin is fair. Examples of 

engineering applications might include radar systems where the random variable 

could indicate the presence (X = 1) or absence (X = 0) of a target, or a digital 

communication system where X = 1 might indicate a bit was transmitted in error 

while X = 0 would indicate that the bit was received correctly. In these examples, 

we would probably expect that the value of p would be much smaller than 1/2. 

Problems 

 





 



 



 



 



 



 



 

 

 

 



 

Baye’s theorem 

 



 



Bernoulli’s trials 

 

 



 



 


