UNIT IV APPLICATION OF MATLAB 10 hrs

Linear algebric equations — elementary solution method — matrix method for linear equation — Cramer’s
method — Statistics, Histogram and probability — normal distribution — random number generation —
Interpolation — Analytical solution to differential equations — Numerical methods for differential equations.

Linear algebraic equations such as

5x-2y=13
x+3y=24

occur in many engineering applications. For example, electrical engineers use them to predict the power
requirements for circuits; civil, mechanical, and aerospace engineers use them to design structures and
machines; chemical engineers use them to compute material balances in chemical processes; and
industrial engineers apply them to design schedules and operations. The examples and homework
problems in this chapter explore some of these applications. Linear algebraic equations can be solved by
hand using pencil and paper, by calculator, or with software such as MATLAB. The choice depends on the
circumstances. For equations with only two unknown variables, hand solution is easy and adequate. Some
calculators can solve equation sets that have many variables. However, the greatest power and exibility is
obtained by using software For example, MATLAB can obtain and plot equation solutions as we vary one or
more parameters. Systematic solution methods have been developed for sets of linear equations. The
conditions for the existence and uniqueness of solutions are then introduced.

Matrix Methods for Linear Equations

Sets of linear algebraic equations can be expressed as a single equation, using matrix notation. This
standard and compact form is useful for expressing solutions and for developing software applications with
an arbitrary number of variables. In this application, a vector is taken to be a column vector unless
otherwise specified. Matrix notation enables us to represent multiple equations as a single matrix equation.
For example, consider the following set.

21+ 9x2=5
3x1-4x2=7

This set can be expressed in vector-matrix form as
2 26
3 —4][x] [7]
which can be represented in the following compact form
Ax=b (1)

where we have de ned the following matrices and vectors:

NRLEE:],]
) B 3 —4 T X7 | B 7

In general, the set of m equations in n unknowns can be expressed in the form Equation (1), where Ais m
xn,Xxisnx1,andbismx1.

Matrix Inverse

The solution of the scalar equation ax = b is x = b/a if a # 0. The division operation of scalar algebra has an
analogous operation in matrix algebra. For example, to solve the matrix equation (8.1.1) for x, we must
somehow .divide. b by A The procedure for doing this is developed from the concept of a matrix inverse.
The inverse of a matrix A is denoted by A and has the property that

A1A=ANT=]

where | is the identity matrix. Using this property, we multiply both sides of Equation (1) from the left by A_1
to obtain A_1Ax _A_1b. Because A_1Ax _Ix _x,

The inverse of a matrix A is defined only if A is square and nonsingular. A matrix is singular if its
determinant |A| is zero. If A is singular, then a unique solution does not exist. The MATLAB functions inv(A)
and det(A) compute the inverse and the determinant of the matrix A. If the inv(A) function is applied to a
singular matrix, MATLAB will issue a warning to that effect. An ill-conditioned set of equations is a set that
is close to being singular. The ill-conditioned status depends on the accuracy with which the solution
calculations are made. When internal numerical accuracy used by MATLAB is insufficient to obtain a
solution, it prints the message warning that the matrix is close to singular and that the results might be
inaccurate. For a 2 x 2 matrix A,

a b 1 d —b]
A = Al= -
c d ad — bc| —c a |

where det(A) = ad — bc. Thus A is singular if ad — be = 0.

Solve the following equations, using the matrix inverse.

2..'{'| T 9.1'3 =5
3.1'] - 4_1'3 =17
N Solution
The matrix A and the vector b are
_ 0 s
A= -| h =
3 —4 L7

The session is

==l = [2,9;3,-4]; b = [5;7];

==X = inv(A)*b
o o=
2.3714
0.0286

The solution is x; = 2.3714 and x; = 0.0286. MATLAB did not issue a warning, so the
solution is unique.

The solution form x = A-'b is rarely applied in practice to obtain numerical solutions to sets of many
equations, because calculation of the matrix inverse is likely to introduce greater numerical inaccuracy than
the left division method to be introduced.

Existence and Uniqueness of Solutions

The matrix inverse method will warn us if a unique solution does not exist, but it does not tell us whether
there is no solution or an infinite number of solutions. In addition, the method is limited to cases where the
matrix A is square, that is, cases where the number of equations equals the number of unknowns. For this
reason we now introduce a method that allows us to determine easily whether an equation set has a
solution and whether it is unique. The method requires the concept of the rank of a matrix.

Consider the 3 x 3 determinant

3 —4 1
Al = |6 10 2|/=0
9 -7 3

If we eliminate one row and one column in the determinant, we are left with a 2 x 2 determinant. Depending

on which row and column we choose to eliminate, there are nine possible 2 x 2 determinants we can

obtain. These are called subdeterminants. For example, if we eliminate the second row and third column,

we obtain

3 -4
= 3(—7) — 9 —4) =15

9 - ?‘

Subdeterminants are used to de ne the rank of a matrix. The definition of matrix rank is as follows.

Definition of Matrix Rank.

An m x n matrix A has a rank r 2 1 if and only if |A| contains a nonzero r x r determinant and every square
subdeterminant with r + 1 or more rows is zero. For example, the rank of A is 2 because |A| = 0 while |A|
contains at least one nonzero 2 x 2 subdeterminant. To determine the rank of a matrix A in MATLAB, type
rank(A). If Ais nx n, its rank is n if det(A) = 0. We can use the following test to determine if a solution exists
to Ax =b and whether it is unique. The test requires that we rst form the augmented matrix [A b].

Existence and Uniqueness of Solutions.

The set Ax = b with m equations and n unknowns has solutions if and only if (1) rank(A) = rank([A
b]). Let r = rank(A). If condition (1) is satis ed and if r =n, then the solution is unique. If condition (1) is satis
ed but r < n, there are an in nite number of solutions, and r unknown variables can be expressed as linear
combinations of the other n _ r unknown variables, whose values are arbitrary.

Homogeneous case.

The homogeneous set Ax = 0 is a special case in which b = 0. For this case, rank(A) = rank([A b]) always,
and thus the set always has the trivial solution x =0. A nonzero solution, in which at least one unknown is
nonzero, exists if and only if rank(A) < n. If m < n, the homogeneous set always has a nonzero solution.
This test implies that if A is square and of dimension n x n, then rank([A b]) = rank(A), and a unique
solution exists for any b if rank(A) = n.

The Left Division Method

MATLAB provides the left division method for solving the equation set Ax = b. This method is based on
Gauss elimination. To use the left division method to solve for x, you type x = A\b. If |A] = 0 or if the number
of equations does not equal the number of unknowns, then you need to use the other methods to be
presented later.

Use the left division method to solve the following set.

- g.l'l - 5.1'2 + 2_'{'_1 = 16
E‘hl'l + F.'r_fz T 3.1'_1, = 5
H Solution
The matrices A and b are
3 2 -9 — 65
A=|—-9 —5 2 b = 16
6 7 3 5

The session is

==A = [3,2,-9;-9,-5,2;6,7,3];
>>=rank (&)
ans =

3

Because A is 3 % 3 and rank(A) = 3, which is the number of unknowns, a unique solution
exists. It is obtained by continuing the session as follows.

==b [-65;1&;:5];
=»x = A\D

2.0000
-4.0000
7.0000

This answer gives the vector x, which corresponds to the solutionx; =2, x; = —4, x3="T.

For the solution x = A-'b, vector x is proportional to the vector b. We can use this linearity property to
obtain a more generally useful algebraic solution in cases where the right-hand sides are all multiplied by
the same scalar. For example, suppose the matrix equation is Ay = bc, where ¢ is a scalar. The solution
is'y = A-bc = xc. Thus if we obtain the solution to Ax = b, the solution to Ay = bc is given by y = xc

Underdetermined Systems

An underdetermined system does not contain enough information to determine all the unknown
variables, usually but not always because it has fewer equations than unknowns. Thus an in nite number of
solutions can exist, with one or more of the unknowns dependent on the remaining unknowns. The left

division method works for square and nonsquare A matrices. However, if A is not square, the left division
method can give answers that might be misinterpreted. We will show how to interpret MATLAB results
correctly. When there are fewer equations than unknowns, the left division method might give a solution
with some of the unknowns set equal to zero, but this is not the general solution. An in nite number of
solutions might exist even when the number of equations equals the number of unknowns. This can occur
when |A| = 0. For such systems the left division method generates an error message warning us that the
matrix A is singular. In such cases the pseudoinverse method x = pinv(A)*b gives one solution, the
minimum norm solution. In cases where there are an in nite number of solutions, the rref function can be
used to express some of the unknowns in terms of the remaining unknowns, whose values are arbitrary.

An equation set can be underdetermined even though it has as many equations as unknowns. This can
happen if some of the equations are not independent. Determining by hand whether all the equations are
independent might not be easy, especially if the set has many equations, but it is easily done in MATLAB.

Statistics and Histograms

With MATLAB you can compute the mean (the average), the mode (the most frequently occurring value),
and the median (the middle value) of a set of data. MATLAB provides the mean(x), mode(x), and median(x)
functions to compute the mean, mode, and median of the data values stored in x, if x is a vector. However,
if x is a matrix, a row vector is returned containing the mean (or mode or median) value of each column of
x. These functions do not require the elements in x to be sorted in ascending or descending order. The way
the data are spread around the mean can be described by a histogram plot. A histogram is a plot of the
frequency of occurrence of data values versus the values themselves. It is a bar plot of the number of data
values that occur within each range, with the bar centered in the middle of the range. To plot a histogram,
you must group the data into subranges, called bins. The choice of the bin width and bin center can
drastically change the shape of the histogram. If the number of data values is relatively small, the bin width
cannot be small because some of the bins will contain no data and the resulting histogram might not
usefully illustrate the distribution of the data. To obtain a histogram, rst sort the data values if they have has
not yet been sorted (you can use the sort function here). Then choose the bin ranges and bin centers and
count the number of values in each bin. Use the bar function to plot the number of values in each bin
versus the bin centers as a bar chart. The function bar(x,y) creates a bar chart of y versus x. MATLAB also
provides the hist command to generate a histogram. This command has several forms. lts basic form is
hist(y), where y is a vector containing the data. This form aggregates the data into 10 bins evenly spaced
between the minimum and maximum values in y. The second form is hist(y,n), where n is a user-speci ed
scalar indicating the number of bins. The third form is hist(y,x), where x is a user-speci ed vector that
determines the location of the bin centers; the bin widths are the distances between the centers. To ensure
proper quality control, a thread manufacturer selects samples and tests them for breaking strength.
Suppose that 20 thread samples are pulled until they break, and the breaking force is measured in newtons
rounded off to integer values. The breaking force values recorded were 92, 94, 93, 96, 93, 94, 95, 96, 91,
93, 95, 95, 95, 92, 93, 94, 91, 94, 92, and 93. Plot the histogram of the data.

m Solution

Store the data in the vector y, which is shown in the following script le. Because there are six outcomes (91,
92, 93, %4, 95, 96 N), we choose six bins. However, if you use hist(y,6), the bins will not be centered at 91,
92, 93, 94, 95, and 96. So use the form

Absolute Frequency Histogram for 20 Tests

E I I I I I I

I
T

Absolute Frequency
L
T

[{%]
T

0
80 a1 a2 93 94 85 96
Thread Strength (N)

Figure 7.1-1 Histograms for 20 tests of thread strength.

hist(y,x), where x = 91:96. The following script le generates the histogram
shown in Figure 7.1.1.

% Thread breaking strength data for 20 tests.

y =192,94,93,96,93,94,95,96,91,93,...

95,95,95,92,93,94,91,94,92 93]

% The six possible outcomes are 91,92,93,94,95,96.

X =91:96;

hist(y,x),axis([90 97 0 6]),ylabel(‘Absolute Frequency’),...

xlabel(‘Thread Strength (N)),...

title(‘Absolute Frequency Histogram for 20 Tests’)

The absolute frequency is the number of times a particular outcome occurs.

a7

For example, in 20 tests these data show that a 95 occurred 4 times. The absolute frequency is 4, and its
relative frequency is 4/20, or 20 percent of the time. When there is a large amount of data, you can avoid
typing in every data value by rst aggregating the data. The following example shows how this is done using

the ones function. The following data were generated by testing 100 thread samples.

Absolute Frequency Histogram for 100 Tests
25 T T T T T T

20 —

=k
(1]
T
|

Absolute Frequency
o
T
|

D | 1 | |
90 01 g2 a3 94 85 96 a7
Thread Strength (M)

Figure 7.1-2 Absolute frequency histogram for 100 thread tests.

The number of times 91, 92, 93, 94, 95, or 96 N was measured is 13, 15, 22, 19, 17, and 14, respectively.

% Thread strength data for 100 tests.

y = [91%ones(1,13),92*ones(1,15),93*ones(1,22),...
94*ones(1,19),95*ones(1,17),96*ones(1,14)];

X =91:96;

hist(y,x),ylabel(‘Absolute Frequency),...
xlabel(‘Thread Strength (N)),...

title(‘Absolute Frequency Histogram for 100 Tests’)

The result appears in Figure 7.1.2. The hist function is somewhat limited in its ability to produce useful
histograms. Unless all the outcome values are the same as the bin centers (as is the case with the thread
examples), the graph produced by the hist function will not be satisfactory. This case occurs when you want
to obtain a relative frequency histogram. In such cases you can use the bar function to generate the
histogram. The following script le generates the relative frequency histogram for the 100 thread tests. Note
that if you use the bar function, you must aggregate the data rst.

% Relative frequency histogram using the bar function.
tests = 100;

y =[13,15,22,19,17,14]/tests;

x =91:96;

bar(x,y),ylabel(‘Relative Frequency’),...
xlabel(‘Thread Strength (N)),...
title('Relative Frequency Histogram for 100 Tests’)

The result appears in Figure 7.1.3. The fourth, fifth, and sixth forms of the hist function do not generate a
plot, but are used to compute the frequency counts and bin locations. The bar function can then be used to
plot the histogram. The syntax of the fourth form is [z,x] = hist(y), where z is the returned vector containing
the frequency count and x is the returned vector containing the bin locations. The fifth and sixth forms are

[z,x] = hist(y,n) and [z,x] = hist(y,X).

In the latter case the returned vector x is the same as the user-supplied vector. The following script le
shows how the sixth form can be used to generate a relative frequency histogram for the thread example
with 100 tests.

tests = 100;

y = [91*ones(1,13),92*ones(1,15),93*ones(1,22),...

94*ones(1,19),95*ones(1,17),96*ones(1,14);

Relative Freguency Histogram for 100 Tests
025 T T T T T T

0.2 —

0.15 -

Relative Frequency
=
|

0.05 -

0 1 1 1 1 1 1
90 91 a2 93 94 95 96 a7

Thread Strength (N)

Figure 7.1-3 Relative frequency histogram for 100 thread tests.

Table 7.1-1 Histogram functions

Command Description

bar (x,v) Creates a bar chart of v versus x.

hist (y) Aggregates the data in the vector v into 10 bins evenly spaced
between the minimum and maximum values in .

hist (y,n) Aggregates the data in the vector y into nn bins evenly spaced
between the minimum and maximum values 1n y.

hist (v, =) Apggregates the data in the vector v into bins whose center

locations are speci ed by the vector . The bin widths are the
distances between the centers.

[z,%] = hist(y) Same as hist (v) but returns two vectors z and x that
¥ ¥
contain the frequency count and the bin locations.
[2,%x] = hist(v,n) Same as hist (v, n) but returns two vectors z and x that
¥ ¥
contain the frequency count and the bin locations.
[z,x] = hist(v,x) Same as hist (v, x) but returns two vectors = and x that
¥ ¥
contain the frequency count and the bin locations. The
returned vector x is the same as the user-supplied vector x.
X =91:96;

[z,X] = hist(y,x);bar(x,z/tests),...
ylabel(‘Relative Frequency’),xlabel(‘Thread Strength(N))),...
title(‘Relative Frequency Histogram for 100 Tests’)

The Normal Distribution

Rolling a die is an example of a process whose possible outcomes are a limited set of numbers, namely,
the integers from 1 to 6. For such processes the probability is a function of a discrete-valued variable, that
is, a variable having a limited number of values. For example, Table 7.2.1 gives the measured heights of
100 men 20 years of age. The heights were recorded to the nearest 1/2 in., so the height variable is
discrete-valued.

Scaled Frequency Histogram

You can plot the data as a histogram using either the absolute or relative frequencies. However, another
useful histogram uses data scaled so that the total area under the histogram.s rectangles is 1. This scaled
frequency histogram is the absolute frequency histogram divided by the total area of that histogram. The
area of each rectangle on the absolute frequency histogram equals the bin width times the absolute
frequency for that bin. Because all the rectangles have the same width, the total area is the bin width times
the sum of the absolute frequencies. The following M-file produces the scaled histogram shown in Figure
7.21.

Table 7.2-1 Height data for men 20 years of age

Height (in.) Frequency Height (in.) Frequency
64 1 T0 0
64.5 0 70.5 8
65 0 T1 7
65.5 0 T1.5 5
66 2 72 4
66.5 4 725 4
67 5 T3 3
67.5 4 735 1
68 8 T4 1
68.5 11 T4.5 0
69 12 75 1
69.5 10

% Absolute frequency data.

y_abs=[1,0,0,0,2,4,5,4,8,11,12,10,9,8,7,5,4,4,3,1,1,0,1];

binwidth = 0.5;

% Compute scaled frequency data.
area = binwidth*sum(y_abs);
y_scaled = y_abs/area;

0.25 T T

0.2

[

i

n
T

Scaled Frequency

o
.
T
|

0.05

]|

66

68 70
Height {in.)

Figure 7.2-1 Scaled histogram of height data.

72

i

% De ne the bins.

bins = 64:binwidth:75;

% Plot the scaled histogram.

bar(bins,y_scaled),...

ylabel(‘Scaled Frequency’),xlabel(‘Height (in.)))

Because the total area under the scaled histogram is 1, the fractional area
corresponding to a range of heights gives the probability that a randomly selected
20-year-old man will have a height in that range. For example, the heights of the
scaled histogram rectangles corresponding to heights of 67 through 69 in. are
0.1,0.08, 0.16, 0.22, and 0.24. Because the bin width is 0.5, the total area corresponding
to these rectangles is (0.1_0.08 _0.16 _0.22 _0.24)(0.5) _0.4.

Thus 40 percent of the heights lie between 67 and 69 in.

You can use the cumsum function to calculate areas under the scaled

frequency histogram and therefore to calculate probabilities. If x is a vector,
cumsum(x) returns a vector the same length as x, whose elements are the sum
of the previous elements. For example, if x =[2, 5, 3, 8], cumsum(x)=

[2,7,10, 18]. If Ais a matrix, cumsum(A) computes the cumulative sum

of each row. The result is a matrix the same size as A.

After running the previous script, the last element of cumsum(y_scaled)*

binwidth is 1, which is the area under the scaled frequency histogram. To
compute the probability of a height lying between 67 and 69 in. (that is, above the
6th value up to the 11th value), type

>>prob = cumsum(y_scaled)*binwidth;

>>prob67_69 = prob(11)-prob(6)

The result is prob67_69 = 0.4000, which agrees with our previous calculation of 40 percent.

Continuous Approximation to the Scaled Histogram

For processes having an in nite number of possible outcomes, the probability is a function of a continuous
variable and is plotted as a curve rather than as rectangles. It is based on the same concept as the scaled
histogram; that is, the total area under the curve is 1, and the fractional area gives the probability of
occurrence of a speci ¢ range of outcomes. A probability function that describes many processes is the
normal or Gaussian function, which is shown in Figure 7.2.2. This function is also known as the bell-shaped
curve. Outcomes that can be described by this function are said to be normally distributed. The normal

probability function is a two-parameter function; one parameter, , is the mean of the outcomes, and the
other parameter, |, is the standard deviation. The mean | locates the peak of the curve and is the most
likely value to occur. The width, or spread, of the curve is described by the parameter . Sometimes the
term variance is used to describe the spread of the curve. The variance is the square of the standard

deviation o.

\

L |
F

u—c u u+a

Figure 7.2—-2 The basic shape of the normal distribution curve.

The normal probability function is described by the following equation:

o\ 2w

It can be shown that approximately 68 percent of the area lies between the
limits of . — o0 = x = p + . Consequently, if a variable is normally distributed.
there is a 68 percent chance that a randomly selected sample will lie within one
standard deviation of the mean. In addition, approximately 96 percent of the area
lies between the limits of . — 20 = x = . + 20, and 99.7 percent, or practically
100 percent, of the area lies between the limits of o — 30 = x = p + 30.

The functions mean (x), var (x), and std (x) compute the mean, vari-
ance, and standard deviation of the elements in the vector x.

p{x; — e_i.'l'—l.l :':.-"2(1': [? .2—] ;

Random Number Generation

We often do not have a simple probability distribution to describe the distribution of outcomes in many
engineering applications. For example, the probability that a circuit consisting of many components will fail
is a function of the number and the age of the components, but we often cannot obtain a function to
describe the failure probability. In such cases we often resort to simulation to make predictions. The
simulation program is executed many times, using a random set of numbers to represent the failure of one
or more components, and the results are used to estimate the desired probability.

Uniformly Distributed Numbers

In a sequence of uniformly distributed random numbers, all values within a given interval are equally likely
to occur. The MATLAB function rand generates random numbers uniformly distributed over the interval
[0,1]. Type rand to obtain a single random number in the interval [0,1]. Typing rand again generates a
different number because the MATLAB algorithm used for the rand function requires a .state. to start.
MATLAB obtains this state from the computer.s CPU clock. Thus every time the rand function is used, a
different result will be obtained. For example,

rand
ans =
0.6161
rand
ans =
0.5184

Type rand(n) to obtain an nxn matrix of uniformly distributed random numbers in the interval [0, 1]. Type
rand(m,n) to obtain an m x n matrix of random numbers. For example, to create a 1x100 vector y having
100 random values in the interval [0, 1], type y = rand(1,100). Using the rand function this way is equivalent
to typing rand 100 times. Even though there is a single call to the rand function, the rand functions
calculation has the effect of using a different state to obtain each of the 100 numbers so that they will be
random. Use Y = rand(m,n,p,...) to generate a multidimensional array Y having random elements. Typing
rand(size(A)) produces an array of random entries that is the same size as A.

For example, the following script makes a random choice between two equally probable alternatives.
ifrand <0.5

disp(‘heads’)

else

disp(‘tails’)

end

To compare the results of two or more simulations, sometimes you will need to generate the same
sequence of random numbers each time the simulation runs. To generate the same sequence, you must
use the same state each time. The current state s of the uniform number generator can be obtained by
typing

s = rand(‘twister’).

This returns a vector containing the current state of the uniform generator. To set the state of the generator
to s, type rand(‘twister,s). Typing rand(‘twister’,0) resets the generator to its initial state. Typing
rand(‘twister'j), for integer j, resets the generator to state j. Typing rand(‘twister’,sum(100*clock)) resets

the generator to a different state each time. Table 7.3.1 summarizes these functions. The name ‘twister’
refers to the speci ¢ algorithm used by MA TLAB to generate random numbers. In MATLAB Version 4,
‘seed’ was used instead of ‘twister’. In Versions 5 through 7.3, ‘state’ was used. Use ‘twister’ in Version 7.4
and later. The following session shows how to obtain the same sequence every time rand is called.

>>rand(‘twister’,0)
>>rand

ans =

0.5488

>>rand

ans =

0.7152
>>rand(‘twister’,0)
>>rand

ans =

0.5488

>>rand

ans =

0.7152

You need not start with the initial state to generate the same sequence. To show
this, continue the above session as follows.
>>s = rand(‘twister’);

>>rand(‘twister’,s)

>>rand

ans =

0.6028

>>rand(‘twister’,s)

>>rand

ans =

0.6028

Table 7.3-1 Random number functions

Command Description

rand Generates a single uniformly distributed random number between
(hand 1.

rand(n) Generates an n > n matrix containing uniformly distributed random
numbers between () and 1.

rand (m,n} Generates an m % n matrx containing uniformly distributed random
numbers between () and 1.

s = rand(‘'state’) Retumns a vector s containing the current state of the uniformly
distributed generator.

rand(‘twister’,s) Sets the state of the uniformly distributed generator to =.

rand(‘twister’,0) Resets the uniformly distributed generator to its initial state.

rand(‘twister’,J) Resets the uniformly distributed generator to state j, for integer 7.

rand (‘twister’,sum(100*clock)) Resets the uniformly distributed generator to a different state each
time it is executed.

randn Generates a single normally distributed random number having a
mean of () and a standard deviation of 1.

randn (n) Generates an n % n matrix containing normally distributed random
numbers having a mean of () and a standard deviation of 1.

randn (m,n) Generates an m » n matrix containing normally distributed random
numbers having a mean of 0 and a standard deviation of 1.

g = randn|(‘state’) Like rand(*state’) but for the normally distributed generator.

randn (*state’, s) Like rand (*state’, =) but for the normally distributed generator.

randn(‘state’, 0) Like rand (*state’, 0) but for the normally distributed generator.

randn (‘state’,J) Like rand (*state’,j) but for the normally distributed generator.

randn(‘*state’,sum(100*clock)) Like rand ('state’ ,sum(100*clock)) but for the normally
distributed generator.

randperm(n) Generates a random permutation of the integers from 1 to n.

Interpolation

Paired data might represent a cause and effect, or input-output relationship, such as the current produced
in a resistor as a result of an applied voltage, or a time history, such as the temperature of an object as a
function of time. Another type of paired data represents a pro le, such as a road pro le (which shows the
height of the road along its length). In some applications we want to estimate a variable .s value between
the data points. This process is called interpolation. In other cases we might need to estimate the variable.s
value outside the given data range. This process is called extrapolation. Interpolation and extrapolation are

greatly aided by plotting the data. Such plots, some perhaps using logarithmic axes, often help to discover
a functional description of the data. Suppose we have the following temperature measurements, taken
once an hour starting at 7:00 A.M. The measurements at 8 and 10 A.M. are missing for some reason,
perhaps because of equipment malfunction.

Time T AM. 9 AML 11 am. 12 noon
Temperature (°F) 40 37 71 15
I emperature Measurements at a Single Location
E'D I I I I I I 1 I I
75} 4
o
Fitlg ' -
ra
o -
n A
Ses5f f’ .
o e
5 o~
= ~
& -
g_ 60 P -
@ -
= e
B P _
) :
i
45 1 1 1 1 1 1 1 1 1
7 7.5 8 8.5 9 95 10 10.5 11 115 12

Time (hr)

Figure 7.4-1 A plot of temperature data versus time.

A plot of these data is shown in Figure 7.4.1 with the data points connected by dashed lines. If we need to
estimate the temperature at 10 A.M., we can read the value from the dashed line that connects the data
points at 9 and 11 A.M. From the plot we thus estimate the temperature at 8 A.M. to be 53_F and at 10
A.M. to be 64_F. We have just performed linear interpolation on the data to obtain an estimate of the
missing data. Linear interpolation is so named because it is equivalent to connecting the data points with a
linear function (a straight line). Of course we have no reason to believe that the temperature follows the
straight lines shown in the plot, and our estimate of 64_F will most likely be incorrect, but it might be close
enough to be useful. Using straight lines to connect the data points is the simplest form of interpolation.
Another function could be used if we have a good reason to do so. Later in this section we use polynomial
functions to do the interpolation.

Linear interpolation in MATLAB is obtained with the interp1 and interp2 functions. Suppose that x is a
vector containing the independent variable data and that y is a vector containing the dependent variable
data. If x_int is a vector containing the value or values of the independent variable at which we wish to

estimate the dependent variable, then typing interp1(x,y,x_int) produces a vector the same size as x_int
containing the interpolated values of y that correspond to x_int. For example, the following session
produces an estimate of the temperatures at 8 and 10 A.M. from the preceding data. The vectors

x and y contain the times and temperatures, respectively.

>>x =[7,9,11,12];

>>y =[49, 57,71, 75];

>>x_int = [8, 10];

>>interp1(x,y,x_int)

ans =

53

64

You must keep in mind two restrictions when using the interp1 function. The values of the independent
variable in the vector x must be in ascending order, and the values in the interpolation vector x_int must lie
within the range of the values in x. Thus we cannot use the interp1 function to estimate the temperature at
6 A.M., for example. The interp1 function can be used to interpolate in a table of values by de ning y to be a
matrix instead of a vector. For example, suppose that we now have temperature measurements at three
locations and the measurements at 8 and 10 A.M. are missing for all three locations. The data are as
follows:

Temperature (°F)

Time Location 1 Location 2 Location 3
T AM. 40 52 54
0 aLM. 37 6l 61
11 a.m. 71 73 75
12 noon 75 70 81

We de ne x as before, but now we de ne v to be a matrix whose three columns
contain the second, third, and fourth columns of the preceding table. The fol-
lowing session produces an estimate of the temperatures at 8 and 10 A.M. at each
location.

»>x = [7, 9, 11, 1Z]';

>»y(:,1) = [49, 57, 71, 75]';
>>»>v(:,2) = [52, 60, 73, 78]';
=>y(:,3) = [54, 61, 75, 81]1';

>>¥X _int = [8, 10]1"';

>>interpl (x¢,y,x int)

ans =
53.0000 56.0000 57.5000
64 .0000 &5.5000 &8.0000

Thus the estimated temperatures at 8 A.M. at each location are 53, 56, and 57.5°F,
respectively. At 10 A.m. the estimated temperatures are 64, 65.5, and 68°F. From

this example we see that if the rst ar gument x in the interp1(x,y,x_int) function is a vector and the second
argument y is a matrix, then the function interpolates between the rows of y and computes a matrix having
the same number of columns as y and the same number of rows as the number of values in x_int.

Note that we need not de ne two separate vectors x and y. Rather, we can de ne a single matrix that
contains the entire table. For example, by defining the matrix temp to be the preceding table, the session
will look like this:

>>temp(;,1) =1[7, 9, 11, 12];

>>temp(;,2) = [49, 57, 71, 75]’;
>>temp(:,3) = [52, 60, 73, 79]’;
>>temp(:,4) = [54, 61, 75, 81]’;

>>x_int = [8, 10];
>>interp1(temp(:,1),temp(:,2:4),x_int)
ans =

53.0000 56.0000 57.5000

64.0000 65.5000 68.0000

Two-Dimensional Interpolation

Now suppose that we have temperature measurements at four locations at 7 A.M. These locations are at
the corners of a rectangle 1 mi wide and 2 mi long. Assigning a coordinate system origin (0,0) to the rst
location, the coordinates of the other locations are (1, 0), (1, 2), and (0, 2); see Figure 7.4.2. The
temperature measurements are shown in the gure. The temperature is a function of two

(0,0) (1,0)
® L - X
49° 54°
(0.6, 1.5)
®
53° 57°
L ®
(0.2) (1.2)
J
y

Figure 7.4-2 Temperature
measurements at four locations.

variables, the coordinates x and y. MATLAB provides the interp2 function to interpolate functions of two
variables. If the function is written as z _ f(x,y) and we wish to estimate the value of z for x _ xiand y _ i,
the syntax is

interp2(x,y,z,x_i,y_i).

Suppose we want to estimate the temperature at the point whose coordinates are (0.6, 1.5). Put the x
coordinates in the vector x and the y coordinates in the vector y. Then put the temperature measurements
in a matrix z such that going across a row represents an increase in x and going down a column represents
an increase in y. The session to do this is as follows:

>>x =[0,1];

>>y=1[0,2];

>>7 =[49,54;53,57]

Z -

49 54

53 57

>>interp2(x,y,z,0.6,1.5)

ans =

54.5500

Thus the estimated temperature is 54.55_F.

The syntax of the interp1 and interp2 functions is summarized in Table 7.4.1. MATLAB also provides the
interpn function for interpolating multidimensional arrays.

Numerical Differentiation

The derivative of a function can be interpreted graphically as the slope of the function. This interpretation
leads to various methods for computing the derivative of a set of data. Figure 9.2.1 shows three data points
that represent a function y(x). Recall that the de nition of the derivative is

dy _ lim Ay
Ax

T Ax—D

dx

I 3

True Slope

The success of numerical differentiation depends heavily on two factors: the spacing of the data points and
the scatter present in the data due to measurement error. The greater the spacing, the more dif cult it is to
estimate the derivative. We assume here that the spacing between the measurements is regular; that is,
x3 -x2= x2 - x1=Ax. Suppose we want to estimate the derivative dy/dx at the point x2. The correct answer is
the slope of the straight line passing through the point (x2, y2); but we do not have a second point on that
line, so we cannot nd its slope. Therefore, we must estimate the slope by using nearby data points. One
estimate can be obtained from the straight line labeled A in the figure. Its slope is

D
my = =

X7 — X Ax

This estimate of the derivative is called the backward difference estimate, and it is actually a better estimate
of the derivative at x = x1 + (Ax)/2 than at x = x2. Another estimate can be obtained from the straight line
labeled B. Its slope is

Mg = X3 — Xg - Ax
This estimate is called the forward difference estimate, and it is a better estimate of the derivative at x = x2
+ (Ax)_2 than at x = x2. Examining the plot, you might think that the average of these two slopes would
provide a better estimate of the derivative at x = x2, because the average tends to cancel out the effects of
measurement error. The average of mA and mB is

my + mp 1{v: — vy V3 — V2 Vi — Vi
me=———""—"=—7|- — + - - = - -

2 2 Ax Ax 2 Ax
This is the slope of the line labeled C, which connects the rst and third data points. This estimate of the
derivative is called the central difference estimate

First-Order Differential Equations
In this section, we introduce numerical methods for solving rst-order dif ferential equations. In Section 9.4
we show how to extend the techniques to higherorder equations. An ordinary differential equation (ODE) is
an equation containing ordinary derivatives of the dependent variable. An equation containing partial
derivatives with respect to two or more independent variables is a partial differential equation (PDE).
Solution methods for PDEs are an advanced topic, and we will not treat them in this text. In this chapter we
limit ourselves to initial-value problems (IVPs). These are problems where the ODE must be solved for a
given set of values speci ed at some initial time, which is usually taken to be t 0. Other types of ODE
problems are discussed at the end of Section 9.6. It will be convenient to use the following abbreviated .dot.
notation for derivatives.

L dy .. d*y

Y dt) dr
The free response of a differential equation, sometimes called the homogeneous solution or the initial
response, is the solution for the case where there is no forcing function. The free response depends on the
initial conditions. The forced response is the solution due to the forcing function when the initial conditions
are zero. For linear differential equations, the complete or total response is the sum of the free and the
forced responses. Nonlinear ODEs can be recognized by the fact that the dependent variable or its
derlvatlves appear raised to a power or in a transcendental function. For example, the equations

y=y'andy = cosy are nonlinear.

The essence of a numerical method is to convert the differential equation into a difference equation that
can be programmed. Numerical algorithms differ partly as a result of the speci ¢ procedure used to obtain
the dif ference equations. It is important to understand the concept of .step size. and its effects on solution
accuracy. To provide a simple introduction to these issues, we consider the simplest numerical methods,
the Euler method and the predictor-corrector method.

The Euler Method

The Euler method is the simplest algorithm for numerical solution of a differential equation. Consider the
equations
The Euler Method

The Euler method is the simplest algorithm for numerical solution of a differen-
tial equation. Consider the equations

Yy 0 9.3-1)
_— = ra 1 7 = 1 O
" Jt.y Al Yo
where (2. v) is a known function and v is the initial condition, which is the given
value of y(7) at 1 = 0. From the de nition of the derivative,

dy oy + AN — v(n)

— = lim
dr Ar—0 Ar

If the time increment Af is chosen small enough, the derivative can be replaced
by the approximate expression
dy _yt + A — y(@)
dt At

(9.3-2)
Assume that the function f(r. v) in Equation (9.3—1) remains constant over the time
interval (f, f + Af), and replace Equation (9.3—1) by the following approximation:

vt + Af) — v(1) _
At

L, y)

or
y(t + Af) = y(0) + f(t, y)At (9.3-3)

The smaller Af is, the more accurate are our two assumptions leading to Equa-

tion (9.3-3). This technique for replacing a differential equation with a differ-

ence equation is the Euler method. The increment At is called the step size.
Equation (9.3-3) can be written in more convenient form as

Vi) = ¥ + Arfla. y(ip)] (9.3-4)

where fi+| = ¢ + At. This equation can be applied successively at the times #; by
putting it in a for loop. The accuracy of the Euler method can be improved some-
times by using a smaller step size. However, very small step sizes require longer
run times and can result in a large accumulated error due to roundoff effects.

FEunge-Kutta Methods

The Taylor series representation forms the basis of several methods of solving
differential equations, including the Runge-Futta methods. The Taylor scries
may be used o represent the solution y(r + &) In terms of Wi and its derivatives
as follows.

1
yii + k) = w1 + WD + ?F_iiuj 4 - (9.3—9)

The number of terms kept in the series determines its accuracy. The required
derivatives are calculated from the differential equation. IT these derivatives can
be found, Equation (9.3—9) can be used to march forward in time. In practice, the
high-order derivatives can be dif cult o calculate, and the series (9.3-9) is trumn-
cated at some term. The Runge-Kutta methods were developed because of the
dif culty in computing the derivatives. These methods use several evaluations of
the function F(r, ¥} in a way that approximates the Taylor series. The number of
terms in the series that is duplicated determines the order of the Runge-Kutta
method. Thus, a fourth-order Runge-Kutta algorithm duplicates the Taylor series
through the term involving A4,

MATLAE ODE Solvers

In addition to the many variations of the predicior-corrector and BEunge-Eutia al-
gorithms that have been developed, there are more-advanced algorithms that use
a variable step size. These “adaptive” algorithms use larger step sirzes when the
solution is changing more slowly. MATLAR provides several functions, called
sofvers, that implement the Runge-Kuita and other methods with variable step
size. Two of these are the oded4s and cdelss functions. The ode4 S function
uses a combination of fourth- amd fith-order Runge-Kutta methods. It i a
general-purpose solver whereas odelss is suitable for more-dif cult equations
called *stff™ equations. These solvers are more than suf cient 0 solve the prob-
lems in this texi. It 15 recommended that yow try ode45 rst If the eguation
proves dif cult o solve (as indicated by a lengihy solution time or by a waming
Or ermor message), then use odalSs.

In this section we limit our coverage to rst-order equations. Solution of
higher-order equations i= coverad in Section 9.4, When used o =olve the egua-
tion v = (i, ¥}, the basic syntax is (using ode45 as the example)

[C,v] = odeasiaydot, tspan, Ol

where @y dot is the handle of the function le whose inputs must be fand v, and
whose output must be a column vector representing oy /dt, that is, F(¢, ¥). The
number of rows in this column vector must equal the order of the equation. The
syniax for odelsSs is identical. The funciion le ydot may also be speci ed by
a character siring (i.e., its name placed in single quotes), but use of the function
handle is mow the preferred approach.

The vector tspan contains the starting and ending values of the indepen-
dent variable f, and optionally any intermediate values of § where the solution is

desired. For example, if no intermediate values are specied. tspan is [tO0,
tfinal]l, where £0 and tf£inal are the desired starting and ending values of
the independent parameter . As another example, using tepan = [0, 5, 10]
tells MATLAB to nd the solution at 1 = 5 and at t = 10. You can solve equation
backward in time by specifying £0 to be greater than tfinal.

The parameter v 0 is the initial value y(0). The function le must have its rst
two input arguments as t and v in that order, even for equations where f (1, v) is not
a function of 7. You need not use array operations in the function le because the
ODE solvers call the le with scalar values for the ar guments. The solvers may
have an additional argument, options, which is discussed at the end of this
section.

First consider an equation whose solution is known in closed form, so that
we can make sure we are using the method correctly.

The model of the RC circuit shown in Figure 9.3—1 can be found from Kirchhoff’s
voltage law and conservation of charge. It is RCv + v = wu(f). Suppose the value of RC is
0.1 s. Use a numerical method to nd the free response for the case where the applied
voltage yis zero and the initial capacitor voltage is y(0) = 2 V. Compare the results with
the analytical solution, which is y(f) = 2¢~'"",

Solution

The equation for the circuit becomes 0.1y + y = 0. First solve this for y: v = —10y.
Next de ne and save the following function le. Note that the order of the input
arguments must be f and v even though r does not appear on the right-hand side of the

equation.

function ydot = RC circuit(t,y)
% Model of an RC circuit with no applied voltage.
ydot = -10%*y;

The initial time is f = 0, so set £ 0 to be 0. Here we know from the analytical solution that
v(t) will be close to O for r = 0.5 s, so we choose t£inal to be 0.5 s. In other problems
we generally do not have a good guess for t£inal, so we must try several increasing
values of t£inal until we see enough of the response on the plot.

()
—/
<
I
1

>

Figure 9.3—-1 An RC circuit.

k=]

Capane Vol iags

-1

04r

[F-] 4

L L 1 L L
a O.DE: aa 015 oz 025 oE 0.35 0.4 045 o1
e

The function ode45 is called as follows, and the solution plotted along with the
analytical solution y true.

[t, y] = ode45(@RC_circuit, [0, 0.5], 2);

Yy _true = 2%exp(-10*t);

plot (t,y,'o’,t,y true), xlabel(‘'Time(s)’), ...
yvlabel (*Capacitor Voltage')

Note that we need not generate the array t to evaluate y_true because t is generated
by the ode45 function. The plot is shown in Figure 9.3-2. The numerical solution is
marked by the circles, and the analytical solution is indicated by the solid line. Clearly the
numerical solution gives an accurate answer. Note that the step size has been automati-
cally selected by the ode45 function.

Higher-Order Differential Equations
To use the ODE solvers to solve an equation higher than order 1, you must rst write the equation as a set
of rst-order equations. This is easily done. Consider the second-order equation.

5V + Ty + 4y = f(1)

Height (ft)
~ &) @ ~ ®
T T T T T

[
T

N
T

0 L 1 L L
0 500 1000 1500 2000 2500
Time (sec)

Figure 9.3—4 Plot of water height in a spherical tank.
Solve it for the highest derivative:
L 7.
y=—f() ——y— <y (9.4-2)
5 :]
De ne two new variables x; and x, to be y and its derivative y. That is, de ne
x; = yand x, = y. This implies that
j.‘] = Xy
1

. 4 7
Xy = ;f[r) - ;Xl R

This form is sometimes called the Cauchy form or the state-variable form.

Now write a function le that computes the values of x; and x, and stores
them in a column vector. To do this, we must rst have a function speci ed for
f(t). Suppose that f(f) = sin f. Then the required le is

function xdot = example 1(t,x)

% Computes derivatives of two equations
xdot (1) = x(2);

xdot (2) = (1/5)*(sin(t)-4*x(1)-7*x(2)) ;
xdot = [xdot(l); xdot(2)];

Note that xdot (1) represents x;, xdot (2) represents x,, x (1) represents x,
and x (2) represents x,. Once you become familiar with the notation for the
state-variable form, you will see that the previous code could be replaced with
the following shorter form.

function xdot = example 1(t,x)
% Computes derivatives of two equations
xdot = [x(2); (1/5)*(sin(t)-4*x(1)-7*x(2))]1;

Suppose we want to solve Equation (9.4-1) for 0 = 1 = 6 with the initial con-
ditions x(0) = 3, x(0) = 9. Then the initial condition for the vector x1s [3, 9].
To use ode45s, you type

[t, x] = ode4t5 (@example 1, [0, 6], [3, 9]);

Each row in the vector x corresponds to a time returned in the column vector t.
If you type plot (t, x), you will obtain a plot of both x; and x; versus 7. Note
x 1s a matrix with two columns. The rst column contains the values of x; at
the various times generated by the solver: the second column contains the val-
ues of x;. Thus, to plot only xy, type plot (t,x(:,1)). To plot only x, type
plot(t,x(:,2)).

When we are solving nonlinear equations, sometimes it 1s possible to check
the numerical results by using an approximation that reduces the equation to a
linear one. The following example illustrates such an approach with a second-
order equation.

