

UNIT V: TOOL BOXES 10 hrs
Simulink – Simulink model for a dead zone system, nonlinear system – Applications in DSP – Computation
of DFT & FFT – Filter structure – IIR & FIR filter design – Applications in Communication PCM, DPCM, DM,
DTMF- Interfacing of Matlab with event driven simulators.

Simulink is built on top of MATLAB, so you must have MATLAB to use Simulink. It is included in the
Student Edition of MATLAB and is also available separately from The MathWorks, Inc. Simulink is widely
used in industry to model complex systems and processes that are dif cult to model with a simple set of
differential equations. Simulink provides a graphical user interface that uses various types of elements
called blocks to create a simulation of a dynamic system, that is, a system that can be modeled with
differential or difference equations whose independent variable is time. For example, one block type is a
multiplier, another performs a sum, and still another is an integrator. The Simulink graphical interface
enables you to position the blocks, resize them, label them, specify block parameters, and interconnect the
blocks to describe complicated systems for simulation.

Type simulink in the MATLAB Command window to start Simulink. The Simulink Library Browser window
opens. The Simulink blocks are located in libraries. Depending on what other MathWorks products are
installed, you might see additional items in this window, such as the Control System Toolbox and State
flow. These provide additional Simulink blocks, which can be displayed by clicking on the plus sign to the
left of the item. As Simulink evolves through new versions, some libraries are renamed and some blocks
are moved to different libraries, so the library we specify here might change in later releases. The best way
to locate a block, given its name, is to type its name in the search pane at the top of the Simulink Library
Browser. When you press Enter, Simulink will take you to the block location. To create a new model, click
on the icon that resembles a clean sheet of paper, or select New from the File menu in the browser. Anew
Untitled window opens for you to create the model. To select a block from the Library Browser, double-
click on the appropriate library, and a list of blocks.

Applications in DSP

dsp_links : Identify whether blocks in model are current, deprecated, or obsolete

Syntax

1. dsp_links

2. dsp_links('modelname')

Description

dsp_links returns a structure with three elements that identify whether the Signal Processing Blockset

blocks in the current model are current, deprecated, or obsolete. Each element represents one of the three

block categories and contains a cell array of strings. Each string is the name of a library block in the current

model.

dsp_links('modelname') returns the three-element structure for the specified model.

Examples

Display block support information for the specified model, and then find the name of the first current block:

sys = 'dspcochlear';

load_system(sys) % Load the dspcochlear model

links = dsp_links(sys) % Run dsp_links on the model

links.current{1} % Find the name of the first current block

dsplib: Open top-level Signal Processing Blockset library

Description

dsplib opens the top-level Signal Processing Blockset block library model.

Dspstartup:Configure Simulink environment for signal processing systems

Description

dspstartup configures Simulink environment parameters with settings appropriate for a typical signal

processing project. You can use the dspstartup function in the following ways: At the MATLAB command

line. Doing so configures the Simulink environment in your current session for signal processing projects.

By adding a call to the dspstartup function from your startup.m file. When you do so, MATLAB configures

your Simulink environment for typical signal processing projects each time you launch MATLAB. When the

function successfully configures your Simulink environment, MATLAB displays the following message in the

command window. Changed default Simulink settings for signal processing systems (dspstartup.m).

The dspstartup.m file executes the following commands. See Model and Block Parameters in the Simulink

documentation.

set_param(0, ...

 'SingleTaskRateTransMsg', 'error', ...

 'multiTaskRateTransMsg', 'error', ...

 'Solver', 'fixedstepdiscrete', ...

 'SolverMode', 'SingleTasking', ...

 'StartTime', '0.0', ...

 'StopTime', 'inf', ...

 'FixedStep', 'auto', ...

 'SaveTime', 'off', ...

 'SaveOutput', 'off', ...

 'AlgebraicLoopMsg', 'error', ...

 'SignalLogging', 'off');

Examples

Add a call to the dspstartup function from your startup.m file:

To find out if there is a startup.m file on your MATLAB path, run the following code at the MATLAB

command line:

which startup.m

If MATLAB returns 'startup.m' not found., see Startup Options in the MATLAB documentation to learn more

about the startup.m file. If MATLAB returns a path to your startup.m file, open that file for editing. edit

startup.m

Add a call to the dspstartup function. Your startup.m file now resembles the following code sample:

%STARTUP Startup file

% This file is executed when MATLAB starts up, if it exists

% anywhere on the path. In this case, the startup.m file

% runs the dspstartup.m file to configure the Simulink

% environment with settings appropriate for typical

% signal processing projects.

dspstartup;

liblinks: Check model for blocks from specific Signal Processing Blockset libraries

Syntax

liblinks(lib)

liblinks(lib,sys)

liblinks(lib,sys,c)

Description

liblinks(lib) returns a cell array of strings that lists the blocks in the current model that are linked to the

specified libraries. The input lib provides a cell array of strings with the library names. Use the library name

visible in the title bar when you open a library model.

liblinks(lib,sys) acts on the named model sys.

liblinks(lib,sys,c) changes the foreground color of the returned blocks to the color c. Possible values of c are

'blue', 'green', 'red', 'cyan', 'magenta', 'yellow', or 'black'.

rebuffer_delay: Number of samples of delay introduced by buffering and unbuffering operations

Syntax

d = rebuffer_delay(f,n,v)

d = rebuffer_delay(f,n,v,'mode')

Description

d = rebuffer_delay(f,n,v) returns the delay, in samples, introduced by the Buffer or Unbuffer block in

multitasking operations.

d = rebuffer_delay(f,n,v,'mode') returns the delay, in samples, introduced by the Buffer or Unbuffer block in

the specified tasking mode.

Input Arguments

f : Frame size of the input to the Buffer or Unbuffer block.

n : Size of the output buffer. Specify one of the following:

The value of the Output buffer size parameter, if you are computing the delay introduced by a Buffer block.

1, if you are computing the delay introduced by an Unbuffer block. Amount of buffer overlap. Specify one of

the following:

The value of the Buffer overlap parameter, if you are computing the delay introduced by a Buffer block. 0, if

you are computing the delay introduced by an Unbuffer block.

'mode'

The tasking mode of the model. Specify one of the following options:

'singletasking'

'multitasking'

Default: 'multitasking'

Definitions

Multitasking :When you run a model in MultiTasking mode, Simulink processes groups of blocks with the

same execution priority through each stage of simulation based on task priority. Multitasking mode helps to

create valid models of real-world multitasking systems, where sections of your model represent concurrent

tasks. The Tasking mode for periodic sample times parameter on the Solver pane of the Configuration

Parameters dialog box controls this setting.

Singletasking: When you run a model in SingleTasking mode, Simulink processes all blocks through each

stage of simulation together. The Tasking mode for periodic sample times parameter on the Solver pane of

the Configuration Parameters dialog box controls this setting.

Examples

Compute the delay introduced by a Buffer block in a multitasking model: Open a model containing a Buffer

block. For this example, open the doc_buffer_tut4 model by typing doc_buffer_tut4 at the MATLAB

command line. Double-click the Buffer block to open the block mask. Verify that you have the following

settings:

Output buffer size = 3

Buffer overlap = 1

Initial conditions = 0

Based on these settings, two of the required inputs to the rebuffer_delay function are as follows:

n = 3

v = 1

To determine the frame size of the input signal to the Buffer block, open the Signal From Workspace block

mask. Verify that you have the following settings:

Signal = sp_examples_src

Sample time = 1

Samples per frame = 4

Because Samples per frame = 4, you know the f input to the rebuffer_delay function is 4.

After you verify the values of all the inputs to the rebuffer_delay function, determine the delay that the

Buffer block introduces in this multitasking model. To do so, type the following at the MATLAB command

line:

d = rebuffer_delay(4,3,1)

d = 8

Compute the delay introduced by an Unbuffer block in a multitasking model: Open a model containing an

Unbuffer block. For this example, open the doc_unbuffer_ref1 model by typing doc_unbuffer_ref1 at the

MATLAB command line. To determine the frame size of the input to the Buffer block, open the Signal From

Workspace block mask by double-clicking the block in your model. Verify that you have the following

settings:

Signal = sp_examples_src

Sample time = 1

Samples per frame = 3

Because Samples per frame = 3, you know the f input to the rebuffer_delay function is 3. Use the

rebuffer_delay function to determine the amount of delay that the Unbuffer block introduces in this

multitasking model. To compute the delay introduced by the Unbuffer block, use f = 3, n = 1 and v = 0.

d = rebuffer_delay(3,1,0)

d = 3

DFT

The first element of y, corresponding to zero frequency, is the sum of the data in x. This DC component is

often removed from y so that it does not obscure the positive frequency content of the data.

FFT

PCM

DPCM

