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law and p law- correlation receiver.

2.1 Introduction

L ]

Definition of baseband transmission : When the signal is transmitted over
the channel, without any modulation, it is called baseband transmission.

Problems occurred in baseband transmission : One of the major problem
occurred in baseband transmission is intersymbol interference. This
interference takes place due to dispersive nature of the channel.

Corrective measures to minimize errors in baseband transmission : Nyquist
criterion gives a condition for distortionless baseband transmission. It is
possible to reduce the effect of intersymbol interference with the help of
raised cosine spectrum.

Correlative level coding is also used to minimize effects of intersymbol
interference. It allows higher signaling rate on low bandwidth channel.

Equalizers are used to compensate for distortion introduced in the channel.

2.2 Waveform representation of binary digits

It was shown how analog waveforms are transformed into binary

digits via the use of PCM. There is nothing “physical™ about the digits resulting
from this process. Digits are just abstractions—a way to describe the message infor-
mation. Thus, we need something physical that will represent or “carry” the digits.

We will represent the binary digits with electrical pulses in order to transmit

them through a baseband channel. Such a representation is shown in Figure 2.21.

Codeword time slots are shown in Figure 2.21a, where the codeword is a 4-bit rep-
resentation of each quantized sample. In Figure 2.21b, each binary one is repre-
sented by a pulse and each binary zero is represented by the absence of a pulse.



Thus a sequence of electrical pulses having the pattern shown in Figure 2.21b can
be used to transmit the information in the PCM bit stream, and hence the informa-
tion in the quantized samples of a message.
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Figure 2.21 Example of wﬂ.\l'ﬁfl:l::]* representation of binary digits.
{a) PCM sequence. (b) Pulse representation of FCM. (c) Fulse wave-
form (transition between two levels).

At the receiver, a determination must be made as to the presence or absence
of a pulse in each bit time slot. It will be shown in Section 2.9 that the likelihood of
correctly detecting the presence of a pulse is a function of the received pulse energy
(or area under the pulse). Thus there is an advantage in making the pulse width 77
in Figure 2.21b as wide as possible. If we increase the pulse width to the maximum
possible (equal to the bit time T), we have the waveform shown in Figure 2.21c.
Rather than describe this waveform as a sequence of present or absent pulses, we
can describe it as a sequence of transitions between two levels. When the waveform
occupies the upper voltage level it represents a binary one: when it occupies the
lower voltage level it represents a binary zero.

2.3 Matched Filter

Definition

* The matched filter is used for detection of signals in baseband and passband
transmission.

* It is called matched filter since its impulse response is matched to the
shape of input signal.



¢ Requirements of Matched Filter
(i) Signal to noise ratio of the receiver must be improved.

(ii) The signal must be checked at the instant in bit period, when signal to
noise ratio is maximum.

(iii) The error probability should be minimum.

A basic problem that often arises in the study of communication systems is that of detecting
a pulse transmitted over a channel that is corrupted by channel noise (i.e., additive noise
at the front end of the receiver). For the purpose of the discussion presented in this sectiop,
we assume that the major source of system limitation is the channel noise.

Consider then the receiver model shown in Figure 4.1, involving a linear time-invar
iant filter of impulse response h(t). The filter input x(¢) consists of a pulse signal g(z)
corrupted by additive channel noise w(t), as shown by

x(t) =gty +wlt), 0=:=<T (4.1)

where T is an arbitrary observation interval. The pulse signal g{t) may represent a binary
symbol 1 or 0 in a digital communication system. The #w(t) is the sample function of a
white noise process of zero mean and power spectral density No/2. It is assumed that the
receiver has knowledge of the waveform of the pulse signal g(t}. The source of uncertainty
lies in the noise w/(t). The function of the receiver is to detect the pulse signal g(¢} in an
optimum manner, given the received signal x(t). To satisfy this requirement, we have to
optimize the design of the filter so as to minimize the effects of noise at the filter output
in some statistical sense, and thereby enhance the detection of the pulse signal g(t).

Signal 0 | invasiant filter of | ¥@ m\\oﬂ.
g0 impulse response
Sample at
hir) :
tmer=T
White noise '
w{r} FiGuRE 4.1 Linear receiver.
Since the filter is linear, the resulting output y(¢} may be expressed as
y(t) = golt) + n(t) (4.2)

where g.(¢) and #(t) are produced by the signal and noise components of the input x(t),
respectively. A simple way of describing the requirement that the output signal component
2.(t) be considerably greater than the output noise component #(t) is to have the filter
make the instantaneous power in the output signal g,{t), measured at time ¢ = T, as large
as possible compared with the average power of the output noise #(t). This is equivalent
to maximizing the peak pulse signal-to-noise ratio, defined as
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where |g,(T)|? is the instantaneous power in the output signal, E is the statistical expec-
tation operator, and E[n*(¢)] is a measure of the average output noise power. The require-
ment is to specify the impulse response b{#) of the filter such that the output signal-to-
noise ratio in Equation {4.3) is maximized.

Let G(f) denote the Fourier transform of the known signal g{(¢), and H{f) denote

the frequency response of the filter. Then the Fourier transform of the output signal g,(¢)
is equal to H(f)G(f), and g,(¢) is itself given by the inverse Fourier transform

= f_m H{(f)G(f) exp(j27ft) af (4.4)

Hence, when the filter output is sampled at time # = T, we have (in the absence of channel
noise}
2

|gT)* = Lﬂ H(f)G(f) exp(j2afT) df (4.5)

Consider next the effect on the filter output due to the noise w/(t} acting alone. The
power spectral density Sy(f) of the output noise n(t) is equal to the power spectral density
of the input noise w/(t) times the squared magnitude response H(f)[* (see Section 1.7).
Since w(t) is white with constant power spectral density Ny/2, it follows that

Sn(f) m““\H(f)lz (4.6)
The average power of the output noise #n{t) is therefore

Elt] = | Suif) df

Ngf 5
|G o

Thus substituting Equations (4.5) and (4.7) into (4.3), we may rewrite the expression
for the peak pulse signal-to-noise ratio as

(4.7)

2
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Our problem is to find, for a given G(f), the particular form of the frequency response
H(f) of the filter that makes 7 a maximum. To find the solution to this optimization
problem, we apply a mathematical result known as Schwarz’s inequality to the numerator
of Equation (4.8).

A derivation of Schwarz’s inequality is given in Chapter 5. For now it suffices to say
that if we have two complex functions ¢,(x) and ¢,(x) in the real variable x, satisfying
the conditions

L | da(x)[* dx < oo
and

[ oanil? dx <

then we may write
2

J_w b {x)d,{x) dx| = '[_m | () il dx ‘Lm | da(x)[? dx (4,9)
The equality in {4.9) holds if, and only if, we have
b1(x) = ke 3(x) (4.19)

where k is an arbitrary constant, and the asterisk denotes complex conjugation,
Returning to the problem at hand, we readily see that by invoking Schwarzs i
equality (4.9), and setting ¢1(x) = H(f) and ¢,(x) = G(f) exp(jmfT), the numerator j;
Equation (4.8) may be rewritten as

2

5j |Hf)|2dff AIEdf @

L H(f)G(f) exp(j2mfT) df

Using this relation in Equation (4.8), we may redefine the peak pulse signal-to-noise rat,
as

2 (" , |
n=N ). G df (4.1
The right-hand side of this relation does not depend on the frequency response H(f) of
the filter but only on the signal energy and the noise power spectral density. Consequently,
the peak pulse signal-to-noise ratio n will be a maximum When H(f) is chosen so thar the
equality holds; that is,
2 (=
Mo = 2 |__ (GUI df 41y
o J =

Correspondingly, H(f) assumes its optimum value denoted by H,,(f). To find this opti-
mum value we use Equation (4.10), which, for the situation at hand, yields

Hopo(f) = kG*(f) exp(—j2mfT) (4.14)
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where G*(f) is the complex conjugate of the Fourier transform of the input signal g(1),
and k is a scaling factor of appropriate dimensions. This relation states that, except for
the factor k exp(—j27fT), the frequency response of the optimum filter is the same as the
complex conjugate of the Fourier transform of the input signal.
Equation (4.14) specifies the optimum filter in the frequency domain. To characterize
it in the time domain, we take the inverse Fourier transform of H,_.(f) in Equation (4.14)
to obtain the impulse response of the optimum filter as

buslt) = k | G*(f) expl-2mf(T - 1] df 415
Since for a real signal g(t) we have G*(f) = G(—f), we may rewrite Equation (4.15) a5

bondt) = k | Gl—f) expl=i2f (T = 0] df

> b
k| cp exp l2ef(T - 01 dr i

= kg{T — 1)

Equation (4.16) shows that the impulse response of the optimum filter, except for the
scaling factor &, is a time-reversed and delayed version of the input signal g(¢); that is,
is “matched” to the input signal. A linear time-invariant filter defined in this way is called
a matched filter, Note that in deriving the matched filter the only assumption we have
made about the input noise w(t) is that it is stationary and white with zero mean and
power spectral density Np/2. In other words, no assumption was made on the statistics of
the channel noise w(t).

2.2.1 Properties of matched filter
an 1mpulse response that is a time-reversed and delayed version of the input g(¢), as

shown bY opr(t) - kg(T — t)
a trequency response is the complex conjugate of the Fourier transform of the input
h
£(#), as shown by Hopf) = KG*(f) exp(—j27fT)

The peak pulse signal-to-noise ratio of a matched filter depends only on the ratio of the
signal energy to the power spectral density of the white noise at the filter input.

Therefore, the peak py,, signal-to-noise ratio has the maximum value
__(kEy* _2E
Theax = (R2NLE2) N,
From Equation (4.20) we see that dependence on the waveform of the input g(f) has been
completely removed by the matched filter..

(4.20)



2.3 Error Rate due to noise

Now that we are equipped with the matched filter
as the optimum detector of a known pulse in additive white noise, we are ready to derive
a formula for the error rate in such a system due to noise.

To proceed with the analysis, consider a binary PCM system based on polar non-
return-to-zero (NRZ) signaling. In this form of signaling, symbols 1 and 0 are represented
by positive and negative rectangular pulses of equal amplitude and equal duration. The
channel noise is modeled as additive white Gaussian noise w(t) of zero mean and power
spectral density Ny/2; the Gaussian assumption is needed for later calculations. In the
signaling interval 0 = ¢ =< T, the received signal is thus written as follows:

() = {-I—A + w(t), symbaol 1 was sent

4.21
-A + wlt), symbol 0 was sent ( )

where T), is the bit duration, and A is the transmitted pulse amplitude. It is assumed that
the receiver has acquired knowledge of the starting and ending times of each transmitted
pulse; in other words, the receiver has prior knowledge of the pulse shape, but not its
polarity. Given the noisy signal x(z), the receiver is required to make a decision in each
signaling interval as to whether the transmiited symbol is a 1 or 2 0.

The structure of the receiver used to perform this decision-making process is shown
in Figure 4.4. It consists of a matched filter followed by a sampler, and then finally a

. e Gay 1 iy >4
+ ¥ i
PCM wave Ma_tched . . Dem:slon
s{r) filter device .
—=~ Say 0 if ¥y <4
+ Sample at
timer=T, T
White Gaussian Threshold
noise wiz} A

FIGURE 4.4 Receiver for baseband transmission of binary-encoded PCM wave using polar NRZ
signaling.
decision device. The filter is matched to a rectangular pulse of amplitude A and dumﬁﬂn
Ty, exploiting the bit-timing information available to the receiver. The resulting matcp, d
filter output is sampled at the end of each signaling interval. The presence of channel Noise
w(t) adds randomness to the matched filter output.

Let y denote the sample value obtained at the end of a signaling interval. The sample
value y is compared to a preset threshold A in the decision device. If the threshold 5
exceeded, the receiver makes a decision in favor of symbol 1; if not, a decision is made in
favor of symbol 0. We adopt the convention that when the sample value y is exactly equal
to the threshold A, the receiver just makes a guess as to which symbol was transmitted,
such a decision is the same as that obtained by flipping a fair coin, the outcome of wh;c,
will not alter the average probability of error.
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There are two possible kinds of error to be considered:
1. Symbol 1 is chosen when a 0 was actually transrmtted we refer to this error as 4
error of the first kind.

2. Symbol 0 is chosen when a 1 was actually transmitted; we refer to this error as ay
error of the second kind. -

To determine the average probability of error, we consider these two situations separately,
Suppose that symbol 0 was sent. Then, according to Equation (4.21}, the received

signal is
x(t) = —A + w(1), 0=¢r=T, (4.22)

Correspondingly, the matched filter output, sampled at time £ = Ty, is given by (in light
of Example 4.1 with 2AT,, set equal to unity for convenience of presentation)

Ty
¥ ='L x{t} dt .

which represents the sample value of a random variable Y. By virtue of the fact that the
noise w(t) is white and Gaussian, we may characterize the random variable Y as follows:

¥ The random variable Y is Gaussian distributed with a mean of —A.
& The variance of the random variable Y is

ot =E Y+A"-]

3 [ st o

T, {4.24}
= F L Elw(t)w(u}] dt du
FasY
1 [T
=77 J, Rwlt, u) di du
b

where R i, #) is the antocorrelation function of the white noise w/{z). Since tw(t) is white
with a power spectral density Np/2, we have

Rylt, u) = % St — u) (4.25)

where 8(t — u) is a time-shifted delta function. Hence, substituting Equation (4.25) into
(4.24) yields



Ty Ty
f iﬁt—ﬂldfdﬂ

(4.26)

0

2T,
where we have used the sifting property of the delta function and the fact that its area is

unity. The conditional probability density function of the random variable Y, given that
symbol 0 was sent, is therefore

_ 1 C(y+ A)Zj
fY()"O) = \/m exp( No/T,, {(4.27)

‘This function is plotted in Figure 4.5(a). Let p,o denote the conditional probability of error,
given that symbol 0 was sent. This probability is defined by the shaded area under the
curve of fy(y|0) from the threshold A to infinity, which corresponds to the range of values
assumed by y for a decision in favor of symbol 1. In the absence of noise, the matched
filter output y sampled at time # = T, is equal to —A. When noise is present, y occasionally
assumes a value greater than A, in which case an error is made. The probability of this
error, conditional on sending symbol 0, is defined by

P10 = P(y > A|symbol 0 was sent)

f fyy\ﬂ ) dy | | (4.28)

\/ No/ T J’,\ ( - NG/Ty

~-A A

FIGURE 4.5 Noise analysis of PCM system. (a) Probability density function of random variable ¥
at matched filter output when 0 is transmitted. (b) Probablhty density function of Y when 1 is
transmitted.

At this point in the discussion we digress briefly and mtroduce the definition of the

so-called complementary error functionﬁ

erfc{n) = f exp(— (4.29)



which is closely related to the Gaussian distribution. For large positive values of #, we
have the following upper bound on the complementary error function:

exp(—u’)
erfe(u) < o (4.30)

To reformulate the conditional probability of error p4, in terms of the complemey,
tary error function, we first define a new variable

T VNJT,

Accordingly, we may rewrite Equation (4.28) in the compact form

1 ("
Pm"ﬁfmﬂymexpf 2%) dz

= 1 erfc( A+ A ) | (4‘31]
2 V N/T,

Similarly you can derive

1 =)
pﬂ.'[

= -4 d
\/1_1- (A—-AWN NI Ty, EXP( 22) z

(4.34)

=1 erfc A - A
2 VINO/T,/

Let po and p, denote the a priori probabilities of trans-
mitting symbols 0 and 1, respectively. Hence, the average probability of symbol error P,
in the receiver is given by

P, = popro + pipoa

po (A+AN by A-2A (4.35)
== erfc] —=1| + = erfc
2 \Y NofTb 2 Vv N[)/Tb

From Equation (4.35) we see that P, is in fact a function of the threshold A, which
immediately suggests the need for formulating an optiznum threshold that minimizes P,.
The optimum threshold is given as

_ Ny bo
Aope = 2T, log(pl) (4.37)

For the special case when symbols 1 and 0 are equiprobable, we have
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p]“po_z

in which case Equation (4.37) reduces to
’\'Dpt = 0

This result is intuitively satisfying as it states that, for the transmission of equiprobable
binary symbols, we should choose the threshold at the midpoint between the pulse heights
~A and +A representing the two symbols 0 and 1. Note that for this special case we also
have .

Po1 = Pio :
A channel for which the conditional probabilities of error py, and pq are equal is s34 to
be binary symmetric. Correspondingly, the average probability of symbol errorin Equay on
(4.35) reduces to

p,=1 erfc(—A—) 438
2 VN/T, }
Now the transmitted signal energy per bit is defined by
E, = A*T, (4.39)
Accordingly, we may finally formulate the average probability of symbol error for 1,

receiver in Figure 4.4 as
1 E,
P, =3 el'fC( )E) (4.40)

which shows that the average probability of symbol error in a binary symmetric changg
depends solely on E /Ny, the ratio of the transmitted signal energy per bit to the npis
speciral density., |

This important result is further illustrated in Figure 4.6 where the average probability
of symbol error P, is plotted versus the dimensionless ratio E;/Nj. In particular, we see
that P, decreases very rapidly as the ratio E,/N, is increased, so that eventually a very
“small increase™ in transmitted signal energy will make the reception of binary pulses
almost error free, as discussed previously in Section 3.8. Note, however, that in practical
terms the increase in signal energy has to be viewed in the context of the bias; for example,
a 3-dB increase in E,/ N, is much easier to implement when E,, has a small value than when
its value is orders of magnitude larger.
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FicurgE 4.6 Probability of error in a PCM receiver.

2.4 Inter symbol Interference (ISI)
The residual effects due to the occurrence of pulses before and after the sampling

instant is called inter symbol interference (ISI).
The presence of outputs due to other bits (symbols) interfere with the output of

required bit (symbol). This effect is called Intersymbol Interference (ISI).

Parameters used to reduce ISI
The

ISI can be reduced by proper design of pulse spectrum G (f), transmit filter H, (f), receive
filter Hy (f) and the channel H.- (f). We will discuss some of these issues in subsequent

sections.
Consider then a baseband binary PAM system, a generic form of which is shown in

Figure 4.7. The incoming binary sequence {b;} consists of symbols 1 and 0, each of du-
ration T,,. The pulse-amplitude modulator modifies this binary sequence into a new se-
quence of short pulses (approximating a unit impulse), whose amplitude 4, is represented

in the polar form

Input
ey | Puse | g [Tt | s | S0 N ) | Sy Lyl >a
taly amplitude g filEr  fmgan W r w-%\——b D;ec ch:gn
b madulator gt f Sample at e Sy O i ;) <A
fime L= !'T& T
White
Clack Gaussian ' Threshoid A
pulses nolse w()
e Transmitter = Channel j— Receiver

FiGURe 4.7 Baseband binary data transmission system.
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_|+1  if symbol by is 1
BTl i symbol &, is 0

The sequence of short pulses so produced is applied to a transmit filter of impulse response
g(2), producing the transmitted signal

sit) = % ag(t — kT,) (4.43)

The signal s(2) is modified as a result of transmission through the channel of impulse
response k(t). In addition, the channel adds random noise to the signal at the receiver
input. The noisy signal x(¢) is then passed through a receive filter of impulse response cit).
The resulting filter output y{t) is sampled syrnchronously with the transmitter, with the
sampling instants being determined by a clock or timing signal that is usually extracted
from the receive filter output. Finally, the sequence of samples thus obtained is used to
reconstruct the original data sequence by means of a decision device. Specifically, the
amplitude of each sample is compared to a threshold A. If the threshold A is exceeded, a
decision is made in favor of symbol 1. If the threshold A is not exceeded, a decision is made
in favor of symbol 0. If the sample amplitude equals the threshold exactly, the flip of a

(4.42)

fair coin will determine which symbol was transmitted (i.e., the receiver simply make, .
random guess).
The receive filter output is written as

Yty = w X aiplt = KT,) + nlt) (444

where u is a scaling factor, and the pulse p(t) is to be defined. To be precise, an arbitr,
time delay o should be included in the argument of the pulse p{t — £T},) in Equation (4.44
to represent the effect of transmission delay through the system. To simplify the eXposition.
we have put this delay equal to zero in Equation (4.44) without loss of generality,

The scaled pulse up(t) is obtained by a double convolution involving the impuse
response g(t) of the transmit filter, the impulse response #(t) of the channel, and the impy|g
response ¢{t) of the receive filter, as shown by

| uplt) = g() % hit) K clt) (4.45)
where the star denotes convolution. We assume that the pulse p(t) is #ormalized by setting
po) =1 (4.46)

which justifies the use of u as a scaling factor to account for amplitude changes incyrreg
in the course of signal transmission through the system.

Since convolution in the time domain is transformed into multiplication in the fre-
quency domain, we may use the Fourier transform to change Equation (4.45) into the
equivalent form | '
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pP(f) = GFH(F)CH) (447)

where P{f), G{f), (f ), and C(f) are the Fourier transforms of p(t), g(z), h(t), and c(#),
respectively. ' '

Finally, the term #»{¢) in Equation {4.44) is the noise produced at the output of the
receive filter due to the channel noise w(t). It is customary to model w({t} as a white Gaus-
sian noise of zero mean.

The receive filter output y(¢) is sampled at time t; = T, (with i taking on integer
values), yielding [in light of Equation {4.46)]

Yt = w2 aplli - )T} + it)

] (4.48)
=pa;+ p z ap[li— R)T,] + n(t)

P
ki
In Equation (4.48), the first term pa; represents the contribution of the 7th transmitted bit.
The second term represents the residual effect of ail other transmitted bits on the decoding
of the ith bit; this residual effect due to the occurrence of pulses before and after the
sampling instant #, is called intersymbol interference (ISI). The last term #(t;) represents the
noise sample at time ;.
In the absence of both ISI and noise, we observe from Equanon (4.48) that

yt) = pa;
which shows that, under these ideal conditions, the ith transmitted bit is decoded correctly:

2.5 Nyquist’s criterion for Distortionless Base band Binary Transmission

2.5.1 Nyquist Pulse Shaping Criterion
Time Domain Criterion
From equation 448 we know that the second term (summation) must be zero to
eliminate effect of ISI. This is possible if the received pulse p(t) is controlled such that,

1 fori=k

PIG-0)T] = 4, for i <k - (281)

If p(t) satisfies the above condition, then we get a signal which is free from ISL
ie.,

y(t;) = nA; from equation 2.7.10
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Hence equation 2.8.1 gives the condition for perfect reception in absence of noise.
Equation 2.8.1 is the condition in time domain. This condition gives more useful
criteria in frequency domain.

Criterion in Frequency Domain
e Let p(nT,) represent the impulses at which p(t) is sampled for decision.

These samples are taken at the rate of T,. Fourier spectrum of these impulses
is given as

Ps(f) = fo i”(f - nfy) .. (2.82)

n=-—oo

This means the. spectrums of p(t) are periodic with period f,. Here note that the
sampling frequency (instants) is f,. Here P;(f) represents the spectrum of p(nT,), and
P(f) is the spectrum of p(t).

e We can think of p(nT,) as the infinite length of impulses with period Tj,
which are weighted with amplitudes of p(t). i.e.,

ps(t) = i p(nTy)d(t-nTy,) . (2.8.3)

n=-w

* Fourier transform of p(f) becomes,

Ps(f) = [ps(tye-i?*at

T [ ip(nTb)S (t- nT,,)]e'i2"ﬁ dt

—p | ==
o Let n = i~k in above equation,
@*D o .
Ps(f) = IkZp[(i-k)Tb]S[t-(i-k)Tb]e'lz"ﬂdt

* Now let us apply the condition of equation 2.8.1 to above equation,

[p(0)s(Hye-i2shat for i=k
Ba(f)= 570
[ 08@)e-i2dt for ik

\ —®
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Ps(f) Tp(ﬂ)ﬁ(t)rﬁ“ﬁ dt for i=k

p(0) | (1) s

=00

An integration in above equation is the fourier transform of 5(t), which is 1.
Hence,

Ps(f) = p(0) fori=k .. (2.8.4)
= 1 by normalization of p(0).
* Hence equation 2.8.2 becomes (with P5(f) = 1),
1= fy 2.P(f-nfy)

n=-—oo

or S P(f-nfy) = -fl!- .. (285)
Since T]' =T, 2.P(f-nfy) =T, .. (2.8.6)
i i H= =0

This is the frequency domain condition for zero ISI. Above equation is called
Nyquist pulse shaping criterion for baseband transmission.

2.5.2 Ideal Nyquist channel
The simplest way of satisfying Equation 286 is to specify the frequency function P(f)
be in the form of a rectangular funiciion, as shown by

1
P =z WLV
Os ‘fl > W (4.54’
1 f
~aw fe“(ﬁ)

where rect(f) stands for a rectangular function of unit amplitude and unit support cenrered
on f = 0, and the overall system bandwidth W is defined by
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According to the solution described by Equations (4.54) and (4.55), no frequencies of
absolute value exceeding half the bit rate are needed. Hence, from Fourier-transform pair
2 of Table A6.3 we find that a signal waveform that produces zero intersymbol interference
is defined by the sinc function:

2y = sin{27Wt)
b 2aWt (4.56)
= sin¢(2 Wt}

The special value of the bit rate R, = 2W is called the Nyguist rate, and W is itsel
called the Nyguist bandwidth. Correspondingly, the ideal baseband pulse transmission.
system described by Equation (4.54) in the frequency domain or, equivalently, Equation
(4.56) in the time domain, is called the ideal Nyquist channel.

Figures 4.8a and 4.8b show plots of P(f) and p(t), respectively. In Figure 4.8, the
normalized form of the frequency function P(f) is plotted for positive and negative
quencies. In Figure 4.8b, we have also included the signaling intervals and the correspoﬂd’
ing centered sampling instants, The function p{t) can be regarded as the impulse respons®
of an ideal low-pass filter with passhand magnitude response 1/2W and bandwidth W.
The function p{¢) has its peak value at the origin and goes through zero at integer multipies
of the bit duration T. It is apparent that if the received waveform y(t) is sampled at t

i)
1.0

05—

/\ N\ .

.2wpi,-: : -3’ -2\—7 0 1\/2 '3 T,
bbb bt

Sampling instants

. s I B e N B
-1 0 1 w N ,
Signaling intervals
{a} (b)

FIGURE 4.8 (a) Ideal magnitude response. (b) Ideal basic pulse shape.
17



Binarysequence 1 0 1 1 O 1 O

Amplitude

Time
FiGURE 4.9 A series aof sinc pulses corresponding to the sequence 1011010.
instants of time ¢t = 0, *T,, *2T,, -, then the pulses defined by pp(z — iT},) with
arbitrary amplitude g and index i = 0, £1, %2, -++, will not interfere with each other.
This condition is illustrated in Figure 4.9 for the binary sequence 1011010.
Although the use of cthe ideal Nyquist channel does indeed achieve economy in band-
width in that it solves the problem of zero intersymbol interference with the minimum
bandwidth possible

2.5.3 Raised cosine channels i
We may overcome the practical difficulties encountered with the ideal Nyquist channel by
extending the bandwidth from the minimum value W = R,/2 to an adjustable value be-
tween W and 2W. We now specify the overall frequency response P(f) to satisfy a con-
dition more elaborate than that for the ideal Nyquist channel; specifically, we retain thre
terms of Equation (4.53) and restrict the frequency band of interest to [— W, W], as shown

by

PU)+ Pf —2W) + P 4+ 2W) =50, - WSFSW (S

We may devise several band-limited functions thar satisfy Equation (4.59). A particulat
form of P(f) that embodies many desirable features is provided by a raised cosine spectrim-
This frequency response consists of a flaz portion and a rolloff portion that has a sinusoidzl

form, as follows:
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1
g ~ osif=r
—_ 1 . — W X
P{f)—“!m{l—mn[ﬂ;glﬁzfl)]}, H=\fl<2W-— 71 (4.60)
0, | fl=2W—- f,

LN

The frequency parameter f; and bandwidth W are related by

a=1— ﬁ . (461)

The parameter « is called the rolloff factor; it indicates the excess bandwidth over the
ideal solution, W. Specifically, the transmission bandwidth B is defined by

BTEZW-fz_
= W1 + a)

The frequency response P(f), normalized by multiplying it by 2 W, is plotted in Figure
4.10a for three values of @, namely, 0, 0.5, and 1. We see that for & = 0.5 or 1, the

2WP{S)
1.0

0.8

: 0.6}
0.4

0.2

-2 -1

Hiv,

|
Nl
i
R=

{b)

FIGurE 4.10 Responses for different rolloff factors. (a) Frequency response. (b) Time response.
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function P(f) cuts off gradually as compared with the ideal Nyquist channel (i.e., a =
and is therefore easier to implement in practice. Also the function P{f) exhibits odd SVm.
metry with respect to the Nyquist bandwidth W, making it possible to satisfy the conditioy
of Equation (4.59).

The time response p(t) is the inverse Fourier transform of the frequency respop,
P(f). Hence, using the P(f) defined in Equation (4.60), we obtain the result {see Problep,
4.13)

cos(2maWi) ) 46
62)

ple) = (sinc(zm))(l T

which is plotted in Figure 4.105 for « = 0, 0.5, and 1.
2.6 Correlative level coding

By adding inter symbol interference to the transmitted signal in a controlled manner, it
is possible to achieve a signaling rate equal to the Nyquist rate of 2W symbols per second in
a channel of bandwidth W Hertz. Such schemes are called correlative- level coding or partial-
response signaling schemes.

e Correlative level coding allows the signaling rate of 2B, in the channel of

bandwidth B,. This is made physically possible by allowing ISI in the
transmitted signal in controlled manner. This ISI is known to the receiver.
Hence effects of ISI are eliminated at the receiver.

e The correlative coding is implemented by duobinary signaling and modified
duobinary signaling.

2.6.1 Duobinary signalling

The basic idea of correlative-level coding will now be illustrated by considering the specific
example of duobinary signaling, where “duo” implies doubling of the transmission ca-
pacity of a straight binary system. This particular form of correlative-level coding is also
called class I partial response.

Consider a binary input sequence {bs} consisting of uncorrelated binary symbols 1
and 0, each having duration T,. As before, this sequence is applied to a pulse-amplitude
‘modulator producing a two-level sequence of short pulses (approximating a unit impulse),
whose amplitude a, is defined by

{+1 if symbol &, is 1
ap =

4.65
—1 if symbol b, is 0 (4.63)
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time ¢ = ka

Filter Hy(f)
FIGURE 4.11 Duochinary signaling scheme.

When this sequence is applied to a duobinary encoder, it is converted into a three-
level output, namely, ~2, 0, and +2. To produce this transformation, we may use the
scheme shown in Figure 4.11. The two-level sequence {a,} is first passed through a simple
filter involving a single delay element and summer. For every unit impulse applied to the
input of this filter, we get two unit impulses spaced T, seconds apart at the filter ougpy
We may therefore express the duobinary coder output c; as the sum of the present inpy;
pulse a, and its previous value a;_,, as shown by

Cp = + gy (4.66)

One of the effects of the transformation described by Equation (4.66) is to change the
input sequence {4,} of uncorrelated two-level pulses into a sequence {c,} of correlated three.
level pulses. This correlation between the adjacent pulses may be viewed as introducing
intersymbol interference into the transmitted signal in an artificial manner. However, the
intersymbol interference so introduced is under the designer’s control, which is the basis
of correlative coding.

An ideal delay element, producing a delay of T}, seconds, has the frequency response
exp{—727f T,), so that the frequency response of the simple delay-line filter in Figure 4.11
is 1 + exp{—j27fT,). Hence, the overall frequency response of this filter connected in
cascade with an ideal Nyquist channel is

HI(f ) = HNyquist(f Nt + exp("jan‘f Tb)]
= Hyyquis filexp{fmfL,) + exp(~jmfT,)] expl—jmfT;) (4.67)

= 2Hygyquisil [} cos(mf Ty} exp{—jmfT,)
where the subscript 1in Hy{f) indicates the pertinent class of partial response. For an ideal
Nyquist channel of bandwidth W = 1/27T;, we have {ignoring the scaling factor T)

1, = 12T,
HNyquist(f ) = { if' g

. (4.68)
0, otherwise
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Thus the overall frequency response of the duobinary signaling scheme has the form ofa
half-cycle cosine function, as shown by

2 cos(mfT,) exp(—jmfTs), | f| = 12T,

o (4.6%
0, | otherwise

Hi(f) = {

for which the magnitude response and phase response are as shown in Figures 4.124 and
4,125, respectively. An advantage of this frequency response is that it can be easily ap"
proximated, in practice, by virtue of the fact that there is continuity at the band edges.

From the first line in Equation (4.67) and the definition of Hyyquelf) in Equatio?
(4.68), we find that the impulse response corresponding to the frequency response Hi(f!
consists of two sinc {(Nyquist} pulses that are time-displaced by T, seconds with respect to
each other, as shown by (except for a scaling factor)

sin(mt/T,)  sin[m(t — T,)/T,]

) == w7 — T T,
sin(mt/T,) sin(mt/T,)
= ~ 4,
wt/T), it — T )T, (4.70)
_ T% sin(m/T,) '
TTt(Tb — 1)
{HAF)| arg AN
2.0 e E
| 2
| 1
i 2T,
1 0 i f
-5 ) i
1 0 7 EHE
T, 2T,

(a) (b}
FIGURE 4.12 Frequency response of the duobinary conversion filter. () Magnitude response.
(k) Phase response.

The impulse response #,(z) is plotted in Figure 4.13, where we see that it has only two
distinguishable values at the sampling instants. The form of 4(¢) shown here explains why
we also refer to this type of correlative coding as partial-response signaling. The response
to an input pulse is spread over more than one signaling interval; stated in another way,
the response in any signaling interval is “partial.”” Note also that the tails of A,(¢) decay as
1/|t|?, which is a faster rate of decay than the 1/|t| encountered in the ideal Nyquist
channel.
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FIGURE 4.13 Impulse response of the duobinary conversion filter.
2.6.2 Modified Duobinary Signalling

In the duobinary signaling technique the frequency response H{f), and consequently the
power spectral density of the transmitted pulse, is nonzero at the origin. This is considered
to be an undesirable feature in some applications, since many communications channels
cannot transmit a DC component. We may correct for this deficiency by using the class
IV partial response or modified duobinary technique, which involves a correlation span
of two binary digits. This special form of correlation is achieved by subtracting amplitude-
modulated pulses spaced 2T, seconds apart, as indicated in the block diagram of Figure

(nput
bipary —————— =7~~~ 25 - 3
sequence I Module-2 adder !I ]I ;

{bt} {dﬂ.} FPulse- {ﬂl:} | |desal it

E =S C} ! 3 amplitude : channel --)-—|—-o‘ Mmmaﬁl’:ﬁg{
odulat Heniisst
E % t modulator E ryquistl/) : Sampleat  “Even
b E l : § = ka .t]
L o) [ | [
I ! ! 1
| | | Daley | _ E g i
27
I i f l |
o e e e e e o e 1 e e e s e o s st e e e e e e e v I
Precader Modified duobinary conversicn filter Hpy(f}

FIGURE 4.16 Modified duobinary signaling scheme.

4.16. The precoder involves a delay of 2T}, seconds. The output of the modified duobinary
conversion filter is related to the input two-level sequence {4,} at the pulse-amplitude mog.
ulator output as follows:

Cp = dp — dp—2 (4.77)

Here, again, we find that a three-level signal is generated. With @, = ®1, we find that (,
takes on one of three values: +2, 0, and —2.

The overall frequency response of the delay-line filter connected in cascade with ag
ideal Nyquist channel, as in Figure 4.16, is given by

Hw(f) = Hyyquis S — exp(—f47fT,)]
= 2{Hnyquise{ F)sIn(27f T,) exp(—j2mfTy)
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where the subscript IV in Hy(f) indicates the pertinent class of partial response and
Hiyquisel f) 1s as defined in Equation (4.68). We therefore have an overall frequency re-
sponse in the form of a half-cycle sine function, as shown by

{Zf sin(27f Ty) exp(—i2mfTe), | f1 =< 1/2T,

4.79
0, : elsewhere (4.7

Hy(f) =

The corresponding magnitude response and phase response of the modified duobinary
coder are shown in Figures 4.174 and 4.17b, respectively. A useful feature of the modified
duobinary coder is the fact that its output has no DC component. Note also that this

| ()| arg. [Hp )1

ME!
B~

|
1 1 o 1 1 il
2T, 4T, ar, o1,
@ ® .
FIGURE 4,17 Frequency response of the modified duobinary conversion filter. (z) Magnitude
response. (k) Phase response.

second form of correlative-level coding exhibits the same continuity at the band edges as
in duobinary signaling,. _

From the first line of Equation (4.78) and the definition of Hy,u..(f) in Equation
{4.68), we find that the impulse response of the modified duobinary coder consists of two
sinc {Nyquist) pulses that are time-displaced by 2T, seconds with respect to each other, as
shown by (except for a scaling factor)

_ sin{m#/Ty) _ sin[m(t — ZTb}fTb)]
‘TJ'ﬁTg, 'J‘T(t - ZTb)/Tb
_ sin{7t/T}) _ sin{mr¢/T},)

hr(e)

_ 275 sin(mt/T,)
72T, —1)

“This impulse response is plotted in Figure 4.18, which shows that it has three distinguish-
able levels at the sampling instants. Note also that, as with duobinary signaling, the tails
of hry(t) for the modified duobinary signaling decay as 1/|¢|2.
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FIGURE 4.18 Impulse response of the modified duobinary conversion filter.

2.6.3 Generalized form of correlative level coding (Partial response signaling)

Input [ ideal Output
two-level Y channel, muitilen
saqlence * _ a\c sequene

ek

H it |
i S ey}

FIGURE 4.19 Generalized correlative coding scheme.
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The duobinary and modified duobinary techniques have correlation spans of 1 binary digir
and 2 binary digits, respectively. It is a straightforward matter to generalize these tyq
techniques to other schemes, which are known collectively as correlative-level coding o
partial-response signaling schemes. This generalization is shown in Figure 4.19, where
Hyyquisd ) is defined in Equation (4.68). It involves the use of a tapped-delay-line filier
with tap-weights wy, wy, - * + , wy..;. Specifically, different classes of partial-response sig-

naling schemes may be achieved by using a weighted linear combination of N ideal Nyquist
{sinc) pulses, as shown by

N—-1 ¢
bty = > w, sinc(m - rz) (4.83)
7=0 Tb
An appropriate choice of the tap-weights in Equation (4.83) results in a variety of spectral
shapes designed to suit individual applications. Table 4.2 presents the specific details of

five different classes of partial-response signaling schemes.

i TABLE 4.2 Different classes of partial-response signaling schemes
referring to Figure 4.19 _

Type of Class N 1w, w, w, 1w Wy Caomments
I 2 1 1 Duobinary coding
I 3 1 2 1
1 3 1 -1
v 3 1 0 -1 ) Modified duobinary coding
A% ] -1 0 2 0 -1

2.7 Baseband M- ary PAM transmission

e Up to now for binary systems the pulses have two possible amplitude levels.

e In a baseband M-ary PAM system, the pulse amplitude modulator produces M
possible amplitude levels with M>2.

e In an M-ary system, the information source emits a sequence of symbols from an
alphabet that consists of M symbols.

e Each amplitude level at the PAM modulator output corresponds to a distinct symbol.

e The symbol duration T is also called as the signaling rate of the system, which is
expressed as symbols per second or bauds.

e Let’s consider the following quaternary (M=4) system.

e The symbol rate is 1/ (2Ty), since each symbol consists of two bits.

e The symbol duration T of the M- ary system is related to the bit duration Ty, of the
equivalent binary PAM system as

I'=T,log, M
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e For a given channel bandwidth, using M-ary PAM system, log,M times more
information is transmitted than binary PAM system.

e The price we paid is the increased bit error rate compared binary PAM system.

e To achieve the same probability of error as the binary PAM system, the transmit power
in M -ary PAM system must be increased.

e For M much larger than 2 and an average probability of symbol error small compared
to 1, the transmitted power must be increased by a factor of M?/ log,M compared to
binary PAM system.

e The M-ary PAM transmitter and receiver is similar to the binary PAM transmitter and
receiver.

e In transmitter, the M-ary pulse train is shaped by a transmit filter and transmitted
through a channel which corrupts the signal with noise and ISI.

e The received signal is passed through a receive filter and sampled at an appropriate
rate in synchronism with the transmitter.

e Each sample is compared with preset threshold values and a decision is made as to
which symbol was transmitted.

e Obviously, in M-ary system there are M -1 threshold levels which makes the system
complicated.

e The raised cosine pulse shape, which is ISI-free for binary signaling is also ISI-free for
M -ary signaling.

2.8 Equalization

When the signal is passed through the channel, distortion is introduced in terms
of (i) amplitude and (ii) delay. This distortion creates the problems of ISI. The
detection of the signal also becomes difficult. This distortion can be compensated with
the help of equalizers. Equalizers are basically filters, which correct the channel
distortion. Fig. 7.7.1 shows channel and equalizer for correction of distortion.

27



Channel Equalizer
X ———— "H.n Heg(h

y(t)

Fig. 7.7.1 Equalizer for correction of distortion introduced in the channel

In second chapter, we have derived a condition for distortionless transmission.
The transfer function of distortionless system is given as,

g H(f) = Ke /2*/to
The cascade connection of channel + equalizer shown in above figure will be
distortionless if,

H.(f)-Hy(f) = Ke~12%fto

Hence transfer function of the equalizer will be,
Ke‘fz"f‘o /
Hey(f) = ——r
H.(N

The equation is difficult to realize directly, but approximations are available. It
can be implemented with the help of tapped delay line filters.

2.8.1 Adaptive Equalization

w (7.7.1)

Necessity :

Most of the channels are made up of individual links. For example, in the
switched telephone network, the distortion induced depends upon

i) transmission characteristics of individual links and
ii) number of links in connnection

Hence, the fixed pair of transmit and receive filters will not serve the equalization
problem completely. The transmission characteristics of the channel keep on changing.
Hence adaptive equalization is used.

Basic Principle :

In adaptive equalization, the filters adapt themselves to the dispersive effects of
the channel. That is the coefficients of the filters are changed continuously according
to the received data. The filter coefficients are changed in such a way that the
distortion in the data is reduced.

Types :

When an equalization is done at the transmitting side it is called prechannel
equalization. This type of equalization requires feedback to know the amount of
distortion in the received data. When an equalization is done at the receiving side, it
is called postchannel equalization. In this case, no feedback is required. The equalizer
is placed after the receiving filter in the receiver.
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Fig. 7.7.3 Structure of adaptive equalizer

The adaptive equalizer shown in above figure is a tapped-delay-line fillter. It
consists of set of delay elements and variable multipliers. The sequence x(nT) is
applied to the input of the adaptive filter. The output y (nT) of the adaptive filter will
be,

y(nT) = i w; x(nT =iT) . (7.7.1)
i=0 -

The weights w; on the taps are basically adaptive filter coefficients. A known
sequence {d[nT]} is transmitted first. This sequence is known to the receiver. The
response sequence y(nT) is observed. As shown in Fig. ??’3 the error sequence
between the two sequences is calculated. i.e.,

e(nT) = d (nT) -y (nT), n=0,1,..N-1 - (7.7.2)

Here note that if there is no distortion in the channel, then d (nT)and y (nT) will
be exactly same producing zero error sequence. Then the weights of the filter ie. w,
are changed recursively such that error e¢(nT) is minimized. There are standard
algorithms to change weights of the filter recursively.

Least Mean Square (LMS) Algorithm :

This is one of the algorithm to change the tap weights of the adaptive filter
recursively. The tap weights are adapted by this algorithm as follows :

W, (nT+T) = w0, (nT)+penT)x(nT ~iT) ... (7.7.3)
Here i =0,1, ..... M-1
w; (nT) is the present estimate for tap ‘i" at time nT.
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w; (nT +T) is the updated estimate for tap ‘i’ at time nT
u is the adaption constant

x(nT =i T) is the filter input and

e(nT) is the error signal.

The parameter p controls the amount of correction applied to the old estimate to
produce updated estimate. With the help equation 7.7.3, the tap weights are obtained
in recursive manner. In this algorithm, initial tap weights are assumed zero.

2.9 Eye patterns

The quality of digital transmission systems are evaluated using the bit error rate.
Degradation of quality occurs in each process modulation, transmission, and detection. The
eye pattern is experimental method that contains all the information concerning the
degradation of quality. Therefore, careful analysis of the eye pattern is important in analyzing
the degradation mechanism.

Eye patterns can be observed using an oscilloscope. The received wave is applied to
the vertical deflection plates of an oscilloscope and the saw tooth wave at a rate equal to
transmitted symbol rate is applied to the horizontal deflection plates, resulting display is eye

pattern as it resembles human eye.

» The Eye Pattern is used to study the effect of ISI in baseband digital
transmission.

e When the sequence is transmitted over a baseband binary data transmission
system of Fig. 2.11.1 the signal obtained at the output i.e. y (f) is a continuous
time signal as shown in Fig. 2.11.1. Ideally this signal should go high and
low depending on the symbol that was transmitted. But because of the
nature of transmission channel, the signal becomes continuous with
increasing and decreasing amplitudes. Fig. 2.11.1(a) shows the binary
sequence that is transmitted and Fig. 2.11.1 (b) shows the signal y () obtained
at the output. Fig. 2.11.1 (b) also shows various sampling instants t;,,,¢{5 ....
etc. Thus based on the signal obtained over the period T, between two
sampling instants, decision is taken by the decision device. If we cut the

signal y (f) shown in Fig. 2.11.1 (b) in each intervai (T;,) and place it over one

another, then we obtain the diagram as shown in Fig. 2.11.1 (c). This

diagram is called Eve pattern of the signal y (1).
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e The name ‘eye’ is given because it looks like an eve. This pattern can also be
obtained on CRO if we apply y (f) to one of the input channels and apply an
external trigger signal of 1 /T, Hz. This makes one sweep of beam equal to
'T,," seconds. Therefore the pattern shown in Fig. 2.11.1 (c) will be obtained.
When there are large number of bits of the sequence, then eye patterns will
be as shown in Fig. 2.11.1 (d).
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Fig. 2.11.1 (a) Binary sequence transmitted (b) Received signal by baseband
transmission system (c) Eye pattern of signal in (b) (d) Eye pattern for large
number of bits in waveform y (t)

(c)

(d)

eye opening
depends
! on effect

| ! of ISI

2.9.1 Performance of data transmission system using eye pattern

e Various important conclusions can be derived from eye pattern. Fig. 2.11.2
shows various points related to eye pattern.
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(i) The width of the eye opening defines the interval over which the
received wave can be sampled without error from intersymbol
interference. It is preferable to sample the instant at which eye is open
widest. The instant is shown as best sampling time in Fig. 2.11.2.

(ii) The sensitivity of the system to timing error is determined by the rate of
closure of the eye as the sampling time is varied.

Best sampling time  p;q10tion at
| __~ sampling time

Slope = sensitivity to Margin over
timing error noise

\ Distortion of

Zero crossings

Time interval over which the
wave can be sampled

Fig. 2.11.2 Interpretation of the eye pattern

(iti) The height of the eye opening, at the specified sampling time, is called
margin over the noise.

e As the effect of inter symbol
interference  increases, the eye
opening reduces. If the eye is closed
completely, then it is not possible to
avoid errors in the output.

Response

e All the above description is for two
level (binary) system. If there are
M-levels (M-ary system), then eye
pattern contains (M-1) eye openings

lé) stacked vertically one upon the other.

i Fig. 2.11.3 shows the eye diagram for

SemeNng inwant 4 level (M = 4) system. Therefore

Fig. 2.11.3 Eye diagram for 4-level system there are 3 eye openings.

0 0.5 1 15
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2.10 Companding

Thus the compression of signal at
transmitter and expansion at receiver is called combinely as companding. Fig. 1.8.9
shows compression and expansion curves.

As can be seen from Fig. 1.8.9, at the receiver, the signal is expanded exactly
opposite to compression curve at transmitter to get original signal. A dotted line in the
Fig. 1.8.9 shows uniform quantization. The compression and expansion is obtained by
passing the signal through the amplifier having nonlinear transfer characteristic as

shown in Fig. 1.8.9. That is nonlinear transfer characteristic means compression and
expansion curves.

Vou
© Compression
Expansion
Linear characteristics
- 0 >
Expansion v
at receiver
Compression
at transmitter v

Fig. 1.8.9 Companding curves for PCM

2.10.1 p law Companding

Normally for speech and music signals a p - law compression is used. This
compression is defined by the following equation,

In(l+p|x|)

<1 .. (1.8.52
I+ | x] (1.8.52)

Z(x) = (Sgnx)

Fig. 1.8.10 shows the variation of signal to noise ratio with respect to signal level
without companding and with companding.

33



50
T With compandin/
40—

CENEe

Without companding

T T T T >
-40 -30 -20 -10 0

Signal level A
Fig. 1.8.10 PCM performance with u - law companding

It can be observed from above figure that signal to noise ratio of PCM remains
almost constant with companding.

2.10.2 A law Companding

The A law provides piecewise compressor characteristic. It has linear segment for
low level inputs and logarithmic segment for high level inputs. It is defined as,

cia L IS PTI P |
22 = 1+InA A (1.853)
T 11+In(Alx]) for —1—s|x|<l R
1+InA A -

When A = 1, we get uniform quantization. The practical value for A is 87.56. Both
A-law and p-law companding is used for PCM telephone systems.

2.11 Correlation Receiver

In this section we will study a little different type of receiver which is called
correlator. Fig. 4.4.1 shows the block diagram of this correlator.

" Locally generated
signal
x(t)
Integrator =T
o e
Py 10-x0 )

Fig. 4.4.1 Block diagram of the correlator
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In the above figure f (t) represents input noisy signal, ie., f(f)=x(t)+n(t). The
signal f(t) is multiplied to the locally generated replica of input signal x(¢). This
result of multiplication f (t)- x (t) is integrated. The output of the integrator is sampled
at t=T (i.e. end of one symbol period). Then based on this sampled value, decision is
made. This is how the correlator works. It is called correlator since it correlates the
received signal f (t) with a stored replica of the known signal x (t). In the block diagram of
above figure, the product f (¢) x (t) is integrated over one symbol period, i.e. T. Hence
output r (f) can be written as,

T
rt) = [ fO)x(®)dt
0

At t =T, the above equation will be,

T
Output of correlator : r(T) = [ () x (t)dt - (440)
0
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