
UNIT IV     APPLICATION OF MATLAB     10 hrs 
 
Linear algebric equations – elementary solution method – matrix method for linear equation – Cramer’s 
method – Statistics, Histogram and probability – normal distribution – random number generation – 
Interpolation – Analytical solution to differential equations – Numerical methods for differential equations. 

 
Linear algebraic equations such as 
 
    5x – 2y = 13 
    7x + 3y = 24 
 
occur in many engineering applications. For example, electrical engineers use them to predict the power 
requirements for circuits; civil, mechanical, and aerospace engineers use them to design structures and 
machines; chemical engineers use them to compute material balances in chemical processes; and 
industrial engineers apply them to design schedules and operations. The examples and homework 
problems in this chapter explore some of these applications. Linear algebraic equations can be solved by 
hand using pencil and paper, by calculator, or with software such as MATLAB. The choice depends on the 
circumstances. For equations with only two unknown variables, hand solution is easy and adequate. Some 
calculators can solve equation sets that have many variables. However, the greatest power and exibility is 
obtained by using software For example, MATLAB can obtain and plot equation solutions as we vary one or 
more parameters. Systematic solution methods have been developed for sets of linear equations. The 
conditions for the existence and uniqueness of solutions are then introduced.  
 
Matrix Methods for Linear Equations 

Sets of linear algebraic equations can be expressed as a single equation, using matrix notation. This 
standard and compact form is useful for expressing solutions and for developing software applications with 
an arbitrary number of variables. In this application, a vector is taken to be a column vector unless 
otherwise specified. Matrix notation enables us to represent multiple equations as a single matrix equation. 
For example, consider the following set. 
 
   2x1 + 9x2 = 5 
   3x1 – 4x2 = 7 
 
This set can be expressed in vector-matrix form as 

 
which can be represented in the following compact form 

    Ax = b       (1) 
 
where we have de ned the following matrices and vectors: 

 



In general, the set of m equations in n unknowns can be expressed in the form Equation (1), where A is m 
x n, x is n x 1, and b is m x 1. 
 
Matrix Inverse 
The solution of the scalar equation ax = b is x = b/a if a ≠ 0. The division operation of scalar algebra has an 
analogous operation in matrix algebra. For example, to solve the matrix equation (8.1.1) for x, we must 
somehow .divide. b by A The procedure for doing this is developed from the concept of a matrix inverse. 
The inverse of a matrix A is denoted by A-1 and has the property that  
 

A-1 A = AA-1 = I 
 
where I is the identity matrix. Using this property, we multiply both sides of Equation (1) from the left by A_1 
to obtain A_1Ax _A_1b. Because A_1Ax _Ix _x,  
 
The inverse of a matrix A is defined only if A is square and nonsingular. A matrix is singular if its 
determinant |A| is zero. If A is singular, then a unique solution does not exist. The MATLAB functions inv(A) 
and det(A) compute the inverse and the determinant of the matrix A. If the inv(A) function is applied to a 
singular matrix, MATLAB will issue a warning to that effect. An ill-conditioned set of equations is a set that 
is close to being singular. The ill-conditioned status depends on the accuracy with which the solution 
calculations are made. When internal numerical accuracy used by MATLAB is insufficient to obtain a 
solution, it prints the message warning that the matrix is close to singular and that the results might be 
inaccurate. For a 2 x 2 matrix A,  

 

 



 
The solution form x = A-1b is rarely applied in practice to obtain numerical solutions to sets of many 
equations, because calculation of the matrix inverse is likely to introduce greater numerical inaccuracy than 
the left division method to be introduced. 
 
Existence and Uniqueness of Solutions 

The matrix inverse method will warn us if a unique solution does not exist, but it does not tell us whether 
there is no solution or an infinite number of solutions. In addition, the method is limited to cases where the 
matrix A is square, that is, cases where the number of equations equals the number of unknowns. For this 
reason we now introduce a method that allows us to determine easily whether an equation set has a 
solution and whether it is unique. The method requires the concept of the rank of a matrix. 
Consider the 3 x 3 determinant 

 
If we eliminate one row and one column in the determinant, we are left with a 2 x 2 determinant. Depending 
on which row and column we choose to eliminate, there are nine possible 2 x 2 determinants we can 
obtain. These are called subdeterminants. For example, if we eliminate the second row and third column, 
we obtain 

 
Subdeterminants are used to de ne the rank of a matrix. The definition of matrix rank is as follows. 
 
Definition of Matrix Rank.  
An m x n matrix A has a rank r ≥ 1 if and only if |A| contains a nonzero r x r determinant and every square 
subdeterminant with r + 1 or more rows is zero. For example, the rank of A is 2 because |A| = 0 while |A| 
contains at least one nonzero 2 x 2 subdeterminant. To determine the rank of a matrix A in MATLAB, type 
rank(A). If A is n x n, its rank is n if det(A) = 0. We can use the following test to determine if a solution exists 
to Ax =b and whether it is unique. The test requires that we rst form the augmented matrix [A b]. 
 
Existence and Uniqueness of Solutions.  

The set Ax = b with m equations and n unknowns has solutions if and only if (1) rank(A) = rank([A 
b]). Let r = rank(A). If condition (1) is satis ed and if r =n, then the solution is unique. If condition (1) is satis 
ed but r < n, there are an in nite number of solutions, and r unknown variables can be expressed as linear 
combinations of the other n _ r unknown variables, whose values are arbitrary. 

 
Homogeneous case.  
The homogeneous set Ax = 0 is a special case in which b = 0. For this case, rank(A) = rank([A b]) always, 
and thus the set always has the trivial solution x =0. A nonzero solution, in which at least one unknown is 
nonzero, exists if and only if rank(A) < n. If m < n, the homogeneous set always has a nonzero solution. 
This test implies that if A is square and of dimension n x n, then rank([A b]) = rank(A), and a unique 
solution exists for any b if rank(A) = n. 



The Left Division Method 
MATLAB provides the left division method for solving the equation set Ax = b. This method is based on 
Gauss elimination. To use the left division method to solve for x, you type x = A\b. If |A| = 0 or if the number 
of equations does not equal the number of unknowns, then you need to use the other methods to be 
presented later. 
 

 

 
 
For the solution x = A_1b, vector x is proportional to the vector b. We can use this linearity property to 
obtain a more generally useful algebraic solution in cases where the right-hand sides are all multiplied by 
the same scalar. For example, suppose the matrix equation is Ay = bc, where c is a scalar. The solution 
is y = A_1bc = xc. Thus if we obtain the solution to Ax = b, the solution to Ay = bc is given by y = xc 
 
Underdetermined Systems 

An underdetermined system does not contain enough information to determine all the unknown 
variables, usually but not always because it has fewer equations than unknowns. Thus an in nite number of 
solutions can exist, with one or more of the unknowns dependent on the remaining unknowns. The left 



division method works for square and nonsquare A matrices. However, if A is not square, the left division 
method can give answers that might be misinterpreted. We will show how to interpret MATLAB results 
correctly. When there are fewer equations than unknowns, the left division method might give a solution 
with some of the unknowns set equal to zero, but this is not the general solution. An in nite number of 
solutions might exist even when the number of equations equals the number of unknowns. This can occur 
when |A| = 0. For such systems the left division method generates an error message warning us that the 
matrix A is singular. In such cases the pseudoinverse method x = pinv(A)*b gives one solution, the 
minimum norm solution. In cases where there are an in nite number of solutions, the rref function can be 
used to express some of the unknowns in terms of the remaining unknowns, whose values are arbitrary. 
An equation set can be underdetermined even though it has as many equations as unknowns. This can 
happen if some of the equations are not independent. Determining by hand whether all the equations are 
independent might not be easy, especially if the set has many equations, but it is easily done in MATLAB. 
 
Statistics and Histograms 
With MATLAB you can compute the mean (the average), the mode (the most frequently occurring value), 
and the median (the middle value) of a set of data. MATLAB provides the mean(x), mode(x), and median(x) 
functions to compute the mean, mode, and median of the data values stored in x, if x is a vector. However, 
if x is a matrix, a row vector is returned containing the mean (or mode or median) value of each column of 
x. These functions do not require the elements in x to be sorted in ascending or descending order. The way 
the data are spread around the mean can be described by a histogram plot. A histogram is a plot of the 
frequency of occurrence of data values versus the values themselves. It is a bar plot of the number of data 
values that occur within each range, with the bar centered in the middle of the range. To plot a histogram, 
you must group the data into subranges, called bins. The choice of the bin width and bin center can 
drastically change the shape of the histogram. If the number of data values is relatively small, the bin width 
cannot be small because some of the bins will contain no data and the resulting histogram might not 
usefully illustrate the distribution of the data. To obtain a histogram, rst sort the data values if they have has 
not yet been sorted (you can use the sort function here). Then choose the bin ranges and bin centers and 
count the number of values in each bin. Use the bar function to plot the number of values in each bin 
versus the bin centers as a bar chart. The function bar(x,y) creates a bar chart of y versus x. MATLAB also 
provides the hist command to generate a histogram. This command has several forms. Its basic form is 
hist(y), where y is a vector containing the data. This form aggregates the data into 10 bins evenly spaced 
between the minimum and maximum values in y. The second form is hist(y,n), where n is a user-speci ed 
scalar indicating the number of bins. The third form is hist(y,x), where x is a user-speci ed vector that 
determines the location of the bin centers; the bin widths are the distances between the centers. To ensure 
proper quality control, a thread manufacturer selects samples and tests them for breaking strength. 
Suppose that 20 thread samples are pulled until they break, and the breaking force is measured in newtons 
rounded off to integer values. The breaking force values recorded were 92, 94, 93, 96, 93, 94, 95, 96, 91, 
93, 95, 95, 95, 92, 93, 94, 91, 94, 92, and 93. Plot the histogram of the data. 
 
 
■ Solution 
Store the data in the vector y, which is shown in the following script le. Because there are six outcomes (91, 
92, 93, 94, 95, 96 N), we choose six bins. However, if you use hist(y,6), the bins will not be centered at 91, 
92, 93, 94, 95, and 96. So use the form   



 
hist(y,x), where x = 91:96. The following script le generates the histogram 
shown in Figure 7.1.1. 
% Thread breaking strength data for 20 tests. 
y = [92,94,93,96,93,94,95,96,91,93,... 
95,95,95,92,93,94,91,94,92,93]; 
% The six possible outcomes are 91,92,93,94,95,96. 
x = 91:96; 
hist(y,x),axis([90 97 0 6]),ylabel(‘Absolute Frequency’),... 
xlabel(‘Thread Strength (N)’),... 
title(‘Absolute Frequency Histogram for 20 Tests’) 
 
The absolute frequency is the number of times a particular outcome occurs. 
For example, in 20 tests these data show that a 95 occurred 4 times. The absolute frequency is 4, and its 
relative frequency is 4/20, or 20 percent of the time. When there is a large amount of data, you can avoid 
typing in every data value by rst aggregating the data. The following example shows how this is done using 
the ones function. The following data were generated by testing 100 thread samples. 



 
The number of times 91, 92, 93, 94, 95, or 96 N was measured is 13, 15, 22, 19, 17, and 14, respectively. 
 
% Thread strength data for 100 tests.  
y = [91*ones(1,13),92*ones(1,15),93*ones(1,22),... 
94*ones(1,19),95*ones(1,17),96*ones(1,14)]; 
x = 91:96; 
hist(y,x),ylabel(‘Absolute Frequency’),... 
xlabel(‘Thread Strength (N)’),... 
title(‘Absolute Frequency Histogram for 100 Tests’) 
 
The result appears in Figure 7.1.2. The hist function is somewhat limited in its ability to produce useful 
histograms. Unless all the outcome values are the same as the bin centers (as is the case with the thread 
examples), the graph produced by the hist function will not be satisfactory. This case occurs when you want 
to obtain a relative frequency histogram. In such cases you can use the bar function to generate the 
histogram. The following script le generates the relative frequency histogram for the 100 thread tests. Note 
that if you use the bar function, you must aggregate the data rst.  
 
% Relative frequency histogram using the bar function. 
tests = 100; 
y = [13,15,22,19,17,14]/tests; 
x = 91:96; 



bar(x,y),ylabel(‘Relative Frequency’),... 
xlabel(‘Thread Strength (N)’),... 
title(‘Relative Frequency Histogram for 100 Tests’) 
 
The result appears in Figure 7.1.3. The fourth, fifth, and sixth forms of the hist function do not generate a 
plot, but are used to compute the frequency counts and bin locations. The bar function can then be used to 
plot the histogram. The syntax of the fourth form is [z,x] = hist(y), where z is the returned vector containing 
the frequency count and x is the returned vector containing the bin locations. The fifth and sixth forms are  
 
[z,x] = hist(y,n) and [z,x] = hist(y,x).  
 
In the latter case the returned vector x is the same as the user-supplied vector. The following script le 
shows how the sixth form can be used to generate a relative frequency histogram for the thread example 
with 100 tests. 
tests = 100; 
y = [91*ones(1,13),92*ones(1,15),93*ones(1,22),... 
94*ones(1,19),95*ones(1,17),96*ones(1,14); 
 

 



 
x = 91:96; 
[z,x] = hist(y,x);bar(x,z/tests),... 
ylabel(‘Relative Frequency’),xlabel(‘Thread Strength(N)’),... 
title(‘Relative Frequency Histogram for 100 Tests’) 
 
The Normal Distribution 
Rolling a die is an example of a process whose possible outcomes are a limited set of numbers, namely, 
the integers from 1 to 6. For such processes the probability is a function of a discrete-valued variable, that 
is, a variable having a limited number of values. For example, Table 7.2.1 gives the measured heights of 
100 men 20 years of age. The heights were recorded to the nearest 1/2 in., so the height variable is 
discrete-valued. 
 
Scaled Frequency Histogram 
You can plot the data as a histogram using either the absolute or relative frequencies. However, another 
useful histogram uses data scaled so that the total area under the histogram.s rectangles is 1. This scaled 
frequency histogram is the absolute frequency histogram divided by the total area of that histogram. The 
area of each rectangle on the absolute frequency histogram equals the bin width times the absolute 
frequency for that bin. Because all the rectangles have the same width, the total area is the bin width times 
the sum of the absolute frequencies. The following M-file produces the scaled histogram shown in Figure 
7.2.1. 



 
% Absolute frequency data. 
y_abs=[1,0,0,0,2,4,5,4,8,11,12,10,9,8,7,5,4,4,3,1,1,0,1]; 
binwidth = 0.5; 
% Compute scaled frequency data. 
area = binwidth*sum(y_abs); 
y_scaled = y_abs/area; 

 
 



% De ne the bins. 
bins = 64:binwidth:75; 
% Plot the scaled histogram. 
bar(bins,y_scaled),... 
ylabel(‘Scaled Frequency’),xlabel(‘Height (in.)’) 
Because the total area under the scaled histogram is 1, the fractional area 
corresponding to a range of heights gives the probability that a randomly selected 
20-year-old man will have a height in that range. For example, the heights of the 
scaled histogram rectangles corresponding to heights of 67 through 69 in. are 
0.1, 0.08, 0.16, 0.22, and 0.24. Because the bin width is 0.5, the total area corresponding 
to these rectangles is (0.1_ 0.08 _ 0.16 _ 0.22 _ 0.24)(0.5) _ 0.4. 
Thus 40 percent of the heights lie between 67 and 69 in. 
You can use the cumsum function to calculate areas under the scaled 
frequency histogram and therefore to calculate probabilities. If x is a vector, 
cumsum(x) returns a vector the same length as x, whose elements are the sum 
of the previous elements. For example, if x =[2, 5, 3, 8], cumsum(x)= 
[2, 7, 10, 18]. If A is a matrix, cumsum(A) computes the cumulative sum 
of each row. The result is a matrix the same size as A. 
After running the previous script, the last element of cumsum(y_scaled)* 
binwidth is 1, which is the area under the scaled frequency histogram. To 
compute the probability of a height lying between 67 and 69 in. (that is, above the 
6th value up to the 11th value), type 
>>prob = cumsum(y_scaled)*binwidth; 
>>prob67_69 = prob(11)-prob(6) 
The result is prob67_69 = 0.4000, which agrees with our previous calculation of 40 percent. 
 
Continuous Approximation to the Scaled Histogram 
For processes having an in nite number of possible outcomes, the probability is a function of a continuous 
variable and is plotted as a curve rather than as rectangles. It is based on the same concept as the scaled 
histogram; that is, the total area under the curve is 1, and the fractional area gives the probability of 
occurrence of a speci c range of outcomes. A probability function that describes many processes is the 
normal or Gaussian function, which is shown in Figure 7.2.2. This function is also known as the bell-shaped 
curve. Outcomes that can be described by this function are said to be normally distributed. The normal 
probability function is a two-parameter function; one parameter, μ, is the mean of the outcomes, and the 
other parameter, μ, is the standard deviation. The mean μ locates the peak of the curve and is the most 
likely value to occur. The width, or spread, of the curve is described by the parameter σ. Sometimes the 
term variance is used to describe the spread of the curve. The variance is the square of the standard 
deviation σ. 



 

 
Random Number Generation 
We often do not have a simple probability distribution to describe the distribution of outcomes in many 
engineering applications. For example, the probability that a circuit consisting of many components will fail 
is a function of the number and the age of the components, but we often cannot obtain a function to 
describe the failure probability. In such cases we often resort to simulation to make predictions. The 
simulation program is executed many times, using a random set of numbers to represent the failure of one 
or more components, and the results are used to estimate the desired probability. 
 
Uniformly Distributed Numbers 
In a sequence of uniformly distributed random numbers, all values within a given interval are equally likely 
to occur. The MATLAB function rand generates random numbers uniformly distributed over the interval 
[0,1]. Type rand to obtain a single random number in the interval [0,1]. Typing rand again generates a 
different number because the MATLAB algorithm used for the rand function requires a .state. to start. 
MATLAB obtains this state from the computer.s CPU clock. Thus every time the rand function is used, a 
different result will be obtained. For example, 



rand 
ans = 
0.6161 
rand 
ans = 
0.5184 
 
Type rand(n) to obtain an nxn matrix of uniformly distributed random numbers in the interval [0, 1]. Type 
rand(m,n) to obtain an m x n matrix of random numbers. For example, to create a 1x100 vector y having 
100 random values in the interval [0, 1], type y = rand(1,100). Using the rand function this way is equivalent 
to typing rand 100 times. Even though there is a single call to the rand function, the rand functions 
calculation has the effect of using a different state to obtain each of the 100 numbers so that they will be 
random. Use Y = rand(m,n,p,...) to generate a multidimensional array Y having random elements. Typing 
rand(size(A)) produces an array of random entries that is the same size as A. 
 
For example, the following script makes a random choice between two equally probable alternatives. 
if rand < 0.5 
disp(‘heads’) 
else 
disp(‘tails’) 
end 
 
To compare the results of two or more simulations, sometimes you will need to generate the same 
sequence of random numbers each time the simulation runs. To generate the same sequence, you must 
use the same state each time. The current state s of the uniform number generator can be obtained by 
typing  
s = rand(‘twister’).  
This returns a vector containing the current state of the uniform generator. To set the state of the generator 
to s, type rand(‘twister’,s). Typing rand(‘twister’,0) resets the generator to its initial state. Typing 
rand(‘twister’,j), for integer j, resets the generator to state j. Typing rand(‘twister’,sum(100*clock)) resets 
the generator to a different state each time. Table 7.3.1 summarizes these functions. The name ‘twister’ 
refers to the speci c algorithm used by MA TLAB to generate random numbers. In MATLAB Version 4, 
‘seed’ was used instead of ‘twister’. In Versions 5 through 7.3, ‘state’ was used. Use ‘twister’ in Version 7.4 
and later. The following session shows how to obtain the same sequence every time rand is called. 
 
>>rand(‘twister’,0) 
>>rand 
ans = 
0.5488 
>>rand 
ans = 
0.7152 
>>rand(‘twister’,0) 
>>rand 
ans = 
0.5488 
>>rand 



ans = 
0.7152 
You need not start with the initial state to generate the same sequence. To show 
this, continue the above session as follows. 
>>s = rand(‘twister’); 
>>rand(‘twister’,s) 
>>rand 
ans = 
0.6028 
>>rand(‘twister’,s) 
>>rand 
ans = 
0.6028 
 

 
 
Interpolation 
Paired data might represent a cause and effect, or input-output relationship, such as the current produced 
in a resistor as a result of an applied voltage, or a time history, such as the temperature of an object as a 
function of time. Another type of paired data represents a pro le, such as a road pro le (which shows the 
height of the road along its length). In some applications we want to estimate a variable .s value between 
the data points. This process is called interpolation. In other cases we might need to estimate the variable.s 
value outside the given data range. This process is called extrapolation. Interpolation and extrapolation are 



greatly aided by plotting the data. Such plots, some perhaps using logarithmic axes, often help to discover 
a functional description of the data. Suppose we have the following temperature measurements, taken 
once an hour starting at 7:00 A.M. The measurements at 8 and 10 A.M. are missing for some reason, 
perhaps because of equipment malfunction. 
 

 

 
A plot of these data is shown in Figure 7.4.1 with the data points connected by dashed lines. If we need to 
estimate the temperature at 10 A.M., we can read the value from the dashed line that connects the data 
points at 9 and 11 A.M. From the plot we thus estimate the temperature at 8 A.M. to be 53_F and at 10 
A.M. to be 64_F. We have just performed linear interpolation on the data to obtain an estimate of the 
missing data. Linear interpolation is so named because it is equivalent to connecting the data points with a 
linear function (a straight line). Of course we have no reason to believe that the temperature follows the 
straight lines shown in the plot, and our estimate of 64_F will most likely be incorrect, but it might be close 
enough to be useful. Using straight lines to connect the data points is the simplest form of interpolation. 
Another function could be used if we have a good reason to do so. Later in this section we use polynomial 
functions to do the interpolation. 
Linear interpolation in MATLAB is obtained with the interp1 and interp2 functions. Suppose that x is a 
vector containing the independent variable data and that y is a vector containing the dependent variable 
data. If x_int is a vector containing the value or values of the independent variable at which we wish to 



estimate the dependent variable, then typing interp1(x,y,x_int) produces a vector the same size as x_int 
containing the interpolated values of y that correspond to x_int. For example, the following session 
produces an estimate of the temperatures at 8 and 10 A.M. from the preceding data. The vectors 
x and y contain the times and temperatures, respectively.  
>>x = [7, 9, 11, 12]; 
>>y = [49, 57, 71, 75]; 
>>x_int = [8, 10]; 
>>interp1(x,y,x_int) 
ans = 
53 
64 
 
You must keep in mind two restrictions when using the interp1 function. The values of the independent 
variable in the vector x must be in ascending order, and the values in the interpolation vector x_int must lie 
within the range of the values in x. Thus we cannot use the interp1 function to estimate the temperature at 
6 A.M., for example. The interp1 function can be used to interpolate in a table of values by de ning y to be a 
matrix instead of a vector. For example, suppose that we now have temperature measurements at three 
locations and the measurements at 8 and 10 A.M. are missing for all three locations. The data are as 
follows: 

 

 



this example we see that if the rst ar gument x in the interp1(x,y,x_int) function is a vector and the second 
argument y is a matrix, then the function interpolates between the rows of y and computes a matrix having 
the same number of columns as y and the same number of rows as the number of values in x_int. 
Note that we need not de ne two separate vectors x and y. Rather, we can de ne a single matrix that 
contains the entire table. For example, by defining the matrix temp to be the preceding table, the session 
will look like this: 
 
>>temp(:,1) = [7, 9, 11, 12]’; 
>>temp(:,2) = [49, 57, 71, 75]’; 
>>temp(:,3) = [52, 60, 73, 79]’; 
>>temp(:,4) = [54, 61, 75, 81]’; 
>>x_int = [8, 10]’; 
>>interp1(temp(:,1),temp(:,2:4),x_int) 
ans = 
53.0000 56.0000 57.5000 
64.0000 65.5000 68.0000 
 
Two-Dimensional Interpolation 

Now suppose that we have temperature measurements at four locations at 7 A.M. These locations are at 
the corners of a rectangle 1 mi wide and 2 mi long. Assigning a coordinate system origin (0,0) to the rst 
location, the coordinates of the other locations are (1, 0), (1, 2), and (0, 2); see Figure 7.4.2. The 
temperature measurements are shown in the gure. The temperature is a function of two 

 



variables, the coordinates x and y. MATLAB provides the interp2 function to interpolate functions of two 
variables. If the function is written as z _ f(x,y) and we wish to estimate the value of z for x _ xi and y _ yi, 
the syntax is 
 
interp2(x,y,z,x_i,y_i). 
 
Suppose we want to estimate the temperature at the point whose coordinates are (0.6, 1.5). Put the x 
coordinates in the vector x and the y coordinates in the vector y. Then put the temperature measurements 
in a matrix z such that going across a row represents an increase in x and going down a column represents 
an increase in y. The session to do this is as follows: 
 
>>x = [0,1]; 
>>y = [0,2]; 
>>z = [49,54;53,57] 
z = 
49 54 
53 57 
>>interp2(x,y,z,0.6,1.5) 
ans = 
54.5500 
Thus the estimated temperature is 54.55_F. 
The syntax of the interp1 and interp2 functions is summarized in Table 7.4.1. MATLAB also provides the 
interpn function for interpolating multidimensional arrays. 
 
Numerical Differentiation 

The derivative of a function can be interpreted graphically as the slope of the function. This interpretation 
leads to various methods for computing the derivative of a set of data. Figure 9.2.1 shows three data points 
that represent a function y(x). Recall that the de nition of the derivative is  

 

 



The success of numerical differentiation depends heavily on two factors: the spacing of the data points and 
the scatter present in the data due to measurement error. The greater the spacing, the more dif cult it is to 
estimate the derivative. We assume here that the spacing between the measurements is regular; that is, 
x3 -x2= x2 - x1=Δx. Suppose we want to estimate the derivative dy/dx at the point x2. The correct answer is 
the slope of the straight line passing through the point (x2, y2); but we do not have a second point on that 
line, so we cannot nd its slope. Therefore, we must estimate the slope by using nearby data points. One 
estimate can be obtained from the straight line labeled A in the figure. Its slope is 

 
This estimate of the derivative is called the backward difference estimate, and it is actually a better estimate 
of the derivative at x = x1 + (Δx)/2 than at x = x2. Another estimate can be obtained from the straight line 
labeled B. Its slope is 

 
This estimate is called the forward difference estimate, and it is a better estimate of the derivative at x = x2 
+ (Δx)_2 than at x = x2. Examining the plot, you might think that the average of these two slopes would 
provide a better estimate of the derivative at x = x2, because the average tends to cancel out the effects of 
measurement error. The average of mA and mB is  

 
This is the slope of the line labeled C, which connects the rst and third data points. This estimate of the 
derivative is called the central difference estimate 
 
First-Order Differential Equations 
In this section, we introduce numerical methods for solving rst-order dif ferential equations. In Section 9.4 
we show how to extend the techniques to higherorder equations. An ordinary differential equation (ODE) is 
an equation containing ordinary derivatives of the dependent variable. An equation containing partial 
derivatives with respect to two or more independent variables is a partial differential equation (PDE). 
Solution methods for PDEs are an advanced topic, and we will not treat them in this text. In this chapter we 
limit ourselves to initial-value problems (IVPs). These are problems where the ODE must be solved for a 
given set of values speci ed at some initial time, which is usually taken to be t 0. Other types of ODE 
problems are discussed at the end of Section 9.6. It will be convenient to use the following abbreviated .dot. 
notation for derivatives. 

 
The free response of a differential equation, sometimes called the homogeneous solution or the initial 
response, is the solution for the case where there is no forcing function. The free response depends on the 
initial conditions. The forced response is the solution due to the forcing function when the initial conditions 
are zero. For linear differential equations, the complete or total response is the sum of the free and the 
forced responses. Nonlinear ODEs can be recognized by the fact that the dependent variable or its 
derivatives appear raised to a power or in a transcendental function. For example, the equations 

 are nonlinear. 
 



The essence of a numerical method is to convert the differential equation into a difference equation that 
can be programmed. Numerical algorithms differ partly as a result of the speci c procedure used to obtain 
the dif ference equations. It is important to understand the concept of .step size. and its effects on solution 
accuracy. To provide a simple introduction to these issues, we consider the simplest numerical methods, 
the Euler method and the predictor-corrector method.  
 
The Euler Method 

The Euler method is the simplest algorithm for numerical solution of a differential equation. Consider the 
equations  

 



 



 
  



 
 



 

 



 
 

 
Higher-Order Differential Equations 
To use the ODE solvers to solve an equation higher than order 1, you must rst write the equation as a set 
of rst-order equations. This is easily done. Consider the second-order equation. 

 

 

 



 

 
 
 
 
 


