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COMPUTER ARITHMETIC 

Introduction: 

Data is manipulated by using the arithmetic instructions in digital computers. 

Data is manipulated to produce results necessary to give solution for the computation 

problems. The Addition, subtraction, multiplication and division are the four basic 

arithmetic operations. If we want then we can derive other operations by using these 

four operations. To execute arithmetic operations there is a separate section called 

arithmetic processing unit in central processing unit. The arithmetic instructions are 

performed generally on binary or decimal data. Fixed-point numbers are used to 

represent integers or fractions. We can have signed or unsigned negative numbers. 

Fixed-point addition is the simplest arithmetic operation. If we want to solve a problem 

then we use a sequence of well-defined steps. These steps are collectively called 

algorithm. 

  Data types  

� Fixed-point binary  

� Signed-magnitude representation ‹ 

� Signed-2’s complement representation „ 

� Floating-point binary „ 

� Binary-coded decimal (BCD) 

Addition and Subtraction 

There are three ways of representing negative fixed-point binary numbers:  

Signed-magnitude, signed-l's complement, or signed-2's complement. Most computers 

use the signed-2's complement representation when performing arithmetic operations 

with integers.  For floating-point operations, most computers use the signed-magnitude 

representation for the mantissa. 

 



 

Addition and Subtraction with Signed-Magnitude Data 

Where the signed numbers are added or subtracted, we find that there are eight 

different conditions to consider, depending on the sign of the numbers and the operation 

performed. These conditions are listed in the first column of Table 2.1. The other 

columns in the table show the actual operation to be performed with the magnitude of 

the numbers. The last column is needed to present a negative zero. In other words, 

when two equal numbers are subtracted, the result should be +0 not -0. The algorithms 

for addition and subtraction are derived from the table and can be stated as follows 

Table 2.1: Addition and Subtraction of Signed-Magnitude Numbers 

Operation Add Magnitudes Subtract Magnitudes 
  When A > B When A < B When A = B 

(+ A) + (+ B) +(A + B)    
(+ A) + (– B)  + (A – B) – (B – A) + (A – B) 

(– A) + (+ B)  – (A – B) + (B – A) + (A – B) 
(– A) + (– B) – (A + B)    
(+ A) – (+ B)  + (A – B) – (B – A) + (A – B) 
(+ A) – (– B) +(A + B)    
(– A) – (+ B) – (A + B)    
(– A) – (– B)  – (A – B) + (B – A) + (A – B) 

 
When the signs of A and B are same, add the two magnitudes and attach the 

sign of result is that of A. When the signs of A and B are not same, compare the 

magnitudes and subtract the smaller number from the larger. Choose the sign of the 

result to be the same as A, if A > B or the complement of the sign of A if A < B. If the 

two magnitudes are equal, subtract B from A and make the sign of the result will be 

positive. 

 

HARDWARE IMPLEMENTATION:- 

First, a parallel-adder is needed to perform the micro operation A + B . Second, a 

comparator circuit is needed to establish if A > B, A = B, or A < B. Third, two parallel-

subtractor circuits are needed to perform the micro operations A - B and B - A. The sign 

relationship can be determined from an exclusive OR gate with A, and B, as inputs. 

 



 

Fig. 2.1 Hardware for signed magnitude addition and subtraction 

block diagram of the hardware for implementing the addition and subtraction operations. 

It consists of registers A and B and sign flip-flops A, and B, . Subtraction is done by 

adding A to the 2' s complement of B. The output carry is transferred to flip-flop E, 

where it can be checked to determine the relative magnitudes of the two numbers. The 

add-overflow flip-flop AVF holds the overflow bit when A and B are added. The A 

register provides other microoperations that may be needed when we specify the 

sequence of steps in the algorithm. 

Description 

AS Sign of A , BS Sign of B ,AS & A Accumulator , AVF Overflow bit for A + B  

 E Output carry for parallel adder 

Data representation Signed magnitude – consists of the magnitude and negative sign 

(sign bit in binary, ‘0’ for positive and ‘1’ for negative) 

 – E.g. +14 = 0 0001110, ‐14= 1 0001110 

 Signed 1’s complement – leaving out the sign bit, convert all 1’s to 0’s and 0’s to 1’s in 

the signed magnitude form of the data 

 – E.g. ‐14 = 1 1110001  

Signed 2’s complement – Add 1 to signed 1’s complement representation of the data – 

E.g. ‐14 = 1 1110010 

 

 



Hardware algorithm: 

 

 

Fig.2.2 Flowchart for add and subtract operations 

Signed magnitude addition and subtraction 

 – For an add operation, identical signs dictate that the magnitudes be added, 

different signs require that the magnitudes be subtracted  

– For subtraction operation, different signs dictate that magnitudes be added, 

identical signs require that magnitudes be subtracted 

 AVF – Add‐overflow flip‐flop holds the overflow bit when A and B are added 

 Addition of A and B is done through parallel adder 

 



2’s complement addition and subtraction: 

  

Fig. 2.3  Addition and subtraction of numbers in 2’s complement representation 

 

Fig.2.4 Block diagram of hardware for signed 2’s complement addition and 

subtraction 



 

Fig.2.5 Algorithm for signed 2’s complement addition and subtraction  

Multiplication Algorithm: 

A binary example: 

 

 

 

 

Fig.2.6 Block diagram of hardware for multiply operation 

#of bits in multiplier 

Multiplier 

Partial product 



  

Fig.2.7 Flow chart for multiply operation 

Table 2.2 Numerical example for Binary multiplier  

 



Booth multiplication algorithm : 

A= 00011 B= 00111 => A*B= A*(7) =A* (8-1) =A*8-A*1 

Booth algorithm requires examination of the multiplier bits and shifting of the partial 

product  

Qn ‐ LSB of multiplier Extra flip flop Qn+1 is appended to the multiplier bits to facilitate 

double bit inspection of the multiplier.  

Compare bits of Qn and Qn+1 

Rules are: 

1. The multiplicand is subtracted from the partial product upon encountering the first 

least significant 1 in a string of 1’s in the multiplier  

2. The multiplicand is added to the partial product upon encountering the first 

0(provided that there was a previous 1) in a string of 0’s in the multiplier 

3. The partial product does not change when the multiplier bit is identical to the 

previous multiplier bit 

In 2’s complement representation, we can use Booth algorithm without change 

 

Fig.2.8 Block diagram of hardware for Booth algorithm 



 

Fig. 2.9 Booth algorithm for multiplication of signed 2’s complements numbers 

Table 2.3 Example of multiplication with Booth Algorithm 

 



Array multiplier: Fast approach 

To check the bits of the multiplier one at a time and forming partial products is 

a sequential operation requiring a sequence of add and shift micro-operations. The 

multiplication of two binary numbers can be done with one micro-operation by using 

combinational circuit that forms the product bits all at once. This is a fast way since all 

it takes is the time for the signals to propagate through the gates that form the 

multiplication array. However, an array multiplier requires a large number of gates, and 

so it is not an economical unit for the development of ICs 

 
Fig. 2.10 : 2 bit by 2 bit array multiplier 

 



 

Fig. 2.11: 4 bit by 3bit array multiplier 

Division algorithm: 

Binary division – simpler because the quotient digits are either 0 or 1 and there is no 

need to estimate how many times the dividend or partial remainder fits into the 

divisor  

Division operation may result in a quotient with an overflow.  

Divide overflow flip flop (DVF) is used to detect overflow 

 Divisor – B register, Dividend – A and Q register 

 If the signs of divisor and dividend are alike, the sign of the quotient is plus. Otherwise 

it is minus.  

Best way to avoid divide overflow is to use floating point data. 

 

 



Example for binary division : 

 

 

Fig.2.12 Example of binary division with digital hardware 



 

Fig. 2.13 Flow chart for divide operation 

Floating Point Arithmetic Operations: 

• Numbers too large for standard integer representations or that have fractional 

components are usually represented in scientific notation, a form used 

commonly by scientists and engineers. 

• Examples: 4.25 x 101  

•  Addition and subtraction are more complex than multiplication and division 



 • Need to align mantissas 

 • Algorithm: — Check for zeros — Align significant (adjusting exponents) — Add or 

subtract significant — Normalize result 

F = m x re 

where m:  Mantissa,  r:   Radix, e:   Exponent 

It is necessary to make two exponents be equal before the mantissas can be 

added. We can either shift the first number three positions to the left, or shift the 

second number three positions to the right. When we store the mantissas in registers, 

shifting to the left causes a loss of most significant digits. Shifting to the right causes a 

loss of least significant digits. The second method is preferable because it only reduces 

the accuracy, while the first method may cause an error. The usual alignment 

procedure is to shift the mantissa that has the smaller exponent to the right by a 

number of places equal to the difference between the exponents. Now, the mantissas 

can be added. 

     . 5372400 x 102 

+ . 0001580 x 102 

   . 5373980 x 102 

When two normalized mantissas are added, the sum may contain an overflow 

digit. An overflow can be corrected easily by shifting the sum once to the right and 

incrementing the exponent. When two numbers are subtracted, the result may contain 

most significant zeros as shown in the following example: 

 . 56780 x 105 

         - . 56430 x 105 

           . 00350 x 105  

An underflow occurs if a floating-point number that has a 0 in the most significant 

position of the mantissa. To normalize a number that contains an underflow, we shift 

the mantissa to the left and decrement the exponent until a nonzero digit appears in 

the first position. Here, it is necessary to shift left twice to obtain .35000 x 103. In most 

computers a normalization procedure is performed after each operation to ensure that 

all results are in a normalized form. 

 



Floating-point multiplication and division need not do an alignment of the 

mantissas. Multiplying the two mantissas and adding the exponents can form the 

product. Dividing the mantissas and subtracting the exponents perform division. 

Register Configuration: 

Three registers are there, BR, AC, and QR. Each register is subdivided into two 

parts. The mantissa part has the same uppercase letter symbols as in fixed-point 

representation. The exponent part may use corresponding lower-case letter symbol. 

 

Fig. 2.14 Registers for floating point arithmetic operations 

Assuming that each floating-point number has a mantissa in signed-magnitude 

representation and a biased exponent. Thus the AC has a mantissa whose sign is in 

As, and a magnitude that is in A. The diagram shows the most significant bit of A, 

labeled by A1. The bit in his position must be a 1 to normalize the number. Note that 

the symbol AC represents the entire register, that is, the concatenation of As, A and a. 

In the similar way, register BR is subdivided into Bs, B, and b and QR into Qs, Q and q. 

A parallel-adder adds the two mantissas and loads the sum into A and the carry into E. 

Addition and Subtraction of Floating Point Numbers 

During addition or subtraction, the two floating-point operands are kept in AC and 

BR. The sum or difference is formed in the AC. 

 The algorithm can be divided into four consecutive parts: 

 1. Check for zeros.  



2. Align the mantissas.  

3. Add or subtract the mantissas 

 4. Normalize the result  

A floating-point number cannot be normalized, if it is 0. If this number is used for 

computation, the result may also be zero. Instead of checking for zeros during the 

normalization process we check for zeros at the beginning and terminate the process if 

necessary. The alignment of the mantissas must be carried out prior to their operation. 

After the mantissas are added or subtracted, the result may be un-normalized. The 

normalization procedure ensures that the result is normalized before it is transferred to 

memory. 

For adding or subtracting two floating-point binary numbers, if BR is equal to 

zero, the operation is stopped, with the value in the AC being the result. If AC = 0, we 

transfer the content of BR into AC and also complement its sign we have to subtract the 

numbers. If neither number is equal it to zero, we proceed to align the mantissas. The 

magnitude comparator attached to exponents a and b gives three outputs, which show 

their relative magnitudes.  

If the two exponents are equal, we go to perform the arithmetic operation. If the 

exponents are not equal, the mantissa having the smaller exponent is shifted to the right 

and its exponent incremented. This process is repeated until two exponents are equal. 

The addition and subtraction of the two mantissas is similar to the fixed-point addition 

and subtraction algorithm presented in the following Fig 



 

Fig. 2.15 Addition and subtraction of floating point numbers 

 

 



 
Multiplication: 

The algorithm can be divided into four consecutive parts: 

 1. Check for zeros.  

2. Add the exponents.  

3. Multiply the mantissas 

 4. Normalize the result  

 

Fig. 2.16 Multiplication of floating point numbers 



Division: 

The algorithm can be subdivided into five consecutive parts: 

1. Check for zeros.  

2. Initialize the register and evaluate the sign 

3. Align the dividend   

4. Subtract the exponents.  

5. Divide the mantissa  

 

Fig. 2.17 Division of floating point numbers 



Microprogrammed Control 

Introduction: 

Microprogram  

     - Program stored in memory that generates all the control signals required to 

execute the instruction set correctly  

     - Consists of microinstructions 

Microinstruction 

     - Contains a control word and a sequencing word 

        Control Word - All the control information required for one clock cycle 

    Sequencing Word - Information needed to decide the next microinstruction adress 

Control Memory(Control Storage: CS) 

     - Storage in the microprogrammed control unit to store the microprogram  

Writeable Control Memory(Writeable Control Storage:WCS) 

     - CS whose contents can be modified 

        -> Allows the microprogram can be changed 

        -> Instruction set can be changed or modified   

Dynamic Microprogramming  

     - Computer system whose control unit is implemented with  a microprogram in WCS 

     - Microprogram can be changed by a systems programmer or a user   

a. Control Memory 

� Control Unit 

• Initiate sequences of microoperations  

» Control signal (that specify microoperations) in a bus-organized system 

o groups of bits that select the paths in multiplexers, 

decoders, and arithmetic logic units 

• Two major types of Control Unit 

» Hardwired Control : 

 

 

 



 

 

 

o The control logic is implemented with gates, F/Fs, decoders, and other digital 

circuits 

o + Fast operation, - Wiring change(if the design has to be modified) 

» Microprogrammed Control 

  

o The control information is stored in a control memory, and the control memory 

is programmed to initiate the required sequence of microoperations  

o + Any required change can be done by updating the microprogram in control 

memory,              

 - Slow operation 

 

� Control Word 

o The control variables at any given time can be represented by a string of 1’s 

and 0’s. 

� Microprogrammed Control Unit 

o A control unit whose binary control variables are stored in memory (control 

memory). 

� Microinstruction : Control Word in Control Memory  

o The microinstruction specifies one or more microoperations  

 



� Microprogram  

o A sequence of microinstruction 

o Dynamic microprogramming : Control Memory = RAM  

� RAM can be used for writing (to change a writable 

control memory)  

� Microprogram is loaded initially from an auxiliary 

memory such as a magnetic disk  

o Static microprogramming : Control Memory = ROM  

� Control words in ROM are made permanent during 

the hardware production.   

� Microprogrammed control Organization :  

 
Fig. 2.18 Microprogrammed control operation 

1) Control Memory 

• A memory is part of a control unit : Microprogram이  

• Computer Memory (employs a microprogrammed control unit) 

• Main Memory : for storing user program (Machine instruction/data) 

• Control Memory : for storing microprogram (Microinstruction) 

2) Control Address Register 

• Specify the address of the microinstruction 

3) Sequencer (= Next Address Generator) 

• Determine the address sequence that is read from control memory 



• Next address of the next microinstruction can be specified several way 

depending on the sequencer input 

 

4) Control Data Register (= Pipeline Register ) 

• Hold the microinstruction read from control memory 

• Allows the execution of the microoperations specified by the control word 

simultaneously with the generation of the next microinstruction 

� RISC Architecture Concept 

RISC(Reduced Instruction Set Computer) system use hardwired control rather than 

microprogrammed control : 

b. Address Sequencing 

� Address Sequencing = Sequencer : Next Address Generator  

• Selection of address for control memory 

� Routine  

• Microinstruction are stored in control memory in groups  

� Mapping 

• Instruction Code - Address in control memory(where routine is 

located) 

� Address Sequencing Capabilities : control memory address  

1) Incrementing of the control address register 

2) Unconditional branch or conditional branch, depending on status bit 

conditions  

3) Mapping process (bits of the instruction address for control memory) 

4) A facility for subroutine return 

� Selection of address for control memory :  



 

Fig. 2.19 Selection of address for control memory 

• Multiplexer 

���� CAR Increment 

���� JMP/CALL 

���� Mapping 

���� Subroutine Return 

• CAR : Control Address Register 

» CAR receive the address from 

4 different paths 

 1)  Incrementer  

 2)  Branch address from  

       control memory 

 3)  Mapping Logic 

 4) SBR : Subroutine Register  

• SBR : Subroutine Register 

» Return Address can not be stored  in ROM 



» Return Address for a subroutine is stored in SBR 

 

� Conditional Branching 

• Status Bits 

» Control the conditional branch decisions generated in the 

Branch Logic  

• Branch Logic 

» Test the specified condition and Branch to the indicated 

address if the condition is met ; otherwise, the control 

address register is just incremented. 

• Status Bit Test - Branch Logic 

» 4 X 1 Mux - Input Logic 

 

� Mapping of Instruction :  

 

Fig. 2.20 Mapping from instruction code to microinstruction address 

   

• 4 bit Opcode = specify up to 16 distinct instruction  

• Mapping Process : Converts the 4-bit Opcode to a 7-bit control 

memory address  

» 1) Place a “0” in the most significant bit of the address 

» 2) Transfer 4-bit Operation code bits 

» 3) Clear the two least significant bits of the CAR  

• Mapping Function : Implemented by Mapping ROM or PLD  

Control Memory Size : 128 words (= 27) 

� Subroutine 

• Subroutines are programs that are used by other routines 



» Subroutine can be called from any point within the main 

body of the microprogram  

• Microinstructions can be saved by subroutines that use common 

section of microcode 

• Subroutine must have a provision for  

» storing the return address during a subroutine call  

» restoring the address during a subroutine return 

• Last-In First Out(LIFO) Register Stack  

c. Microprogram Example 

� Computer Configuration :  

 

Fig. 2.21 Computer hardware configuration 



• 2 Memory : Main memory(instruction/data), Control 

memory(microprogram) 

» Data written to memory come from DR, and Data read from 

memory can go only to DR 

• 4 CPU Register and ALU : DR, AR, PC, AC, ALU 

» DR can receive information from AC, PC, or Memory 

(selected by MUX) 

» AR can receive information from PC or DR (selected by 

MUX) 

» PC can receive information only from AR 

» ALU performs microoperation with data from AC and DR  

• 2 Control Unit Register : SBR, CAR  

� Instruction Format  

• Instruction Format : Fig. 2.22 

 

            Fig. 2.22 Computer instruction format 

» I : 1 bit for indirect addressing 

» Opcode : 4 bit operation code 

» Address : 11 bit address for system memory 

• Computer Instruction : Fig 2.23   

 

Fig. 2.23 Computer instruction- four computer instruction 

 

 

 



� Microinstruction Format : Fig. 2.24 

 

Fig. 2.24 Microinstruction code format (20 bits) 

• 3 bit Micro operation Fields : F1, F2, F3  

»  21Microoperation : Tab. 2.4 

» two or more conflicting microoperations can not be specified 

simultaneously 

•  010 001 000 

» Clear AC to 0 and subtract DR from AC at the same time 

» Symbol DRTAC(F1 = 100) 

• stand for a transfer from DR to AC (T = to) 

» 2 bit Condition Fields : CD 

» 00 : Unconditional branch, U = 1  

» 01 : Indirect address bit, I = DR(15) 

» 10 : Sign bit of AC, S = AC(15) 

» 11 : Zero value in AC, Z = AC = 0 

» 2 bit Branch Fields : BR 

» 00 : JMP  

• Condition = 0 :  

• Condition = 1 :  

» 01 : CALL  

• Condition = 0 :  

• Condition = 1 :  

» 10 : RET  

» 11 : MAP  

» 7 bit Address Fields : AD128 word : 128 X 20 bit 

 



Table 2.4 Symbols and binary code for microinstruction fields 

 

 

»   



� Symbolic Microinstruction  

���� Label Field : Terminated with a colon ( : ) 

���� Microoperation Field : one, two, or three  

       symbols, separated by commas  

���� CD Field : U, I, S, or Z 

���� BR Field : JMP, CALL, RET, or MAP 

���� AD Field  

 a. Symbolic Address : Label ( = Address ) 

      b. Symbol “NEXT” : next address 

      c. Symbol “RET” or “MAP” : AD field = 0000000    

• ORG : Pseudoinstruction(define the origin, or first address of 

routine) 

� Fetch (Sub)Routine 

• Memory Map(128 words) : Tab. 2.5, Tab. 2.6 

Table 2.5 Symbolic micro program 

 



Table 2.6 Binary micro program for control memory (Partial) 

 

» Address 0 to 63 : Routines for the 16 instruction  

» Address 64 to 127 : Any other purpose (Subroutines : 

FETCH, INDRCT) 

Microinstruction for FETCH Subroutine 

 

 

• Fetch Subroutine : address 64 



 

� Symbolic Microprogram : Tab. 7-2  

• The execution of MAP microinstruction in FETCH subroutine 

» Branch to address 0xxxx00 (xxxx = 4 bit Opcode) 

• ADD : 0 0000 00 = 0 

• BRANCH : 0 0001 00 = 4 

• STORE : 0 0010 00 = 8 

• EXCHANGE : 0 0011 00 = 12, ( 16, 20, … , 60 ) 

• Indirect Address : I = 1 

• Indirect Addressing :  

• INDRCT subroutine 

 

       

• Execution of Instruction 

• ADD instruction 

• BRANCH instruction 

• STORE instruction  

• EXCHANGE instruction 

d. Design of Control Unit 

� Decoding of Microinstruction Fields : Fig. 2.25 

][ARMAR ←

Label Microoperation CD BR AD

INDRCT: READ U JMP NEXT

DRTAR U RET 0

DRAR

ARMDR

←

← ][



 

Fig. 2.25 Decoding of micro operation fields 

• F1, F2, and F3 of Microinstruction are decoded with a 3 x 8 

decoder 

•  Output of decoder must be connected to the proper circuit to 

initiate the corresponding microoperation  

• F1 = 101 (5) : DRTAR  

•               F1 = 110 (6) : PCTAR 

• Output 5 and 6 of decoder F1 are connected to the load input of AR 

(two input of OR gate) 

• Multiplexer select the data from DR when output 5 is active 

• Multiplexer select the data from AC when output 5 is inactive 

• Arithmetic Logic Shift Unit 

• Control signal of ALU in hardwired control  

• Control signal will be now come from the output of the decoders 

associated with the AND, ADD, and DRTAC.   

� Microprogram Sequencer : Fig. 2.26  

 



 

Fig. 2.26 Microprogram sequencer for a control memory 

� Microprogram Sequencer select 

the next address for control memory 

� MUX 1 

• Select an address source and route to CAR   

���� CAR + 1 

���� JMP/CALL 

���� Mapping 

���� Subroutine Return 

� MUX 2  

• Test a status bit and the result of the test is applied to an 

input logic circuit 

• One of 4 Status bit is selected by Condition bit (CD)   

� Design of Input Logic Circuit 



• Select one of the source address(S0, S1) for CAR 

• Enable the load input(L) in SBR   

• Input Logic Truth Table : Tab. 2.7  

» Input : 

■  I0, I1 from Branch bit (BR) 

■  T from MUX 2 (T)  

» Output :  

■ MUX 1 Select signal (S0, S1)  

     S1 = I1I0’ + I1I0 = I1(I0’ + I0) = I1  

     S0 = I1’I0’T + I1’I0T + I1I0  

          = I1’T(I0’ + I0) + I1I0  

          = I1’T + I1I0  

■ SBR Load signal (L)  

      L = I1’I0T 

  

Table 2.7: Input logic truth table for micro program sequencer 

 

 

 

 

 


