UNIT II

BALANCING

Balancing is the process of eliminating or at least reducing the ground forces and moments. It is achieved by changing the location of the mass centers of links. Balancing of rotating parts is a well known problem. A rotating body with fixed rotation axis can be fully balanced i.e. all the inertia forces and moments. For mechanism containing links rotating about axis which are not fixed, force balancing is possible, moment balancing by itself may be possible, but both not possible. We generally try to do force balancing. A fully force balance is possible, but any action in force balancing severe the moment balancing.

Balancing of rotating masses:

The process of providing the second mass in order to counteract the effect of the centrifugal force of the first mass is called balancing of rotating masses.

Static balancing:

The net dynamic force acting on the shaft is equal to zero. This requires that the line of action of three centrifugal forces must be the same. In other words, the centre of the masses of the system must lie on the axis of the rotation. This is the condition for static balancing.

Dynamic balancing:

The net couple due to dynamic forces acting on the shaft is equal to zero. The algebraic sum of the moments about any point in the plane must be zero.

Various cases of balancing of rotating masses:

\checkmark Balancing of a single rotating mass by single mass rotating in the same plane.
\checkmark Balancing of a single rotating mass by two masses rotating in the different plane.
\checkmark Balancing of a several masses rotating in single plane.
\checkmark Balancing of a several masses rotating in different planes.

Balancing of a Single Rotating Mass By a Single Mass Rotating in the Same Plane

Consider r_{1} be the radius of rotation of the mass m_{1} attached to a shaft rotating at $\omega \mathrm{rad} / \mathrm{s}$. The centrifugal force exerted by the mass m_{1} on the shaft,

$$
F_{\mathrm{Cl}}=m_{1} \omega^{2} r_{1}
$$

This centrifugal force acts radially outwards and thus produces bending moment on the shaft. In order to counteract the effect of this force, a balancing mass (m_{2}) may be attached in the same plane of rotation as that of disturbing mass $\left(m_{1}\right)$ such that the centrifugal forces due to the two masses are equal and opposite.
$r_{2}=$ Radius of rotation of the balancing mass m_{2}
Centrifugal force due to mass $m_{2}, F_{\mathrm{C} 2}=m_{2} \omega^{2} r_{2}$

$$
\begin{aligned}
m_{1} \omega^{2} r_{1} & =m_{2} \omega^{2} r_{2} \\
m_{1} r_{1} & =m_{2} r_{2}
\end{aligned}
$$

Balancing of a Single Rotating Mass By Two Masses Rotating in Different Planes

A disturbing mass m lying in a plane A to be balanced by two rotating masses m_{1} and m_{2} lying in two different planes Q and P. Let r, r_{1} and r_{2} be the radii of rotation of the masses in planes R, Q and P respectively.
$l_{1}=$ Distance between the planes R and Q,
$l_{2}=$ Distance between the planes R and P, and
$l=$ Distance between the planes Q and P

The centrifugal force exerted by the mass m on the shaft,
$F_{\mathrm{C}}=m \omega^{2} r$
Similarly for mass m_{1} and mass m_{1}

$$
\begin{aligned}
& F \mathrm{c}_{1}=m_{1} \omega^{2} r_{1} \text { and } F \mathrm{c}_{2}=m_{2} \omega^{2} r_{2} \\
& F \mathrm{c}=F \mathrm{c} 1=F \mathrm{c} 2 \\
& m \omega^{2} r=m_{1} \omega^{2} r_{1}+m_{2} \omega^{2} r_{2}
\end{aligned}
$$

To dynamic balancing, take moments about Q and P,
$F_{\mathrm{C} 1} \times l=F_{\mathrm{C}} \times l_{2}$
$m_{1} r_{1} l=m r l_{2}$
Similarly,
$F_{\mathrm{C} 2} \times l=F_{\mathrm{C}} \times l_{1}$
$m_{2} r_{2} l=m r l_{1}$

Balancing of Several Masses Rotating in the Same Plane

Consider any number of masses of magnitude A, B, C and D at distances of r_{1}, r_{2}, r_{3} and r_{4} from the axis of the rotating shaft. Let $\theta_{1}, \theta_{2}, \theta_{3}$ and θ_{4} be the angles of these masses with the horizontal line. The magnitude and position of the balancing mass may be found out graphically:

Angular Position diagram

Vector diagram

Problem 1:

A shaft is rotating at a uniform speed with four masses m_{1}, m_{2}, m_{3} and m_{4} of magnitudes 300 $\mathrm{kg}, 450 \mathrm{~kg}, 360 \mathrm{~kg}$ and 390 kg respectively. The masses are rotating in the same plane. The corresponding radii of rotation are $200 \mathrm{~mm}, 150 \mathrm{~mm}, 250 \mathrm{~mm}$ and 300 mm . The angles made by these masses with respect to horizontal are $0^{\circ}, 45^{\circ}, 120^{\circ}$ and 255° respectively. Find the magnitude and position of balance mass if it radius of rotation is 200 mm .

Mass (m) $\boldsymbol{k g}$	Radius (\boldsymbol{r}) \boldsymbol{m}	Cent.force $\boldsymbol{~} \div \omega^{\mathbf{2}}$ $\mathbf{(m \boldsymbol { m })}$ $\boldsymbol{k g}-\boldsymbol{m}$
300	0.2	60
450	0.15	67.5
360	0.25	90
390	0.3	117

$\mathrm{mr}=\mathrm{od}=38 \mathrm{~kg}-\mathrm{m}$
$\mathrm{m}=38 / 0.2=190 \mathbf{~ k g}$

Balancing mass 190 kg at 201° w.r.t to horizontal.

Problem 2:

Four masses $\mathrm{m}_{1}, \mathrm{~m}_{2}, \mathrm{~m}_{3}$ and m_{4} are $200 \mathrm{~kg}, 300 \mathrm{~kg}, 240 \mathrm{~kg}$ and 260 kg respectively. The corresponding radii of rotation are $0.2 \mathrm{~m}, 0.15 \mathrm{~m}, 0.25 \mathrm{~m}$ and 0.3 m respectively and the angles between successive masses are $45^{\circ}, 75^{\circ}$ and 135°. Find the position and magnitude of the balance mass required, if its radius of rotation is 0.2 m .

Analytical method

Resolving $m_{1} \cdot r_{1}, m_{2} \cdot r_{2}, m_{3} \cdot r_{3}$ and $m_{4} \cdot r_{4}$ horizontally,
$\Sigma H=m_{1} \cdot r_{1} \cos \theta 1+m_{2} \cdot r_{2} \cos \theta 2+m_{3} \cdot r_{3} \cos \theta 3+m_{4} \cdot r_{4} \cos \theta 4$
$=40 \cos 0^{\circ}+45 \cos 45^{\circ}+60 \cos 120^{\circ}+78 \cos 255^{\circ}$
$=40+31.8-30-20.2=21.6 \mathrm{~kg}-\mathrm{m}$
Resolving vertically,
$\Sigma V=m_{1} \cdot r_{1} \sin \theta 1+m_{2} \cdot r_{2} \sin \theta 2+m_{3} \cdot r_{3} \sin \theta 3+m_{4} \cdot r_{4} \sin \theta 4$
$=40 \sin 0^{\circ}+45 \sin 45^{\circ}+60 \sin 120^{\circ}+78 \sin 255^{\circ}$
$=0+31.8+52-75.3=8.5 \mathrm{~kg}-\mathrm{m}$
Resultant, $R=\sqrt{\Sigma H^{2}+\Sigma V^{2}}=\sqrt{21.6^{2}+8.5^{2}}=23.2 \mathrm{~kg}-\mathrm{m}$
$m r=R=23.2$ or $m=23.2 / r=23.2 / 0.2=116 \mathbf{~ k g}$
$\tan \theta=\frac{\Sigma V}{\Sigma H}=\frac{8.5}{21.6}=0.3985$
$\theta=21 . \mathbf{5}^{\circ}$

Angle of the balancing mass from the horizontal mass is $\theta=180^{\circ}+21.5^{\circ}=\mathbf{2 0 1 . 5}{ }^{\circ}$

Problem 3:

A rotating shaft carries four unbalanced mass $18 \mathrm{~kg}, 14 \mathrm{~kg}, 16 \mathrm{~kg}$ and 12 kg at radii 50 mm , $60 \mathrm{~mm}, 70 \mathrm{~mm}$ and 60 mm respectively. The second, third and fourth mass revolve in planes $80 \mathrm{~mm}, 160 \mathrm{~mm}, 280 \mathrm{~mm}$ respectively from the first mass and angularly at $60^{\circ}, 135^{\circ}$ and 270° respectively in ACW from first mass. The shaft dynamically balanced by adding two masses at radii 50 mm and first mass revolving in mid way between first and second and second mass revolving in mid way between third and fourth. Determine the angular position and magnitude of the balance mass required.

Plane	$\begin{gathered} \text { Mass }(m) \\ k g \end{gathered}$	$\underset{m}{\text { Radius }(r)}$	$\begin{gathered} \text { Cent.force } \div \omega^{2} \\ (\boldsymbol{m r}) \\ \boldsymbol{k g}-\boldsymbol{m} \end{gathered}$	Distance from ref. plane (l) m	$\begin{gathered} \text { Couple } \div \omega^{2} \\ (\text { m.r.l. }) \\ \mathrm{kg}-\mathrm{m}^{2} \\ \hline \end{gathered}$
A	18	5	90	-4	-360
$\begin{gathered} \mathrm{L} \\ \text { (R.P) } \end{gathered}$	m_{L}	5	5 m	0	0
B	14	6	84	4	336
C	16	7	112	12	1344
M	m_{M}	5	5 m	18	$90 \mathrm{~m}_{\mathrm{M}}$
D	12	6	72	24	1728
Plane Position diagram			Angular Position diagram		

First draw the couple polygon,
From that, vector od $=90 \mathrm{~m}_{\mathrm{M}}$
$\mathrm{od}=1243 \mathrm{~kg}-\mathrm{m}^{2}$
$90 \mathrm{~m}_{\mathrm{M}}=1243 \rightarrow \mathrm{~m}_{\mathrm{M}}=\mathbf{1 3 . 8 1} \mathbf{~ k g}$.

Angle of m_{M} w.r. $t A$ is 24° in ACW.

Substitute m_{M} in force and draw force polygon,

Vector oM $=5 \mathrm{~m}_{\mathrm{L}}$
$\mathrm{oM}=157 \mathrm{~kg}-\mathrm{m}$
$5 \mathrm{~m}_{\mathrm{L}}=157 \rightarrow \mathrm{~m}_{\mathrm{L}}=\mathbf{3 1 . 4} \mathbf{~ k g}$.
Angle of \mathbf{m}_{L} w.r. $\mathrm{t} \mathbf{A}$ is $\mathbf{2 2 4}^{\circ}$ in ACW .

Problem 4:

Four masses A, B, C and D are to be completely balanced. Mass B, C and D are mass 30 kg , 50 kg and 40 kg at radii $240 \mathrm{~mm}, 120 \mathrm{~mm}$ and 150 mm respectively. The planes containing masses B and C are 300 mm apart. The angle between planes containing B and C is 90°. B and C make angles of 210° and 120° respectively with D in the same sense. Find: The magnitude and the angular position of mass A if its radius is 180 mm ; and The position of planes A and D.

Plane	Mass (\boldsymbol{m}) $\boldsymbol{k g} \boldsymbol{g}$	Radius (\boldsymbol{r}) \boldsymbol{m}	Cent.force $\div \omega^{2}$ $(\boldsymbol{m r})$ $\boldsymbol{k g} \boldsymbol{-} \boldsymbol{m}$	Distance from $\boldsymbol{r} \boldsymbol{f}$. plane $(\boldsymbol{l}) \boldsymbol{m}$	Couple $\div \omega^{\mathbf{2}}$ $(\boldsymbol{m} . \boldsymbol{r} . \boldsymbol{l})$ $\boldsymbol{k g}-\boldsymbol{m}^{2}$
A	$\mathrm{~m}_{\mathrm{A}}$	0.18	$0.08 \mathrm{~m}_{\mathrm{A}}$	-y	$-0.18 \mathrm{~m}_{\mathrm{A}} \mathrm{y}$
B	30	0.24	7.2	0	0
C	50	0.12	6	0.3	1.8
D	40	0.15	6	x	6 x

First draw force polygon, from that,
$0.18 m_{\mathrm{A}}=$ Vector $d o=3.6 \mathrm{~kg}-\mathrm{m}$ or $\boldsymbol{m}_{\mathrm{A}}=\mathbf{2 0} \mathbf{~ k g}$
Angular position of mass A from mass B in the anticlockwise direction is $\mathbf{2 3 6}^{\circ}$
To draw couple polygon, Draw vector $o{ }^{\prime} c^{\prime}$ parallel to $O C$ and equal to $1.8 \mathrm{~kg}-\mathrm{m}^{2}$. From points c^{\prime} and o^{\prime} draw lines parallel to $O D$ and $O A$ respectively, such that they intersect at point d^{\prime},
$6 x=$ vector $c^{\prime} d^{\prime}=2.3 \mathrm{~kg}-\mathrm{m}^{2}$ or $\boldsymbol{x}=\mathbf{0 . 3 8 3} \mathbf{~ m}$
The plane of mass D is 0.383 m or 383 mm towards left of plane B.
Similarly,
$-0.18 m_{\mathrm{A}} \cdot y=$ vector $o^{\prime} d^{\prime}=3.6 \mathrm{~kg}-\mathrm{m}^{2}$
$-0.18 \times 20 y=3.6$ or $y=\mathbf{- 1} \mathbf{m}$
Plane A is 1000 mm towards right of plane B.

Problem 5:

Four masses A,B,C and D carried by a rorating shaft at radii $80 \mathrm{~mm}, 100 \mathrm{~mm}, 200 \mathrm{~mm}$ and 125 mm respectively. The planes of rotation are equi spaced by 500 mm . The masses B,C and D are $8 \mathrm{~kg}, 4 \mathrm{~kg}$ and 3 kg respectively. The magnitude of mass A and the angular position of entire system, if it completely balanced.

Plane	Mass (\boldsymbol{m}) $\boldsymbol{k g} \boldsymbol{g}$	Radius (\boldsymbol{r}) \boldsymbol{m}	Cent.force $\div \omega^{2}$ $(\boldsymbol{m} \boldsymbol{r})$ $\boldsymbol{k g}-\boldsymbol{m}$	Distance from ref. plane (l) \boldsymbol{m}	Couple $\div \omega^{2}$ $(\boldsymbol{m} . r . \boldsymbol{l})$ $\boldsymbol{k g} \cdot \boldsymbol{m}^{2}$
A (R.P)	m_{A}	0.08	$0.08 \mathrm{~m}_{\mathrm{A}}$	0	0
B	8	0.1	0.8	0.5	0.4
C	4	0.2	0.8	1	0.8
D	3	0.125	0.375	1.5	0.5625

First draw the couple polygon with the mrl values. Assuming angle of mass B as horizontal, form a triangle to find the angular position for C and D .

Next draw couple polygon to find A, Vector od $=0.08 \mathrm{~m}_{\mathrm{A}}$
od $=0.381 \mathrm{~kg}-\mathrm{m}$
$0.08 \mathrm{~m}_{\mathrm{A}}=0.381 \mathrm{~kg}-\mathrm{m} \rightarrow \mathbf{m}_{\mathrm{A}}=\mathbf{4 . 8 k g}$
Angular position of mass A from mass B in the clockwise direction is $\mathbf{2 0 8}^{\circ}$

Problem 6:

A shaft carries four masses in parallel planes A, B, C and D in this order along its length. The masses at B and C are 18 kg and 12.5 kg respectively, and each has an eccentricity of 60 mm . The masses at A and D have an eccentricity of 80 mm . The angle between the masses at B and C is 100° and that between the masses at B and A is 190°, both being measured in the same direction. The axial distance between the planes A and B is 100 mm and that between B and C is 200 mm . If the shaft is in complete dynamic balance, determine $: \mathbf{1}$. The magnitude of the masses at A and D;2. the distance between planes A and D; and 3. the angular position of the mass at D .

Plane	Mass (\boldsymbol{m}) $\boldsymbol{k g}$	Radius (\boldsymbol{r}) \boldsymbol{m}	Cent.force $\div \omega^{2}$ $(\boldsymbol{m r})$ $\boldsymbol{k g}-\boldsymbol{m}$	Distance from ref. plane $(\boldsymbol{l}) \boldsymbol{m}$	Couple $\div \omega^{2}$ $(\boldsymbol{m} . \boldsymbol{r} . \boldsymbol{l})$ $\boldsymbol{k g}-\boldsymbol{m}^{2}$
A	$\mathrm{~m}_{\mathrm{A}}$	0.08	$0.08 \mathrm{~m}_{\mathrm{A}}$	0	0
B	18	0.06	1.08	0.1	0.108
C	12.5	0.06	0.75	0.3	0.225
D	m_{D}	0.08	$0.08 \mathrm{~m}_{\mathrm{D}}$	x	$0.08 \mathrm{~m}_{\mathrm{D}} \mathrm{X}$

First draw the couple polygon, assuming angle of mass B as horizontal.
$0.08 m_{\mathrm{D}} \cdot x=$ vector $c^{\prime} o^{\prime}=0.235 \mathrm{~kg}-\mathrm{m}^{2}$

Then, draw the force polygon, Draw vector ob parallel to $O B$ and equal to $1.08 \mathrm{~kg}-\mathrm{m}$. From point b, draw vector $b c$ parallel to $O C$ and equal to $0.75 \mathrm{~kg}-\mathrm{m}$. From point c, draw vector $c d$ parallel to $O A$ and from point o draw vector od parallel to $O D$. The vectors $c d$ and od intersect at d.
$0.08 m_{\mathrm{A}}=$ vector $c d=0.77 \mathrm{~kg}-\mathrm{m}$ or $\boldsymbol{m}_{\mathrm{A}}=\mathbf{9 . 6 2 5} \mathbf{~ k g}$
$0.08 m_{\mathrm{D}}=$ vector $d o=0.65 \mathrm{~kg}-\mathrm{m}$ or $\boldsymbol{m}_{\mathrm{D}}=\mathbf{8 . 1 2 5} \mathbf{~ k g}$
$0.08 m_{\mathrm{D}} \cdot x=0.235 \mathrm{~kg}-\mathrm{m}^{2}$
$0.08 \times 8.125 \times x=0.235 \mathrm{~kg}-\mathrm{m}^{2}$
$0.65 x=0.235$
$x=0.3615 m$
Angular position of mass at D from mass B in the anticlockwise direction is $\mathbf{2 5 1}{ }^{\circ}$

Exercises Problems:

1. Four masses A, B, C and D are attached to a shaft and revolve in the same plane. The masses are $12 \mathrm{~kg}, 10 \mathrm{~kg}, 18 \mathrm{~kg}$ and 15 kg respectively and their radii of rotations are $40 \mathrm{~mm}, 50 \mathrm{~mm}, 60 \mathrm{~mm}$ and 30 mm . The angular position of the masses B, C and D are $60^{\circ}, 135^{\circ}$ and 270° from the mass A. Find the magnitude and position of the balancing mass at a radius of 100 mm .
[Ans. $7.56 \mathrm{~kg} ; 87^{\circ}$ clockwise from A]
2. A shaft carries five masses A, B, C, D and E which revolve at the same radius in planes which are equidistant from one another. The magnitude of the masses in planes A, C and D are $50 \mathrm{~kg}, 40 \mathrm{~kg}$ and 80 kg respectively. The angle between A and C is 90° and that between C and D is 135°. Determine the magnitude of the masses in planes B and E and their positions to put the shaft in complete rotating balance.
[Ans. $12 \mathrm{~kg}, 15 \mathrm{~kg} ; 130^{\circ}$ and 24° from mass A in anticlockwise direction]
3. A, B, C and D are four masses carried by a rotating shaft at radii $100 \mathrm{~mm}, 150 \mathrm{~mm}$, 150 mm and 200 mm respectively. The planes in which the masses rotate are spaced at 500 mm apart and the magnitude of the masses B, C and D are $9 \mathrm{~kg}, 5 \mathrm{~kg}$ and 4 kg respectively. Find the required mass A and the relative angular settings of the four masses so that the shaft shall be in complete balance.
[Ans. 10 kg ; Between B and $A 165^{\circ}$, Between B and $C 295^{\circ}$, Between B and $D 145^{\circ}$]
4. Four masses $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D revolve at equal radii and are equally spaced along a shaft. The mass B is 7 kg and the radii of C and D make angles of 90° and 240° respectively with the radius of B . Find the magnitude of the masses A, C and D and the angular position of A so that the system may be completely balanced.
[Ans. $5 \mathrm{~kg} ; 6 \mathrm{~kg} ; 4.67 \mathrm{~kg} ; 205^{\circ}$ from mass B in anticlockwise direction]
5. A rotating shaft carries four masses $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D which are radially attached to it. The mass centres are $30 \mathrm{~mm}, 38 \mathrm{~mm}, 40 \mathrm{~mm}$ and 35 mm respectively from the axis of rotation. The masses A, C and D are $7.5 \mathrm{~kg}, 5 \mathrm{~kg}$ and 4 kg respectively. The axial distances between the planes of rotation of A and B is 400 mm and between B and C is 500 mm . The masses A and C are at right angles to each other. Find for a complete balance,
6. the angles between the masses B and D from mass A,
7. the axial distance between the planes of rotation of C and D ,
8. the magnitude of mass B. [Ans. $162.5^{\circ}, 47.5^{\circ} ; 511 \mathrm{~mm}: 9.24 \mathrm{~kg}$]

Unit II

> Balancing

The Partial Balance of Two-cylinder Locomotives
It is normal for the cranks to be at right angles and as a result the secondary forces are small and in opposite directions. As a result they are usually neglected and only the primary forces and couples are considered.

It is usual to balance about two-thirds of the reciprocating parts with masses fixed to the wheels.The unbalanced vertical components of the reciprocating masses give rise to a variation of rail pressure known as Hammer Blow and a Rocking Couple about a fore and aft horizontal axis.The unbalanced reciprocating masses cause a variation in draw-bar pull and a swaying couple about a vertical axis

Radial Engines - Direct and Reverse Cranks

The primary force for a reciprocating mass M is equivalent to the resultant of the centrifugal forces of two masses $\frac{M}{2}$ rotating at a crank radius r and at a speed ω, one in the forward direction of motion and the other in the reverse direction. Note that the "direct" and "reverse" cranks are equally inclined to the dead centre position.

Similarly, the secondary force can be represented by direct and reverse cranks inclined at 2θ to the inner dead centre and each carrying a mass $\frac{M}{2}$ at a radius of $\frac{r}{4 n}$ rotating at a speed of 2ω.
This method is particularly useful for examining the balance of radial engines with a number of connecting rods attached to the same crank. It is usually assumed that the crank and connecting rod lengths are the same for each cylinder, though from a practical consideration of design this is not generally true.

Example 1

A motor armature is in running balance when weights of 0.130 oz . and 0.075 oz . (There are 16 oz . in 1 lb .) are added temporarily in the positions shown in the planes A and D in the diagram.

If the actual balancing is to be carried out by the permanent addition of masses in the planes B and C each at 4 in radius, find their respective magnitudes and angular positions to the radius shown in plane A.

The problem is to determine the masses in the planes B and C which will provide the same resultant force and couple, when rotating, as the given masses in the planes A and D.
It is possible to eliminate one of the "unknowns" (say B) by taking B as the reference plane. The following table can now be constructed. The figures in bracket are added as and when they are calculated.
It is the couple which tends to make the leading wheels sway from side to side, produced due to separation of unbalanced primary forces along the line of stroke by some distance.

Planes	Moz.	\boldsymbol{r} in.	\boldsymbol{x} in.	Mr	Mrx	θ
A	0.13	6	-9	0.78	-7.02	0°
B	0.4	4	0	1.6	0	353°
C	0.291	4	10	1.166	11.66	148°
D	0.075	6	15	0.45	6.75	115°

占
The Mrx polygon can now be drawn. Note that A is negative.
The angular position and magnitude of $M r x$ for C^{\prime} can now be measured since C'is the resultant of A and D

The $M r$ value of C is now $M r x$ for C divided by the appropriate value of x. With this information the Force polygon b can be constructed in which B and C give the same resultant as A and D.
The $M r$ value and angular position of B can now be added to the table.
The required magnitudes of B and C are calculated by dividing $M r$ by the corresponding value for r.

Tractive force

The term tractive force can either refer to the total traction a vehicle exerts on a surface, or the amount of the total traction that is parallel to the direction of motion.
Tractive effort
The term tractive effort is often qualified as starting tractive effort, continuous tractive effort and maximum tractive effort. These terms apply to different operating conditions, but are related by common mechanical factors:input torque to the driving wheels, the wheel diameter, coefficient of friction () between the driving wheels and supporting surface, and the weight applied to the driving wheels (\mathbf{m}). The product of and \mathbf{m} is the factor of adhesion, which determines the maximum torque that can be applied before the onset of wheelspin or wheelslip.
Starting tractive effort: Starting tractive effort is the tractive force that can be generated at a standstill. This figure is important on railways because it determines the maximum train weight that a locomotive can set into motion.
Maximum tractive effort: Maximum tractive effort is defined as the highest tractive force that can be generated under any condition that is not injurious to the vehicle or machine. In most cases, maximum tractive effort is developed at low speed and may be the same as the starting tractive effort.
Continuous tractive effort: Continuous tractive effort is the tractive force that can be maintained indefinitely, as distinct from the higher tractive effort that can be maintained for a limited period of time before the power transmission system overheats. Due to the relationship between power (P), velocity (v) and force (F), described as:
$P=v F$ or $P / v=F$
tractive effort inversely varies with speed at any given level of available power. Continuous tractive effort is often shown in graph form at a range of speeds as part of a tractive effort curve. ${ }^{[2]}$
Vehicles having a hydrodynamic coupling, hydrodynamic torque multiplier or electric motor as part of the power transmission system may also have a maximum continuous
tractive effort rating, which is the highest tractive force that can be produced for a short period of time without causing component harm. The period of time for which the maximum continuous tractive effort may be safely generated is usually limited by thermal considerations. such as temperature rise in a traction motor.

Hammer blow

Hammer blow, in rail terminology, refers to a vertical force which alternately adds to and subtracts from the locomotive's weight on a wheel.
It is transferred to the track by the driving wheels of many steam locomotives. It is an out-ofbalance force on the wheel (known as overbalance. It is the result of a compromise when a locomotive's wheels are unbalanced to off-set horizontal reciprocating masses, such as connecting rods and pistons, to improve the ride. The hammer blow may cause damage to the locomotive and track if the wheel/rail force is high enough. 'Dynamic augment' is the US term for the same force.
Principles

The addition of extra weights on the wheels reduces the unbalanced reciprocating forces on the locomotive but causes it to be out of balance vertically creating hammer blow. Locomotives were balanced to their individual cases, especially if several of the same design were constructed (a class). Each class member was balanced for its normal operating speed. Between 40% and 50% of the reciprocating weights on each side were balanced by rotating weights in the wheels.
Causes
While the coupling rods of a locomotive can be completely balanced by weights on the driving wheels since their motion is completely rotational, the reciprocating motions of the pistons, piston rods, main rods and valve gear cannot be balanced in this way. A twocylinder locomotive has its two cranks "quartered" - set at 90° apart - so that the four power strokes of the double-acting pistons are evenly distributed around the cycle and there are no points at which both pistons are at top or bottom dead centre simultaneously. A four-cylinder locomotive can be completely balanced in the longitudinal and vertical axes, although there are some rocking and twisting motions which can be dealt with in the locomotive's suspension and centring; a three-cylinder locomotive can also be better balanced, but a two-cylinder locomotive only balanced for rotation will surge fore and aft. Additional balance weight - "overbalance" - can be added to counteract this, but at the cost of adding vertical forces, hammer blow. This can be extremely damaging to the track, and in extreme cases can actually cause the driving wheels to leave the track entirely. The heavier the reciprocating machinery, the greater these forces are, and the greater a problem this becomes. Except for a short period early in the twentieth century when balanced compound locomotives were tried, American railroads were not interested in locomotives with inside cylinders, so the problem of balance could not be solved by adding more cylinders per coupled wheel set. As locomotives got larger and more powerful, their reciprocating machinery had to get stronger and thus heavier, and thus the problems posed by imbalance and hammer blow became more severe. Higher speeds also increased unbalanced forces which rise with the square of the wheel rotational speed.

Swaying couple is produced due to unbalanced parts of the primary disturbing forces acting at a distance between the line of stroke of the cylinders. Hammer blow is the maximum value of the unbalanced vertical force of the balance weights.

Examples

1. Asingle cylinder engine has stroke of 50 cm and runs at 300 rpm . The reciprocating masses are 60 kg and revolving masses are equivalent to 35 kg at a radius of 20 cm at a radius of 20 cm . Determine the balancing mass to be placed opposite to the crank at a radius of 40 cm which is equivalent to mass of revolving masses and two third of reciprocating masses. Find the magnitude of the remaining unbalanced force when the crank has turned through 30 degrees from inner dead centre.

Given Data:

$\mathrm{r} 2=0.5 / 2=0.25 \mathrm{~m}$
$\mathrm{N}=300 \mathrm{rpm}$
$\omega=2 \pi \mathrm{~N} / 60=2 \mathrm{X} \pi \mathrm{X} \mathrm{300/60=31.42rad/s}$.
Balancing masses to be placed at a radius of $b(0.4)=B$
We know that, $\mathrm{Bb}=m_{1} r_{1}+\mathrm{C} m_{2} r_{2}$ When all the masses rotating in same plane.
Where,
$m_{1}=$ revolving masses $=35 \mathrm{~kg}$

$$
m_{2}=\text { reciprocating masses }=60 \mathrm{~kg}
$$

$r_{1}=0.2 \mathrm{~m}$
$\mathrm{C}=$ fraction of reciprocating masses to be balanced $=2 / 3$
$\mathrm{Bb}=(35 \mathrm{X} 0.2)+\frac{2 \times 60 \times 0.25}{3}$
B X $0.4=17$
$\mathrm{B}=42.5 \mathrm{~kg}$
Balancing mass $(B)=42.5 \mathrm{~kg}$
To find the remaining unbalanced force,
We know that,
$\Sigma \mathrm{H}=$ Horizontal component of unbalanced force (or) Unbalanced force along the line of stroke

$$
=(1-\mathrm{C}) m_{2}(\dot{\omega})^{2} \mathrm{r} \cos \odot
$$

$\Sigma \mathrm{V}=$ Vertical component of unbalanced force (or) Unbalanced force perpendicular to the line of stroke
$=\mathrm{C} m_{2}(\dot{\omega})^{2} \mathrm{r} \sin \odot$
$\mathrm{R}=$ Resultant of unbalanced force

$$
\begin{aligned}
& =\sqrt[2]{\sum H^{2}+\sum V^{2}}=\sqrt[2]{\left((1-\mathrm{C}) m_{2}(\grave{\omega})^{2} \mathrm{r} \cos \odot\right)^{2}+\left(\mathrm{C} m_{2}(\grave{\omega})^{2} \mathrm{r} \sin \odot\right)^{2}} \\
& =m_{2}(\grave{\omega})^{2} \mathrm{r}^{2} \sqrt{m_{2}(\grave{\omega})^{2} \mathrm{r}} \\
& =60 \times 31.42^{2} \times 0.25 \times \sqrt[2]{0.0833+0.1111} \\
& =6529.2 \mathrm{~N}
\end{aligned}
$$

2. The following particulars relate to an outside cylinder of an uncoupled locomotive Rotating mass / cylinder $=250 \mathrm{~kg}$
Length of each crank $=0.35 \mathrm{~m}$
Distance between wheels $=1.6 \mathrm{~m}$
Distance between cylinder centers $=1.9 \mathrm{~m}$
Dia of driving wheel $=1.85 \mathrm{~m}$
Radius of balancing mass $=0.8 \mathrm{~m}$
If all the rotating masses and $2 / 3^{\text {rd }}$ of the reciprocating masses are to be balanced, determine the magnitude and position of the balancing mass in the plane of the wheel. The angle between the cranks of the cylinder is 90 degrees.

Solution

Balancing masses are fitted in the wheel A and B. Since the cylinders are outside of the wheel, these are called outside cylinder locomotive.
$\mathrm{M}_{1}=$ mass to be balanced on cylinder 1
$m_{1}=200+\frac{2}{3} X 250=366.7 \mathrm{~kg}$
$\mathrm{M}_{2}=$ mass to be balanced on cylinder 2
$m_{2}=200+\frac{2}{3} X 250=366.7 \mathrm{~kg}$
Take A as reference plane
By using given data we can draw a table,

Plane	Mass in kg	r in m	Force $/ \omega^{2}=$ mr kg m	Distance from wheel $\mathrm{A} \mathrm{1m}$	Couple $/ \omega^{2}=$ mrlkg m
Cylinder 1	$200+\frac{2}{3} X 250=366.7 \mathrm{~kg}$	0.35	128.345	-0.15	-19.253
R.P wheel A	m_{A}	0.8	$0.8 \mathrm{~m}_{\mathrm{A}}$	0	0
Wheel B	$\mathrm{m}_{\text {в }}$	0.8	$0.8 \mathrm{~m}_{\text {в }}$ (141.14)	1.6	$1.28 \mathrm{~m}_{\mathrm{B}}$
Cylinder 2	$200+\frac{2}{3} X 250=366.7 \mathrm{~kg}$	0.35	128.345	1.75	225

Draw a couple polygon first, since it contains only one unknown and measure $1.28 \mathrm{~m}_{\text {в }}$
$1.28 \mathrm{~m}_{\mathrm{B}}=222.72 \mathrm{~kg}$
$m_{b}=\frac{222.72}{1.28}=174 \mathrm{~kg}$
Substitute m_{B} value in force column and draw force polygon

Measure
$0.8 \mathrm{~m}_{\mathrm{A}}=139.2$
$\mathrm{m}_{\mathrm{A}}=139.2 / 0.8$
$=174 \mathrm{~kg}$

Measure
$=175$ degrees from cylinder 1
3. The Centre distance between the cylinders of inner cylinder locomotive is 0.8 m . It has a stroke of 0.5 m . The rotating mass per cylinder is equivalent to 200 kg at the crank pin and the reciprocating mass per cylinder is 240 kg . The wheel Centre lines are 1.7 m apart. The cranks are at right angle.

The whole of the rotating mass and $2 / 3^{\text {rd }}$ of the reciprocating masses are balanced by masses at a radius of 0.6 m . Find the magnitude and direction of the balancing masses.

Find the hammer blow, variation in tractive effort and the magnitude of the swaying couple at a speed of 300 rpm

Solution

Since whole of the rotating masses (m1) and $2 / 3^{\text {rd }}$ of the reciprocating masses (m2) are balanced,
The total balancing mass $/$ cylinder $=\mathrm{m} 1+\mathrm{Cm} 2$

$$
\begin{aligned}
& =200+2 / 3 \times 240 \\
& =320 \mathrm{~kg}
\end{aligned}
$$

To balance the above masses in cylinder B and C, we place balancing masses $m A$ and m_{D} at a radius of 0.6 m at an angle of $\quad A$ and $\quad D$ from the first crank B.

Procedure

1. Draw space diagram. Assume crank B as horizontal position and crank C is at 90 degrees to B.
2. Draw plane diagram. Take wheel A as reference plane (R.P)
3. Since couple column (mrl) contains only one unknown value ($1.02 \mathrm{mD} \mathrm{m}_{\mathrm{D}}$) we can draw couple polygon first to find m_{D}.

Plane	Mass m kg	Radius r m	Centrifugal force/	Distance from plane A 1 m	Couple/
A (R.P)	m_{A}	0.6	$0.6 \mathrm{~m}_{\mathrm{A}}$	0	0
B	320	0.25	80	1.45	36
C	320	0.25	80	1.25	100
D	m_{D}	0.6	$0.6 \mathrm{~m}_{\mathrm{D}}$	1.7	$1.02 \mathrm{~m}_{\mathrm{D}}$

In couple polygon,
The closing side CO represents
$1.02 \mathrm{~m}_{\mathrm{D}}=106.3 \mathrm{~kg} \mathrm{~m}$,
$\mathrm{m}_{\mathrm{D}}=104.2 \mathrm{~kg}$
$\theta_{D}=71+180=251^{\circ}$ from B .

By knowing m_{D} value substitute in mr column and draw force polygon. In force polygon the closing side do represents $0.6 \mathrm{~m}_{\mathrm{A}}=62.52 \mathrm{~kg} \mathrm{~m}$
$\mathrm{mA}=\frac{62.52}{0.6}=104.2 \mathrm{~kg}$
$\theta_{A}=199$ degrees from B

To find hammer blow,

Each balancing mass is 104.2 kg .
Total 320 kg is balanced by 104.2 kg . In this 104.2 kg we have to find out the contribution of reciprocating mass alone.
$2 / 3 \times 240=160 \mathrm{~kg}$ of reciprocating mass is balanced in 320 kg .
So 320 kg mass contains 160 kg of reciprocating mass alone.
104.2 kg mass contains $160 / 320 \times 104.2=52.1 \mathrm{~kg}$ of reciprocating mass alone.

Hence $\mathrm{B}=52.1 \mathrm{~kg} ; \mathrm{b}=0.6 \mathrm{~m}$
$\omega=2 \pi \mathrm{~N} / 60=2 \mathrm{x} \pi \mathrm{x} 300 / 60=31.42 \mathrm{rad} / \mathrm{s}$

Hammer blow per cylinder $=B \omega^{2} b$

$$
\begin{aligned}
& =52.1 \times 31.42^{2} \times 0.6 \\
& =30852.4 \mathrm{~N}
\end{aligned}
$$

Variation in tractive effort
$\mathrm{M}_{2}=$ reciprocating mass $=240 \mathrm{~kg}$
Max variation of tractive effort
$\pm \sqrt{2}(1-C) m_{2} \omega^{2} r$
$\pm \sqrt{2}\left(1-\frac{2}{3}\right) 240 \times 31.42^{2} \times 0.25$
$=27923 \mathrm{~N}$

Swaying couple

Max swaying couple

$$
\begin{aligned}
& \pm \sqrt{2}(1-C) m_{2} \omega^{2} r \frac{a}{2} \\
& = \pm \sqrt{2}\left(1-\frac{2}{3}\right) 240 \times 31.42^{2} \times 0.25 \times \frac{0.8}{2} \\
& =11169 \mathrm{Nm}
\end{aligned}
$$

4. A two cylinders uncoupled locomotive has inside cylinders 0.6 m apart. The radius of each crank is 300 mm and is at right angles. The revolving masses per cylinder are 250 kg and the reciprocating mass per cylinder is 300 kg . The whole of the revolving and $2 / 3^{\text {rd }}$ of the reciprocating masses to be balanced and the balancing masses are to be placed in the plane of rotation of the driving wheels at a radius of 0.8 m . The driving wheels are 2 m in diameter and 1.5 m apart. If the speed of the engine is 80 kmph , find the hammer blow, max variation in tractive effort and max swaying couple.

Solution

Balancing masses are m_{A} and m_{B}
$\mathrm{m}_{\mathrm{A}}=\mathrm{m}_{\mathrm{B}}=$ Whole revolving mass $+2 / 3^{\text {rd }}$ of reciprocating mass

$$
=250+2 / 3 \times 300=450 \mathrm{~kg}
$$

Take A as reference plane

Plane	Mass in kg	r in m	Force $/ \omega^{2}=$ mr kg m	Distance from wheel A 1 m	Couple $/ \omega^{2}=$ $\mathrm{mrl} \mathrm{kg} \mathrm{m} \mathrm{m}^{2}$
A	m_{A}	0.8	$0.8 \mathrm{~m}_{\mathrm{A}}$	0	0
B	450	0.3	135	0.45	60.75
C	450	0.3	135	1.05	141.75
D	m_{D}	0.3	$0.8 \mathrm{~m}_{\mathrm{D}}$	1.5	$1.2 \mathrm{~m}_{\mathrm{D}}$

Draw couple polygon first to find m_{D} and \quad. Then draw force polygon to find m_{A} and $\quad A$.

From couple polygon,

$$
\begin{gathered}
1.2 \mathrm{~m}_{\mathrm{D}}=154.22 \\
\mathrm{~m}_{\mathrm{D}}=128.52 \mathrm{~kg} \\
\mathrm{D}=247 ®
\end{gathered}
$$

Substitute $\mathrm{m}_{\mathrm{D}}=128.52 \mathrm{~kg}$ in force column and draw force polygon.

From force polygon,

$0.8 \mathrm{~m}_{\mathrm{A}}=102.83 \mathrm{kgm}$
$\mathrm{mA}=128.52 \mathrm{~kg}$
$\mathrm{A}=203{ }^{\circledR}$

To find hammer blow

450 kg of mass contains $2 / 3 \times 300=200 \mathrm{~kg}$ of reciprocating mass alone.
128.52 kg mass contain $=200 / 450 \times 128.52$

$$
=57.12 \mathrm{~kg}
$$

This balancing mass 57.12 kg is the cause for the hammer blow.
, $B=57.12 \mathrm{~kg}$ and $\mathrm{b}=0.8 \mathrm{~m}$
Speed of engine, V $=80 \mathrm{~km} / \mathrm{hr}$

$$
=22.22 \mathrm{~m} / \mathrm{s}
$$

Angular velocity () = V/radius of wheel

$$
=22.22 / 1.5
$$

$$
=14.815 \mathrm{rad} / \mathrm{s}
$$

$$
\begin{aligned}
\text { Hammer blow } & =\mathrm{B} \omega^{2} \mathrm{~b} \\
& =57.12 \times 14.85^{2} \times 0.8 \\
= & 10.029 \mathrm{~N}
\end{aligned}
$$

To find max variation in tractive effort

$$
\begin{aligned}
& \pm \sqrt{2}(1-C) m_{2} \omega^{2} r \\
& \pm \sqrt{2}\left(1-\frac{2}{3}\right) 300 \times 14.815^{2} \times 0.8 \\
& =9312 \mathrm{~N}
\end{aligned}
$$

To find max swaying couple,

$$
\begin{aligned}
& \pm \frac{q}{\sqrt{2}}(1-C) m_{2} \omega^{2} r \\
& =3951 \mathrm{Nm}
\end{aligned}
$$

5. The 3 cranks of a 3 cylinder locomotive are all on the same shaft and are set at 120 degrees. The distance between cylinders is 1 m and the radius of the crank of the cylinder is 0.4 m . The reciprocating masses are 300 kg for inside cylinder and 250 kg for outside cylinder and the plane of rotation of the balancing masses are 0.75 m from the inside crank.

If 50% of the reciprocating masses are balanced, determine the magnitude and the positioning of the balancing masses required at a radius of 0.6 m . The hammer blow per wheel when the shaft makes 360 rpm . The speed in kmph at which the wheel will lift off the rails, when the load on each driving wheel is 100 KN and the diameter of the tread of wheel is 1 m .

Solution

$\mathrm{C}=0.5$
Here we have to balance only reciprocating masses. Since 50% of the reciprocating masses are to be balanced.
The reciprocating masses to be balanced for each outside cylinder

$$
=\mathrm{m}_{\mathrm{A}}=\mathrm{m}_{\mathrm{C}}=0.5 \times 250=125 \mathrm{~kg}
$$

The reciprocating masses are to be balanced for inside cylinder

$$
\begin{aligned}
& =m_{\mathrm{B}} \\
& =0.5 \mathrm{X} 300 \\
& =150 \mathrm{~kg}
\end{aligned}
$$

Take D as reference plane (R.P)

Plane	Mass in kg	r in m	Force $/ \omega^{2}=$ mr kg m	Distance from wheel A lm	Couple $/ \omega^{2}=$ $\mathrm{mrl} \mathrm{kg} \mathrm{m}{ }^{2}$

Outside cylinder A	125	0.4	50	-0.25	-12.5
D (R. P)	m_{D}	0.6	$0.6 \mathrm{~m}_{\mathrm{D}}$	0	0
Inside cylinder B	150	0.4	60	0.75	45
E	m_{E}	0.6	$0.6 \mathrm{~m}_{\mathrm{E}}(57.6)$	1.5	0.9 mE
Outside cylinder C	125	0.4	50	1.75	87.5

Draw couple polygon first and the force polygon to find m_{E} and m_{D}.
By measurement $\mathrm{m}_{\mathrm{E}}=96 \mathrm{~kg}: \mathrm{m}_{\mathrm{D}}=96 \mathrm{~kg}$
Hammer blow (or) Fluctuation in rail pressure
In this problem rotating masses are not given. We have considered only the masses. So the balancing masses D and E are used to balance only reciprocating masses
Here
$m_{D}=m_{E}$ balancing masses for reciprocating mass alone
$=\mathrm{B}=96 \mathrm{~kg}$ also $\mathrm{b}=0.6 \mathrm{~m}$
$=\omega=\frac{2 \pi N}{60}=\frac{2 \pi x 360}{60}=37.7 \mathrm{rad} / \mathrm{s}$

Hammer blow per wheel $=\mathrm{B} \omega^{2} \mathrm{~b}$

$$
=96 \times 37.7^{2} \times 0.6
$$

$=81866.3 \mathrm{~N}$
peed in $\mathrm{km} / \mathrm{hr}$ at which the wheel will lift off the rails when the load on each driving wheel is 100 KN and the diameter of the tread of driving wheel is 1 m .

$$
\begin{aligned}
\omega_{\text {limiting }} & =\sqrt{\frac{W}{B b}}=\sqrt{\frac{100 \times 10^{3}}{96 \times 0.6}=41.67 \mathrm{rad} / \mathrm{s}} \\
V_{\text {lim iting }} & =\omega R=41.67 \times 1=41.67 \mathrm{~m} / \mathrm{s} \\
& =150 \mathrm{~km} / \mathrm{hr}
\end{aligned}
$$

