
UNIT IV APPLICATION OF MATLAB 10 hrs

Linear algebric equations – elementary solution method – matrix method for linear equation – Cramer’s
method – Statistics, Histogram and probability – normal distribution – random number generation –
Interpolation – Analytical solution to differential equations – Numerical methods for differential equations.

Linear algebraic equations such as

 5x – 2y = 13
 7x + 3y = 24

occur in many engineering applications. For example, electrical engineers use them to predict the power
requirements for circuits; civil, mechanical, and aerospace engineers use them to design structures and
machines; chemical engineers use them to compute material balances in chemical processes; and
industrial engineers apply them to design schedules and operations. The examples and homework
problems in this chapter explore some of these applications. Linear algebraic equations can be solved by
hand using pencil and paper, by calculator, or with software such as MATLAB. The choice depends on the
circumstances. For equations with only two unknown variables, hand solution is easy and adequate. Some
calculators can solve equation sets that have many variables. However, the greatest power and exibility is
obtained by using software For example, MATLAB can obtain and plot equation solutions as we vary one or
more parameters. Systematic solution methods have been developed for sets of linear equations. The
conditions for the existence and uniqueness of solutions are then introduced.

Matrix Methods for Linear Equations

Sets of linear algebraic equations can be expressed as a single equation, using matrix notation. This
standard and compact form is useful for expressing solutions and for developing software applications with
an arbitrary number of variables. In this application, a vector is taken to be a column vector unless
otherwise specified. Matrix notation enables us to represent multiple equations as a single matrix equation.
For example, consider the following set.

 2x1 + 9x2 = 5
 3x1 – 4x2 = 7

This set can be expressed in vector-matrix form as

which can be represented in the following compact form

 Ax = b (1)

where we have de ned the following matrices and vectors:

In general, the set of m equations in n unknowns can be expressed in the form Equation (1), where A is m
x n, x is n x 1, and b is m x 1.

Matrix Inverse
The solution of the scalar equation ax = b is x = b/a if a ≠ 0. The division operation of scalar algebra has an
analogous operation in matrix algebra. For example, to solve the matrix equation (8.1.1) for x, we must
somehow .divide. b by A The procedure for doing this is developed from the concept of a matrix inverse.
The inverse of a matrix A is denoted by A-1 and has the property that

A-1 A = AA-1 = I

where I is the identity matrix. Using this property, we multiply both sides of Equation (1) from the left by A_1
to obtain A_1Ax _A_1b. Because A_1Ax _Ix _x,

The inverse of a matrix A is defined only if A is square and nonsingular. A matrix is singular if its
determinant |A| is zero. If A is singular, then a unique solution does not exist. The MATLAB functions inv(A)
and det(A) compute the inverse and the determinant of the matrix A. If the inv(A) function is applied to a
singular matrix, MATLAB will issue a warning to that effect. An ill-conditioned set of equations is a set that
is close to being singular. The ill-conditioned status depends on the accuracy with which the solution
calculations are made. When internal numerical accuracy used by MATLAB is insufficient to obtain a
solution, it prints the message warning that the matrix is close to singular and that the results might be
inaccurate. For a 2 x 2 matrix A,

The solution form x = A-1b is rarely applied in practice to obtain numerical solutions to sets of many
equations, because calculation of the matrix inverse is likely to introduce greater numerical inaccuracy than
the left division method to be introduced.

Existence and Uniqueness of Solutions

The matrix inverse method will warn us if a unique solution does not exist, but it does not tell us whether
there is no solution or an infinite number of solutions. In addition, the method is limited to cases where the
matrix A is square, that is, cases where the number of equations equals the number of unknowns. For this
reason we now introduce a method that allows us to determine easily whether an equation set has a
solution and whether it is unique. The method requires the concept of the rank of a matrix.
Consider the 3 x 3 determinant

If we eliminate one row and one column in the determinant, we are left with a 2 x 2 determinant. Depending
on which row and column we choose to eliminate, there are nine possible 2 x 2 determinants we can
obtain. These are called subdeterminants. For example, if we eliminate the second row and third column,
we obtain

Subdeterminants are used to de ne the rank of a matrix. The definition of matrix rank is as follows.

Definition of Matrix Rank.
An m x n matrix A has a rank r ≥ 1 if and only if |A| contains a nonzero r x r determinant and every square
subdeterminant with r + 1 or more rows is zero. For example, the rank of A is 2 because |A| = 0 while |A|
contains at least one nonzero 2 x 2 subdeterminant. To determine the rank of a matrix A in MATLAB, type
rank(A). If A is n x n, its rank is n if det(A) = 0. We can use the following test to determine if a solution exists
to Ax =b and whether it is unique. The test requires that we rst form the augmented matrix [A b].

Existence and Uniqueness of Solutions.

The set Ax = b with m equations and n unknowns has solutions if and only if (1) rank(A) = rank([A
b]). Let r = rank(A). If condition (1) is satis ed and if r =n, then the solution is unique. If condition (1) is satis
ed but r < n, there are an in nite number of solutions, and r unknown variables can be expressed as linear
combinations of the other n _ r unknown variables, whose values are arbitrary.

Homogeneous case.
The homogeneous set Ax = 0 is a special case in which b = 0. For this case, rank(A) = rank([A b]) always,
and thus the set always has the trivial solution x =0. A nonzero solution, in which at least one unknown is
nonzero, exists if and only if rank(A) < n. If m < n, the homogeneous set always has a nonzero solution.
This test implies that if A is square and of dimension n x n, then rank([A b]) = rank(A), and a unique
solution exists for any b if rank(A) = n.

The Left Division Method
MATLAB provides the left division method for solving the equation set Ax = b. This method is based on
Gauss elimination. To use the left division method to solve for x, you type x = A\b. If |A| = 0 or if the number
of equations does not equal the number of unknowns, then you need to use the other methods to be
presented later.

For the solution x = A_1b, vector x is proportional to the vector b. We can use this linearity property to
obtain a more generally useful algebraic solution in cases where the right-hand sides are all multiplied by
the same scalar. For example, suppose the matrix equation is Ay = bc, where c is a scalar. The solution
is y = A_1bc = xc. Thus if we obtain the solution to Ax = b, the solution to Ay = bc is given by y = xc

Underdetermined Systems

An underdetermined system does not contain enough information to determine all the unknown
variables, usually but not always because it has fewer equations than unknowns. Thus an in nite number of
solutions can exist, with one or more of the unknowns dependent on the remaining unknowns. The left

division method works for square and nonsquare A matrices. However, if A is not square, the left division
method can give answers that might be misinterpreted. We will show how to interpret MATLAB results
correctly. When there are fewer equations than unknowns, the left division method might give a solution
with some of the unknowns set equal to zero, but this is not the general solution. An in nite number of
solutions might exist even when the number of equations equals the number of unknowns. This can occur
when |A| = 0. For such systems the left division method generates an error message warning us that the
matrix A is singular. In such cases the pseudoinverse method x = pinv(A)*b gives one solution, the
minimum norm solution. In cases where there are an in nite number of solutions, the rref function can be
used to express some of the unknowns in terms of the remaining unknowns, whose values are arbitrary.
An equation set can be underdetermined even though it has as many equations as unknowns. This can
happen if some of the equations are not independent. Determining by hand whether all the equations are
independent might not be easy, especially if the set has many equations, but it is easily done in MATLAB.

Statistics and Histograms
With MATLAB you can compute the mean (the average), the mode (the most frequently occurring value),
and the median (the middle value) of a set of data. MATLAB provides the mean(x), mode(x), and median(x)
functions to compute the mean, mode, and median of the data values stored in x, if x is a vector. However,
if x is a matrix, a row vector is returned containing the mean (or mode or median) value of each column of
x. These functions do not require the elements in x to be sorted in ascending or descending order. The way
the data are spread around the mean can be described by a histogram plot. A histogram is a plot of the
frequency of occurrence of data values versus the values themselves. It is a bar plot of the number of data
values that occur within each range, with the bar centered in the middle of the range. To plot a histogram,
you must group the data into subranges, called bins. The choice of the bin width and bin center can
drastically change the shape of the histogram. If the number of data values is relatively small, the bin width
cannot be small because some of the bins will contain no data and the resulting histogram might not
usefully illustrate the distribution of the data. To obtain a histogram, rst sort the data values if they have has
not yet been sorted (you can use the sort function here). Then choose the bin ranges and bin centers and
count the number of values in each bin. Use the bar function to plot the number of values in each bin
versus the bin centers as a bar chart. The function bar(x,y) creates a bar chart of y versus x. MATLAB also
provides the hist command to generate a histogram. This command has several forms. Its basic form is
hist(y), where y is a vector containing the data. This form aggregates the data into 10 bins evenly spaced
between the minimum and maximum values in y. The second form is hist(y,n), where n is a user-speci ed
scalar indicating the number of bins. The third form is hist(y,x), where x is a user-speci ed vector that
determines the location of the bin centers; the bin widths are the distances between the centers. To ensure
proper quality control, a thread manufacturer selects samples and tests them for breaking strength.
Suppose that 20 thread samples are pulled until they break, and the breaking force is measured in newtons
rounded off to integer values. The breaking force values recorded were 92, 94, 93, 96, 93, 94, 95, 96, 91,
93, 95, 95, 95, 92, 93, 94, 91, 94, 92, and 93. Plot the histogram of the data.

■ Solution
Store the data in the vector y, which is shown in the following script le. Because there are six outcomes (91,
92, 93, 94, 95, 96 N), we choose six bins. However, if you use hist(y,6), the bins will not be centered at 91,
92, 93, 94, 95, and 96. So use the form

hist(y,x), where x = 91:96. The following script le generates the histogram
shown in Figure 7.1.1.
% Thread breaking strength data for 20 tests.
y = [92,94,93,96,93,94,95,96,91,93,...
95,95,95,92,93,94,91,94,92,93];
% The six possible outcomes are 91,92,93,94,95,96.
x = 91:96;
hist(y,x),axis([90 97 0 6]),ylabel(‘Absolute Frequency’),...
xlabel(‘Thread Strength (N)’),...
title(‘Absolute Frequency Histogram for 20 Tests’)

The absolute frequency is the number of times a particular outcome occurs.
For example, in 20 tests these data show that a 95 occurred 4 times. The absolute frequency is 4, and its
relative frequency is 4/20, or 20 percent of the time. When there is a large amount of data, you can avoid
typing in every data value by rst aggregating the data. The following example shows how this is done using
the ones function. The following data were generated by testing 100 thread samples.

The number of times 91, 92, 93, 94, 95, or 96 N was measured is 13, 15, 22, 19, 17, and 14, respectively.

% Thread strength data for 100 tests.
y = [91*ones(1,13),92*ones(1,15),93*ones(1,22),...
94*ones(1,19),95*ones(1,17),96*ones(1,14)];
x = 91:96;
hist(y,x),ylabel(‘Absolute Frequency’),...
xlabel(‘Thread Strength (N)’),...
title(‘Absolute Frequency Histogram for 100 Tests’)

The result appears in Figure 7.1.2. The hist function is somewhat limited in its ability to produce useful
histograms. Unless all the outcome values are the same as the bin centers (as is the case with the thread
examples), the graph produced by the hist function will not be satisfactory. This case occurs when you want
to obtain a relative frequency histogram. In such cases you can use the bar function to generate the
histogram. The following script le generates the relative frequency histogram for the 100 thread tests. Note
that if you use the bar function, you must aggregate the data rst.

% Relative frequency histogram using the bar function.
tests = 100;
y = [13,15,22,19,17,14]/tests;
x = 91:96;

bar(x,y),ylabel(‘Relative Frequency’),...
xlabel(‘Thread Strength (N)’),...
title(‘Relative Frequency Histogram for 100 Tests’)

The result appears in Figure 7.1.3. The fourth, fifth, and sixth forms of the hist function do not generate a
plot, but are used to compute the frequency counts and bin locations. The bar function can then be used to
plot the histogram. The syntax of the fourth form is [z,x] = hist(y), where z is the returned vector containing
the frequency count and x is the returned vector containing the bin locations. The fifth and sixth forms are

[z,x] = hist(y,n) and [z,x] = hist(y,x).

In the latter case the returned vector x is the same as the user-supplied vector. The following script le
shows how the sixth form can be used to generate a relative frequency histogram for the thread example
with 100 tests.
tests = 100;
y = [91*ones(1,13),92*ones(1,15),93*ones(1,22),...
94*ones(1,19),95*ones(1,17),96*ones(1,14);

x = 91:96;
[z,x] = hist(y,x);bar(x,z/tests),...
ylabel(‘Relative Frequency’),xlabel(‘Thread Strength(N)’),...
title(‘Relative Frequency Histogram for 100 Tests’)

The Normal Distribution
Rolling a die is an example of a process whose possible outcomes are a limited set of numbers, namely,
the integers from 1 to 6. For such processes the probability is a function of a discrete-valued variable, that
is, a variable having a limited number of values. For example, Table 7.2.1 gives the measured heights of
100 men 20 years of age. The heights were recorded to the nearest 1/2 in., so the height variable is
discrete-valued.

Scaled Frequency Histogram
You can plot the data as a histogram using either the absolute or relative frequencies. However, another
useful histogram uses data scaled so that the total area under the histogram.s rectangles is 1. This scaled
frequency histogram is the absolute frequency histogram divided by the total area of that histogram. The
area of each rectangle on the absolute frequency histogram equals the bin width times the absolute
frequency for that bin. Because all the rectangles have the same width, the total area is the bin width times
the sum of the absolute frequencies. The following M-file produces the scaled histogram shown in Figure
7.2.1.

% Absolute frequency data.
y_abs=[1,0,0,0,2,4,5,4,8,11,12,10,9,8,7,5,4,4,3,1,1,0,1];
binwidth = 0.5;
% Compute scaled frequency data.
area = binwidth*sum(y_abs);
y_scaled = y_abs/area;

% De ne the bins.
bins = 64:binwidth:75;
% Plot the scaled histogram.
bar(bins,y_scaled),...
ylabel(‘Scaled Frequency’),xlabel(‘Height (in.)’)
Because the total area under the scaled histogram is 1, the fractional area
corresponding to a range of heights gives the probability that a randomly selected
20-year-old man will have a height in that range. For example, the heights of the
scaled histogram rectangles corresponding to heights of 67 through 69 in. are
0.1, 0.08, 0.16, 0.22, and 0.24. Because the bin width is 0.5, the total area corresponding
to these rectangles is (0.1_ 0.08 _ 0.16 _ 0.22 _ 0.24)(0.5) _ 0.4.
Thus 40 percent of the heights lie between 67 and 69 in.
You can use the cumsum function to calculate areas under the scaled
frequency histogram and therefore to calculate probabilities. If x is a vector,
cumsum(x) returns a vector the same length as x, whose elements are the sum
of the previous elements. For example, if x =[2, 5, 3, 8], cumsum(x)=
[2, 7, 10, 18]. If A is a matrix, cumsum(A) computes the cumulative sum
of each row. The result is a matrix the same size as A.
After running the previous script, the last element of cumsum(y_scaled)*
binwidth is 1, which is the area under the scaled frequency histogram. To
compute the probability of a height lying between 67 and 69 in. (that is, above the
6th value up to the 11th value), type
>>prob = cumsum(y_scaled)*binwidth;
>>prob67_69 = prob(11)-prob(6)
The result is prob67_69 = 0.4000, which agrees with our previous calculation of 40 percent.

Continuous Approximation to the Scaled Histogram
For processes having an in nite number of possible outcomes, the probability is a function of a continuous
variable and is plotted as a curve rather than as rectangles. It is based on the same concept as the scaled
histogram; that is, the total area under the curve is 1, and the fractional area gives the probability of
occurrence of a speci c range of outcomes. A probability function that describes many processes is the
normal or Gaussian function, which is shown in Figure 7.2.2. This function is also known as the bell-shaped
curve. Outcomes that can be described by this function are said to be normally distributed. The normal
probability function is a two-parameter function; one parameter, μ, is the mean of the outcomes, and the
other parameter, μ, is the standard deviation. The mean μ locates the peak of the curve and is the most
likely value to occur. The width, or spread, of the curve is described by the parameter σ. Sometimes the
term variance is used to describe the spread of the curve. The variance is the square of the standard
deviation σ.

Random Number Generation
We often do not have a simple probability distribution to describe the distribution of outcomes in many
engineering applications. For example, the probability that a circuit consisting of many components will fail
is a function of the number and the age of the components, but we often cannot obtain a function to
describe the failure probability. In such cases we often resort to simulation to make predictions. The
simulation program is executed many times, using a random set of numbers to represent the failure of one
or more components, and the results are used to estimate the desired probability.

Uniformly Distributed Numbers
In a sequence of uniformly distributed random numbers, all values within a given interval are equally likely
to occur. The MATLAB function rand generates random numbers uniformly distributed over the interval
[0,1]. Type rand to obtain a single random number in the interval [0,1]. Typing rand again generates a
different number because the MATLAB algorithm used for the rand function requires a .state. to start.
MATLAB obtains this state from the computer.s CPU clock. Thus every time the rand function is used, a
different result will be obtained. For example,

rand
ans =
0.6161
rand
ans =
0.5184

Type rand(n) to obtain an nxn matrix of uniformly distributed random numbers in the interval [0, 1]. Type
rand(m,n) to obtain an m x n matrix of random numbers. For example, to create a 1x100 vector y having
100 random values in the interval [0, 1], type y = rand(1,100). Using the rand function this way is equivalent
to typing rand 100 times. Even though there is a single call to the rand function, the rand functions
calculation has the effect of using a different state to obtain each of the 100 numbers so that they will be
random. Use Y = rand(m,n,p,...) to generate a multidimensional array Y having random elements. Typing
rand(size(A)) produces an array of random entries that is the same size as A.

For example, the following script makes a random choice between two equally probable alternatives.
if rand < 0.5
disp(‘heads’)
else
disp(‘tails’)
end

To compare the results of two or more simulations, sometimes you will need to generate the same
sequence of random numbers each time the simulation runs. To generate the same sequence, you must
use the same state each time. The current state s of the uniform number generator can be obtained by
typing
s = rand(‘twister’).
This returns a vector containing the current state of the uniform generator. To set the state of the generator
to s, type rand(‘twister’,s). Typing rand(‘twister’,0) resets the generator to its initial state. Typing
rand(‘twister’,j), for integer j, resets the generator to state j. Typing rand(‘twister’,sum(100*clock)) resets
the generator to a different state each time. Table 7.3.1 summarizes these functions. The name ‘twister’
refers to the speci c algorithm used by MA TLAB to generate random numbers. In MATLAB Version 4,
‘seed’ was used instead of ‘twister’. In Versions 5 through 7.3, ‘state’ was used. Use ‘twister’ in Version 7.4
and later. The following session shows how to obtain the same sequence every time rand is called.

>>rand(‘twister’,0)
>>rand
ans =
0.5488
>>rand
ans =
0.7152
>>rand(‘twister’,0)
>>rand
ans =
0.5488
>>rand

ans =
0.7152
You need not start with the initial state to generate the same sequence. To show
this, continue the above session as follows.
>>s = rand(‘twister’);
>>rand(‘twister’,s)
>>rand
ans =
0.6028
>>rand(‘twister’,s)
>>rand
ans =
0.6028

Interpolation
Paired data might represent a cause and effect, or input-output relationship, such as the current produced
in a resistor as a result of an applied voltage, or a time history, such as the temperature of an object as a
function of time. Another type of paired data represents a pro le, such as a road pro le (which shows the
height of the road along its length). In some applications we want to estimate a variable .s value between
the data points. This process is called interpolation. In other cases we might need to estimate the variable.s
value outside the given data range. This process is called extrapolation. Interpolation and extrapolation are

greatly aided by plotting the data. Such plots, some perhaps using logarithmic axes, often help to discover
a functional description of the data. Suppose we have the following temperature measurements, taken
once an hour starting at 7:00 A.M. The measurements at 8 and 10 A.M. are missing for some reason,
perhaps because of equipment malfunction.

A plot of these data is shown in Figure 7.4.1 with the data points connected by dashed lines. If we need to
estimate the temperature at 10 A.M., we can read the value from the dashed line that connects the data
points at 9 and 11 A.M. From the plot we thus estimate the temperature at 8 A.M. to be 53_F and at 10
A.M. to be 64_F. We have just performed linear interpolation on the data to obtain an estimate of the
missing data. Linear interpolation is so named because it is equivalent to connecting the data points with a
linear function (a straight line). Of course we have no reason to believe that the temperature follows the
straight lines shown in the plot, and our estimate of 64_F will most likely be incorrect, but it might be close
enough to be useful. Using straight lines to connect the data points is the simplest form of interpolation.
Another function could be used if we have a good reason to do so. Later in this section we use polynomial
functions to do the interpolation.
Linear interpolation in MATLAB is obtained with the interp1 and interp2 functions. Suppose that x is a
vector containing the independent variable data and that y is a vector containing the dependent variable
data. If x_int is a vector containing the value or values of the independent variable at which we wish to

estimate the dependent variable, then typing interp1(x,y,x_int) produces a vector the same size as x_int
containing the interpolated values of y that correspond to x_int. For example, the following session
produces an estimate of the temperatures at 8 and 10 A.M. from the preceding data. The vectors
x and y contain the times and temperatures, respectively.
>>x = [7, 9, 11, 12];
>>y = [49, 57, 71, 75];
>>x_int = [8, 10];
>>interp1(x,y,x_int)
ans =
53
64

You must keep in mind two restrictions when using the interp1 function. The values of the independent
variable in the vector x must be in ascending order, and the values in the interpolation vector x_int must lie
within the range of the values in x. Thus we cannot use the interp1 function to estimate the temperature at
6 A.M., for example. The interp1 function can be used to interpolate in a table of values by de ning y to be a
matrix instead of a vector. For example, suppose that we now have temperature measurements at three
locations and the measurements at 8 and 10 A.M. are missing for all three locations. The data are as
follows:

this example we see that if the rst ar gument x in the interp1(x,y,x_int) function is a vector and the second
argument y is a matrix, then the function interpolates between the rows of y and computes a matrix having
the same number of columns as y and the same number of rows as the number of values in x_int.
Note that we need not de ne two separate vectors x and y. Rather, we can de ne a single matrix that
contains the entire table. For example, by defining the matrix temp to be the preceding table, the session
will look like this:

>>temp(:,1) = [7, 9, 11, 12]’;
>>temp(:,2) = [49, 57, 71, 75]’;
>>temp(:,3) = [52, 60, 73, 79]’;
>>temp(:,4) = [54, 61, 75, 81]’;
>>x_int = [8, 10]’;
>>interp1(temp(:,1),temp(:,2:4),x_int)
ans =
53.0000 56.0000 57.5000
64.0000 65.5000 68.0000

Two-Dimensional Interpolation

Now suppose that we have temperature measurements at four locations at 7 A.M. These locations are at
the corners of a rectangle 1 mi wide and 2 mi long. Assigning a coordinate system origin (0,0) to the rst
location, the coordinates of the other locations are (1, 0), (1, 2), and (0, 2); see Figure 7.4.2. The
temperature measurements are shown in the gure. The temperature is a function of two

variables, the coordinates x and y. MATLAB provides the interp2 function to interpolate functions of two
variables. If the function is written as z _ f(x,y) and we wish to estimate the value of z for x _ xi and y _ yi,
the syntax is

interp2(x,y,z,x_i,y_i).

Suppose we want to estimate the temperature at the point whose coordinates are (0.6, 1.5). Put the x
coordinates in the vector x and the y coordinates in the vector y. Then put the temperature measurements
in a matrix z such that going across a row represents an increase in x and going down a column represents
an increase in y. The session to do this is as follows:

>>x = [0,1];
>>y = [0,2];
>>z = [49,54;53,57]
z =
49 54
53 57
>>interp2(x,y,z,0.6,1.5)
ans =
54.5500
Thus the estimated temperature is 54.55_F.
The syntax of the interp1 and interp2 functions is summarized in Table 7.4.1. MATLAB also provides the
interpn function for interpolating multidimensional arrays.

Numerical Differentiation

The derivative of a function can be interpreted graphically as the slope of the function. This interpretation
leads to various methods for computing the derivative of a set of data. Figure 9.2.1 shows three data points
that represent a function y(x). Recall that the de nition of the derivative is

The success of numerical differentiation depends heavily on two factors: the spacing of the data points and
the scatter present in the data due to measurement error. The greater the spacing, the more dif cult it is to
estimate the derivative. We assume here that the spacing between the measurements is regular; that is,
x3 -x2= x2 - x1=Δx. Suppose we want to estimate the derivative dy/dx at the point x2. The correct answer is
the slope of the straight line passing through the point (x2, y2); but we do not have a second point on that
line, so we cannot nd its slope. Therefore, we must estimate the slope by using nearby data points. One
estimate can be obtained from the straight line labeled A in the figure. Its slope is

This estimate of the derivative is called the backward difference estimate, and it is actually a better estimate
of the derivative at x = x1 + (Δx)/2 than at x = x2. Another estimate can be obtained from the straight line
labeled B. Its slope is

This estimate is called the forward difference estimate, and it is a better estimate of the derivative at x = x2
+ (Δx)_2 than at x = x2. Examining the plot, you might think that the average of these two slopes would
provide a better estimate of the derivative at x = x2, because the average tends to cancel out the effects of
measurement error. The average of mA and mB is

This is the slope of the line labeled C, which connects the rst and third data points. This estimate of the
derivative is called the central difference estimate

First-Order Differential Equations
In this section, we introduce numerical methods for solving rst-order dif ferential equations. In Section 9.4
we show how to extend the techniques to higherorder equations. An ordinary differential equation (ODE) is
an equation containing ordinary derivatives of the dependent variable. An equation containing partial
derivatives with respect to two or more independent variables is a partial differential equation (PDE).
Solution methods for PDEs are an advanced topic, and we will not treat them in this text. In this chapter we
limit ourselves to initial-value problems (IVPs). These are problems where the ODE must be solved for a
given set of values speci ed at some initial time, which is usually taken to be t 0. Other types of ODE
problems are discussed at the end of Section 9.6. It will be convenient to use the following abbreviated .dot.
notation for derivatives.

The free response of a differential equation, sometimes called the homogeneous solution or the initial
response, is the solution for the case where there is no forcing function. The free response depends on the
initial conditions. The forced response is the solution due to the forcing function when the initial conditions
are zero. For linear differential equations, the complete or total response is the sum of the free and the
forced responses. Nonlinear ODEs can be recognized by the fact that the dependent variable or its
derivatives appear raised to a power or in a transcendental function. For example, the equations

 are nonlinear.

The essence of a numerical method is to convert the differential equation into a difference equation that
can be programmed. Numerical algorithms differ partly as a result of the speci c procedure used to obtain
the dif ference equations. It is important to understand the concept of .step size. and its effects on solution
accuracy. To provide a simple introduction to these issues, we consider the simplest numerical methods,
the Euler method and the predictor-corrector method.

The Euler Method

The Euler method is the simplest algorithm for numerical solution of a differential equation. Consider the
equations

Higher-Order Differential Equations
To use the ODE solvers to solve an equation higher than order 1, you must rst write the equation as a set
of rst-order equations. This is easily done. Consider the second-order equation.

