UNIT 2 : DESIGN OF COMBINATIONAL CIRCUITS

Introduction to Combinational circuits - Analysis and design procedures - Half Adder, Full Adder-Half Subtractor, Full Subtractor- Parallel binary Adder, Parallel binary Subtractor- Carry look ahead Adder- BCD Adder-Decoders- Encoders-Priority Encoder-Multiplexers- MUX as universal combinational modules- Demultiplexers- Code convertors- Magnitude Comparator.

2.1 Introduction to Combinational circuits

Combinational Logic Circuits are made from the basic and universal gates. The output is defined by the logic and it is depend only the present input states not the previous states.

Inputs and output(s) : logic 0 (low) or logic 1 (high).

Fig. Block diagram of a combinational circuits

Analysis and design procedures
The following are the basic steps to design a combinational circuits

1. Define the problem.
2. Determine the number of input and output variables.
3. Fix a letter symbols to the input and the outputs. (eg. A,B,C ,w, x, Y,F, etc)
4. Get the relationship between input and output from the truth table.
5. By using K-map obtain the simplified Boolean expression for the outputs.
6. Draw the logic diagram using gates.

Example : Design a combinational logic circuit with three inputs, the output is at logic 1 when more than one inputs are at logic 1.

Solution: Assume A, B, C are inputs and Y is output.

Truth table

Inputs			Output
\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{Y}
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

K map Simplification

Boolean Expression

$$
Y=A C+B C+A B
$$

Logic Diagram

2.2 Adder

The Basic operation in digital computer is binary addition. The circuit which perform the addition of binary bits are called as Adder.

The logic circuit which perform the addition of two bit is called Half adder and three bit is called Full adder.

SCHOOL OF ELECTRICAL AND ELECTRONICS COURSE MATERIAL SEC1207-DIGITAL LOGIC CIRCUITS UNIT-2

Rules for two bit addition

$0+0=0$
$0+1=1$
$1+0=1$
$1+1=10_{2}$

2.2.1 Half Adder

The two inputs of the half adders are augend and addend, the outputs are sum and carry.

2.2.2 Full Adder

The three inputs of the full adders are augend, addend and the carry input from the previous addition, the outputs are sum and carry Block diagram of Full adder

Truth table				
Inputs Outputs A B Cin Cout Sum 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 1 1 0 0 0 1 0 1 1 1 1 0 1 1 1 1 1				

K-map simplifications
For Sum

Sum $=\bar{A} \bar{B} C$ in $+\bar{A} B \bar{C}$ in $+A \bar{B} \bar{C}$ in $+A B C$ in

For Cout

Cout $=A B+B C$ in $+A C$ in

The Full Adder can be implement using Two Half Adders and OR gates

The expression for sum is

$$
\begin{aligned}
\text { Sum } & =\bar{A} \bar{B} C_{i n}+\bar{A} B \bar{C}_{i n}+A \bar{B} \bar{C}_{i n}+A B C_{i n} \\
& =C_{i n}(\bar{A} \bar{B}+A B)+\bar{C}_{i n}(\bar{A} B+A \bar{B}) \\
& =C_{i n}(A \cdot B)+\bar{C}_{\text {in }}(A \oplus B) \\
& =C_{i n}(\overline{A \oplus B})+\bar{C}_{i n}(A \oplus B) \\
& =C_{i n} \oplus(A \oplus B)
\end{aligned}
$$

The Expression for carry is

$$
\begin{aligned}
C_{\text {out }} & =A B+A C_{\text {in }}+B C_{\text {in }} \\
& =A B+A C_{\text {in }}+B C_{\text {in }}(A+\bar{A}) \\
& =A B C_{i n}+A B+A C_{\text {in }}+\bar{A} B C_{\text {in }} \\
& =A B\left(C_{\text {in }}+1\right)+A C_{\text {in }}+\bar{A} B C_{\text {in }} \\
& =A B+A C_{\text {in }}+\bar{A} B C_{\text {in }} \\
& =A B+A C_{\text {in }}(B+\bar{B})+\bar{A} B C_{\text {in }} \\
& =A B C_{\text {in }}+A B+A \bar{B} C_{\text {in }}+\bar{A} B C_{\text {in }} \\
& =A B\left(C_{\text {in }}+1\right)+A \bar{B} C_{\text {in }}+\bar{A} B C_{\text {in }} \\
& =A B+A \bar{B} C_{\text {in }}+\bar{A} B C_{\text {in }} \\
& =A B+C_{\text {in }}(A \bar{B}+\bar{A} B) \\
& =A B+C_{\text {in }}(A \oplus B)
\end{aligned}
$$

Logic Diagram

SCHOOL OF ELECTRICAL AND ELECTRONICS

2.3 Subtractor

Subtractor is the logic circuit which is used to subtract two binary number (digit) and provides Difference and Borrow as a output. In digital electronics we have two types of subtractor, Half Subtractor and Full Subtractor.

Rules for two bit addition

$0-0=0$
$0-1=1$ with borrow 1
$1-0=1$
$1-1=0$

2.3.1 Half Subtractor

Half Subtractor is used for subtracting one single bit binary digit from another single bit binary digit.The truth table of Half Subtractor is shown below.

Truth table of Half adder			
Inputs Outputs A B Difference Borrow 0 0 0 0 0 1 1 1 0 1 1 1 0			

K-map for Difference and Borrow

Borrow = $\overline{\text { A }} \mathbf{B}$
 $=A \oplus B$

SCHOOL OF ELECTRICAL AND ELECTRONICS COURSE MATERIAL SEC1207-DIGITAL LOGIC CIRCUITS UNIT-2

2.3.2 Full Subtractor

A logic Circuit Which is used for Subtracting Three Single bit Binary digit is known as Full Subtractor.The inputs are A,B, Bin and the outputs are D and Bout.

Truth table				
Inputs			Outputs	
A	B	Bin	D	Bout
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

K-map for D and Bout

$D=\bar{A} \bar{B} B_{i n}+\bar{A} B \bar{B}_{\text {in }}+A B B_{i n}+A B B_{i n}$

$$
\mathrm{B}_{\text {out }}=\mathbb{A B}_{\mathrm{in}}+\bar{A} \mathrm{~B}^{2}+\mathrm{BB} \mathrm{~B}_{\mathrm{in}}
$$

Logic Diagram

We can further simplify the function of the Difference (D)

$$
\begin{aligned}
D & =\bar{A} \bar{B} B_{\text {in }}+\bar{A} B \bar{B}_{\text {in }}+A \bar{B} \bar{B}_{\text {in }}+A B B_{\text {in }} \\
& =B_{\text {in }}(\bar{A} \bar{B}+A B)+\bar{B}_{\text {in }}(\bar{A} B+A \bar{B}) \\
& =B_{\text {in }}(A \odot B)+\bar{B}_{\text {in }}(A \oplus B) \\
& =B_{\text {in }}(\overline{A \oplus} \bar{B})+\bar{B}_{\text {in }}(A \oplus B) \\
& =B_{\text {in }} \oplus(A \oplus B)
\end{aligned}
$$

2.4 Parallel Adder - Subtractor

2.4.1 Four bit Parallel binary Adder

In practical situations it is required to add two data each containing more than one bit. Two binary numbers each of n bits can be added by means of a full adder circuit. Consider the example that two 4-bit binary numbers $B{ }_{4} B{ }_{3} B{ }_{2} B{ }_{1}$ and $A_{4} A_{3} A{ }_{2} A$ ${ }_{1}$ are to be added with a carry input C_{1}. This can be done by cascading four full adder circuits. The least significant bits $\mathrm{A}_{1}, \mathrm{~B}_{1}$, and C_{1} are added to the produce sum output S_{1} and carry output C_{2}. Carry output C_{2} is then added to the next significant bits A_{2} and B_{2} producing sum output S_{2} and carry output $C_{3} . C_{3}$ is then added to A_{3} and B_{3} and so on. Thus finally producing the four-bit sum output $S_{4} S_{3} S_{2} S_{1}$ and final carry output Cout.

SCHOOL OF ELECTRICAL AND ELECTRONICS COURSE MATERIAL SEC1207-DIGITAL LOGIC CIRCUITS UNIT-2

Fig.Block diagram of 4 bit binary parallel Adder

2.4.2 Four Bit Parallel Binary Subtractor

We can design a four bit parallel subtractor by connecting three full subtractors and one half subtractor. In the figure $A=A_{3} A_{2} A_{1} A_{0}$ is minuend $B=B_{3} B_{2} B_{1} B_{0}$ is subtrahend giving the difference $D=D_{3} D_{2} D_{1} D_{0}$.

Fig.Block diagram of 4 bit binary parallel Subtractor

The subtraction operation can be performed using 1's and 2's complement addition, so we can design Full subtractor using Full Adder.

Fig.Four bit binary subtractor using Full Adder

2.4.3 Parallel binary Adder - Subtractor

SCHOOL OF ELECTRICAL AND ELECTRONICS COURSE MATERIAL SEC1207-DIGITAL LOGIC CIRCUITS UNIT-2
The addition and subtraction operations can be perform using a common adder circuit, where a EX-OR gate is connected in the second input along with the mode selection bit M. if $M=0$ the circuit act as a adder, $M=1$ then substractor. If $M=0$ then output of the EX-OR gate is B act as adder, if $M=1$ then B ' act as a subtractor.

Fig.Parallel binary Adder - Subtractor

2.4.4 Carry look ahead Adder

In the parallel adder the carry input of each stage is depends on the carry output of the previous stage. This processes leads to time delay in addition. This delay is called propagation delay. The process can be speeding up by eliminating the inter stage carry delay called look ahead carry addition. In uses two functions carry generate and carry propagate.

Fig.Full Adder Circuit

$$
\begin{aligned}
& P_{i}=A_{i} \oplus B_{i} \\
& G_{i}=A_{i} B_{i}
\end{aligned}
$$

The output sum and carry can be expressed as

SCHOOL OF ELECTRICAL AND ELECTRONICS COURSE MATERIAL SEC1207-DIGITAL LOGIC CIRCUITS UNIT-2

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{i}}=\mathrm{P}_{\mathrm{i}} \oplus \mathrm{C}_{\mathrm{i}} \\
& \mathrm{C}_{\mathrm{i}+1}=\mathrm{G}_{\mathrm{i}}+\mathrm{P}_{\mathrm{i}} \mathrm{C}_{\mathrm{i}}
\end{aligned}
$$

Gi is called carry generate and Pi is called carry propagate.

The Boolean function for the carry output of each stage can be

$$
\begin{aligned}
\mathrm{C}_{2} & =\mathrm{G}_{1}+P_{1} C_{1} \\
\mathrm{C}_{3} & =G_{2}+P_{2} C_{2}=G_{2}+P_{2}\left(G_{1}+P_{1} C_{1}\right) \\
& =G_{2}+P_{2} G_{1}+P_{2} P_{1} C_{1} \\
C_{4} & =G_{3}+P_{3} C_{3}=G_{3}+P_{3}\left(G_{2}+P_{2} G_{1}+P_{2} P_{1} C_{1}\right) \\
& =G_{3}+P_{3} G_{2}+P_{3} P_{2} G_{1}+P_{3} P_{2} P_{1} C_{1}
\end{aligned}
$$

From the above functions it can be seen that C_{4} does not have to wait for C_{3} and C_{2}. All the carries are propagating at the same time.

Fig.Logic diagram of a look-ahead carry generator

SCHOOL OF ELECTRICAL AND ELECTRONICS COURSE MATERIAL SEC1207-DIGITAL LOGIC CIRCUITS UNIT-2

2.5 BCD Adder

In digital system, the decimal number is represented in the form of binary coded decimal ($B C D$).The ten digit ($0-9$) decimal numbers are represented by the binary digits. The circuit which add the two BCD number is called BCD adder. The BCD cannot be greater than 9 . The representation of the BCD number as follows, consider the 526 it can be expressed as

There are three different cases in BCD Addition
i)Sum is less than or equal to 9 with carry 0

Consider the addition of two BCD numbers 6 and 3, The addition is performed as normal binary addition

ii)Sum is greater than 9 with carry 0

consider the number 6 and 8 in BCD
The sum is invalid BCD number, Add the sum with correction number 6

After addition of 6 carry is produced into the second decimal position.

iii) Sum equals 9 or less with carry 1

Consider the addition of 8 and 9 in BCD.

The result 00010001 is valid BCD number but it is incorrect. Add 6 to get correct number.

The procedure for BCD addition is

1. Add two BCD numbers using ordinary binary addition.
2. If four bit sum is less than or equal to zero, then correction is needed.
3. If the four bit sum is greater than 9 or if carry is generated then add 0110.

Implementation of BCD Adder

We require 4-bit binary adder for initial addition, Logic circuit to detect sum greater than 9 , and second 4 bit binary adder to add 0110.

The following truth table is used to design a circuit for the sum, which is greater than 9

Inputs				Output	K map for carry (Y) identification				
S_{3}	S_{2}	S_{1}	S_{0}	Y	$\mathrm{s}_{3} \mathrm{~s}_{2} \mathrm{~s}_{1} \mathrm{~s}_{0}$				
0	0	0	0	0			01		
0	0	0	1	0	00	0	0		0
0	0	1	0	0	01				0
0	0	1	1	0					
0	1	0	0	0	11				1
0	1	0	1	0	10				1
0	1	1	0	0	$Y=S_{3} S_{2}+S_{3} S_{1}$ If $\mathrm{Y}=1$ add 0110 using binary adder				
0	1	1	1	0					
1	0	0	0	0					
1	0	0	1	0					
1	0	1	0	1					
1	0	1	1	1					
1	1	0	0	1					
1	1	0	1	1					
1	1	1	0	1					
1	1	1	1	1					

SCHOOL OF ELECTRICAL AND ELECTRONICS COURSE MATERIAL SEC1207-DIGITAL LOGIC CIRCUITS UNIT-2
Block diagram of Binary Adder

Fig.Block diagram of BCD adder
The binary adder add two $B C D$ numbers, ifcarry is ' 0 ' nothing to be added. If carry is ' 1 ' add 0110 with the sum, consider the overall carry from the first stage of the addition.

SCHOOL OF ELECTRICAL AND ELECTRONICS COURSE MATERIAL SEC1207-DIGITAL LOGIC CIRCUITS UNIT-2
Example : Design an8-bit BCD adder using IC 74283.
Solution: Use two 4 -bit BCD adder to design 8 -bit binary adder.

Fig. 8- bit BCD Adder using IC 74283

2.6 Decoder

Decoder is a combinational circuit.
It has N inputs and 2^{N} outputs.

2 to 4 Decoder

It has 2 inputs and $2^{2}=4$ outputs.

Circuit Diagram

Truth Table

\mathbf{A}	\mathbf{B}	$\mathbf{Z}_{\mathbf{0}}$	\mathbf{Z}_{1}	\mathbf{Z}_{2}	\mathbf{Z}_{3}
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

Logic Diagram

Truth Table

enabled	En	A	B	Z_{0}	Z_{1}	Z_{2}	Z_{3}
	1	0	0	1	0	0	0
	1	0	1	0	1	0	0
	1	1	0	0	0	1	0
disabled	1	1	1	0	0	0	1
	0	x	x	0	0	0	0

Logic Diagram

SCHOOL OF ELECTRICAL AND ELECTRONICS COURSE MATERIAL SEC1207-DIGITAL LOGIC CIRCUITS UNIT-2

3 to 8 Decoder

It has 3 inputs and $2^{3}=8$ outputs.

Inputs				Outputs								
EN	A	B	C	Y_{7}	y_{6}	Y_{5}	Y_{4}	Y_{3}	Y_{2}	y_{1}	Y_{0}	
0	x	X	x	0	0	0	0	0	0	0	0	
1	0	0	0	0	0	0	0	0	0	0	1	
1	0	0	1	0	0	0	0	0	0	1	0	
1	0	1	0	0	0	0	0	0	1	0	0	
1	0	1	1	0	0	0	0	1	0	0	0	
1	1	0	0	0	0	0	1	0	0	0	0	
1	1	0	1	0	0	1	0	0	0	0	0	
1	1	1	0	0	1	0	0	0	0	0	0	
1	1	1	1	1	0	0	0	0	0	0	0	

2.7 Encoders

Encoders is a combinational circuit which takes 2^{N} inputs and gives out N outputs, the enable pin should be kept 1 for enabling the circuit.

4 to 2 Encoder

It has 2^{2} inputs and 2 outputs.

Truth Table

$\mathbf{Y}_{\mathbf{0}}$	$\mathbf{Y}_{\mathbf{1}}$	$\mathbf{Y}_{\mathbf{2}}$	$\mathbf{Y}_{\mathbf{3}}$	\mathbf{A}	\mathbf{B}
1	0	0	0	0	0
0	1	0	0	0	1
0	0	1	0	1	0
0	0	0	1	1	1

2.7.1 Priority Encoders

A Priority Encoder works opposite of the decoder circuit. If more than one input is active, the higher order input has priority.

4 to 2 Priority Encoders

D0-D3 - inputs
A1,A0 - outputs
Active (A)- Valid indicator. It indicates the output is valid or not
Output is invalid when no inputs are active .i.e, $A=0$
Output is valid when at least one input is active .i,e, $A=1$

Truth Table

D3	D2	D1	D0	A1	A0	Active
0	0	0	0	0	0	0
0	0	0	$\mathbf{1}$	0	0	1
0	0	$\mathbf{1}$	\mathbf{x}	0	1	1
$\mathbf{0}$	$\mathbf{1}$	\mathbf{x}	\mathbf{x}	1	0	1
$\mathbf{1}$	\mathbf{X}	\mathbf{x}	\mathbf{x}	1	1	1

K-map simplification

$\mathrm{A}_{1}=\mathrm{D}_{2}+\mathrm{D}_{3}$

$\mathrm{A}_{0}=\mathrm{D}_{3}+\mathrm{D}_{1} \overline{\mathrm{D}}_{2}$

$$
\mathrm{A}=\mathrm{D}_{2}+\mathrm{D}_{3}+\mathrm{D}_{1}+\mathrm{D}_{0}
$$

3 to 8 Priority Encoder

y_{0}	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}	y_{6}	y_{7}	a	b	c	d
0	0	0	0	0	0	0	0	0	0	0	0
$\mathbf{1}$	0	0	0	0	0	0	0	0	0	0	1
X	1	0	0	0	0	0	0	0	0	1	1
X	X	1	0	0	0	0	0	0	1	0	1
X	X	X	1	0	0	0	0	0	1	1	1
X	X	X	X	1	0	0	0	1	0	0	1
X	X	X	X	X	1	0	0	1	0	1	1
X	X	X	X	X	X	1	0	1	1	0	1
X	X	X	X	X	X	X	1	1	1	1	1

2.8 Mutliplexer (Mux)

Multiplexer is a combinational circuit that selects binary information from one of many inputs and directs it into single output.

The selection of particular input is controlled by a set of selection line Mutliplexer has 2^{n} inputs, n select line (control input) and one output

SCHOOL OF ELECTRICAL AND ELECTRONICS COURSE MATERIAL SEC1207-DIGITAL LOGIC CIRCUITS UNIT-2
It also called as Data selector

2 to 1 Multiplexer

has 2^{1} inputs, 1 select line and one output

Circuit diagram

4 to 1 MUX

4 to 1 MUX has $2^{2}=4$ inputs, 2 select line and one output

\mathbf{A}	\mathbf{B}	\mathbf{Z}
0	0	I_{0}
0	1	I_{1}
1	0	I_{2}
1	1	I_{3}

$\mathrm{Z}=\mathrm{A}^{\prime} \cdot \mathrm{B}^{\prime} \cdot \mathrm{I}_{0}+\mathrm{A}^{\prime} \cdot \mathrm{B} \cdot \mathrm{I}_{1}+\mathrm{A} \cdot \mathrm{B}^{\prime} \cdot \mathrm{I}_{2}+\mathrm{A} \cdot \mathrm{B} \cdot \mathrm{I}_{3}$
8 to1 MUX
8 to 1 MUX has $2^{3}=8$ inputs, 3 select line and one output

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{Z}
0	0	0	I_{0}
0	0	1	I_{1}
0	1	0	I_{2}
0	1	1	I_{3}
1	0	0	I_{4}
1	0	1	I_{5}
1	1	0	I_{6}
1	1	1	I_{7}

$$
\begin{aligned}
& Z=A^{\prime} \cdot B^{\prime} \cdot C^{\prime} \cdot I_{0}+A^{\prime} \cdot B^{\prime} \cdot \mathbf{C} \cdot I_{1}+A^{\prime} \cdot B \cdot C^{\prime} \cdot I_{2}+A^{\prime} \cdot B \cdot C \cdot I_{3}+ \\
& \text { A.B'.C'. } I_{0}+\text { A.B'.C.I }+ \text { A' }^{\prime} \cdot \text { B. }^{\prime} \cdot \mathbf{I}_{2}+\text { A.B.C. } I_{3}
\end{aligned}
$$

$$
\mathrm{Z}=\Sigma \mathrm{m}_{\mathrm{i}} \cdot \mathbf{I}_{\mathrm{i}}
$$

2.8.1 MUX as universal combinational modules

Each minterm of the function can be mapped to a data input of the multiplexer.
For each row in the truth table, where the output is 1 , set the corresponding data input of the mux to 1 . Set the remaining inputs of the mux to 0 .

Example 1: Implement the following Boolean function using 4:1 MUX

$$
F(x, y, z)=\Sigma m(1,2,6,7)
$$

Truth Table

x	y	z	F	
0	0	0	0	$F=z$
0	0	1	1	
0	1	0	1	$F=z$
0	1	1	0	
1	0	0	0	$F=0$
1	0	1	0	
1	1	0	1	$F=1$
1	1	1	1	

Multiplexer Implementation

SCHOOL OF ELECTRICAL AND ELECTRONICS COURSE MATERIAL SEC1207-DIGITAL LOGIC CIRCUITS UNIT-2
Example 2: Implement the following Boolean function using 8:1 MUX

$$
F(A, B, C, D)=\Sigma m(1,3,4,11,12-15)
$$

A	F	C	D	F	
0	0	0	0	0	$F=O$
0	0	0	1	1	
0	0	1	0	0	$F=D$
0	0	1	1	1	
0	1	0	0	1	$F=D$
0	1	0	1	0	
0	1	1	0	0	$F=0$
0	1	1	1	0	
1	0	0	0	0	$F=0$
1	0	0	1	0	
1	0	1	0	0	$F=O$
1	0	1	1	1	$F=0$
1	1	0	0	1	$F=1$
1	1	0	1	1	
1	1	1	0	1	$F=1$
1	1	1	1	1	

2.9 Demultiplexer (DEMUX)

Demultiplexer has 2^{n} outputs, n select lines, one input.
A demultiplexer is also called a data distributor.

1-to-2 demultiplexer

has 2^{2} outputs, 2 select lines, one input.

The truth table

Select	Input	Outputs	
S	D	\mathbf{Y}_{1}	\mathbf{Y}_{0}
0	0	0	0
0	1	0	1
1	0	0	0
1	1	1	0

Logic diagram

SCHOOL OF ELECTRICAL AND ELECTRONICS COURSE MATERIAL SEC1207-DIGITAL LOGIC CIRCUITS UNIT-2
1-to-4 Demultiplexer
It has one input, 2 select lines, 4 outputs

The truth table

Data Input	Select Inputs		Outputs				
D	S_{1}	S_{0}	Y_{3}	Y_{2}	Y_{1}	Y_{0}	
D	0	0	0	0	0	D	
D	0	1	0	0	D	0	
D	1	0	0	D	0	0	
D	1	1	D	0	0	0	

$$
\mathrm{Y0}=\overline{\mathrm{S1}} \overline{\mathrm{SO}} \mathrm{D}
$$

$$
\mathrm{Y} 1=\overline{\mathrm{S} 1} \mathrm{~S} 0 \mathrm{D}
$$

$$
\mathrm{Y} 2=\mathrm{S} 1 \overline{\mathrm{SO}} \mathrm{D}
$$

$$
\mathrm{Y} 3=\mathrm{S} 1 \mathrm{~S} 0 \mathrm{D}
$$

1-to-8 Demultiplexer

Has one input
3 -select lines
8 -outputs

The truth table

Datal Input	Select Inputs			Outputs							
D	S_{2}	S_{1}	S_{0}	Y_{7}	Y_{6}	Y_{5}	Y_{4}	Y_{3}	Y_{2}	Y_{1}	Y_{0}
D	0	0	0	0	0	0	0	0	0	0	D
D	0	0	1	0	0	0	0	0	0	0	0
D	0	1	0	0	0	0	0	0	D	0	0
D	0	1	1	0	0	0	0	D	0	0	0
D	1	0	0	0	0	0	D	0	0	0	0
0	1	0	1	0	0	D	0	0	0	0	0
D	1	1	0	0	D	0	0	0	0	0	0
D	1	1	1	D	0	0	0	0	0	0	0

$$
\begin{aligned}
& \mathrm{YO}=\mathbf{D} \overline{\mathbf{S} \mathbf{2}} \overline{\mathbf{S 1}} \overline{\mathbf{S 0}} \\
& \mathrm{Y} \mathbf{1}=\mathbf{D} \overline{\mathbf{S} \mathbf{2}} \overline{\mathbf{S} 1} \mathbf{S} \mathbf{0} \\
& \mathrm{Y} 2=\mathrm{D} \overline{\mathrm{~S} 2} \mathrm{~S} 1 \overline{\mathrm{~S} 0} \\
& \mathbf{Y} 3=\mathbf{D} \overline{\mathbf{S} 2} \mathbf{S} 1 \mathbf{S} 0 \\
& \mathbf{Y 4}=\mathrm{D} \mathbf{S} \mathbf{2} \overline{\mathbf{S 1}} \overline{\mathbf{S 0}} \\
& \mathbf{Y} 5=\mathbf{D} \mathbf{S} \mathbf{2} \overline{\mathbf{S 1}} \mathbf{S} 0 \\
& \mathrm{Y} 6=\mathrm{D} \mathbf{~ S} 2 \mathrm{~S} 1 \overline{\mathrm{So}} \\
& \mathbf{Y} 7=\mathbf{D} \mathbf{S} 2 \mathbf{S} 1 \mathbf{S o}
\end{aligned}
$$

Logic Diagram

SCHOOL OF ELECTRICAL AND ELECTRONICS COURSE MATERIAL SEC1207-DIGITAL LOGIC CIRCUITS UNIT-2

1-to-8 demultiplexer can be implemented by using two 1-to-4 demultiplexers with a proper cascading.

In the above figure, the highest significant bit A of the selection inputs are connected to the enable inputs such that it is complemented before connecting to one DEMUX and to the other it is directly connected.By this configuration, when A is set to zero, one of the output lines from $Y 0$ to $Y 3$ is selected based on the combination of select lines B and C. Similarly, when A is set to one, based on the select lines one of the output lines from Y4 to Y 7 will be selected.

2.9.1 Applications of Demultiplexer

- Synchronous data transmission systems
- Boolean function implementation (as we discussed full subtractor function above)
- Data acquisition systems
- Combinational circuit design
- Automatic test equipment systems

SCHOOL OF ELECTRICAL AND ELECTRONICS COURSE MATERIAL SEC1207-DIGITAL LOGIC CIRCUITS UNIT-2

- Security monitoring systems (for selecting a particular surveillance camera at a time), etc.

2.10 CODE CONVERTORS

Numbers are usually coded in one form or another so as to represent or use it as required. For instance, a number 'nine' is coded in decimal using symbol (9)d. Same is coded in naturalbinary as (1001)b. While digital computers all deal with binary numbers, there are situations wherein natural-binary representation of numbers in in-convenient or in-efficient and some other (binary) code must be used to process the numbers.

One of these other code is gray-code, in which any two numbers in sequence differ only by one bit change. This code is used in K-map reduction technique. The advantage is that when numbers are changing frequently, the logic gates are turning ON and OFF frequently and so are the transistors switching which characterizes power consumption of the circuit; since only one bit is changing from number to number, switching is reduced and hence is the power consumption.

Let's discuss the conversion of various codes from one form to other.

2.10.1 BINARY-TO-GRAY

The table that follows shows natural-binary numbers (upto 4-bit) and corresponding gray codes.

Natural-binary code			Gray code					
B3	B2	B1	B0	G3	G2	G1	G0	
								0
0	0	0	0	0	0	0	0	
0	0	0	1	0	0	0	1	
0	0	1	0	0	0	1	1	
0	0	1	1	0	0	1	0	
0	1	0	0	0	1	1	0	
0	1	0	1	0	1	1	1	
0	1	1	0	0	1	0	1	
0	1	1	1	0	1	0	0	
1	0	0	0	1	1	0	0	
1	0	0	1	1	1	0	1	
1	0	1	0	1	1	1	1	
1	0	1	1	1	1	1	0	
1	1	0	0	1	0	1	0	
1	1	0	1	1	0	1	1	
1	1	1	0	1	0	0	1	
1	1	1	1	1	0	0	0	

SCHOOL OF ELECTRICAL AND ELECTRONICS COURSE MATERIAL SEC1207-DIGITAL LOGIC CIRCUITS UNIT-2
Looking at gray-code (G3G2G1G0), we find that any two subsequent numbers differ in only one bit-change.

The same table is used as truth-table for designing a logic circuitry that converts a given 4-bit natural binary number into gray number. For this circuit, B3 B2 B1 B0 are inputs while G3 G2 G1 G0 are outputs.

K-map for the outputs:

$$
G_{0}=B_{1}^{\prime} B_{0}+B_{1} B_{0}^{\prime}
$$

$$
G_{0}=B_{0} \oplus B_{1}
$$

$$
\begin{gathered}
G_{1}=B_{1}^{\prime} B_{2}+B_{1} B_{2}^{\prime} \\
G_{2}=B_{1} \oplus B_{2}
\end{gathered}
$$

$$
\begin{gathered}
G_{2}=B_{3}^{\prime} B_{2}+B_{3} B_{2}^{\prime} \\
G_{2}=B_{2} \oplus B_{3}
\end{gathered}
$$

And $\mathrm{G} 3=\mathrm{B} 3$

Binary to Gray Converter

So that's a simple three EX-OR gate circuit that converts a 4-bit input binary number into its equivalent 4-bit gray code. It can be extended to convert more than 4-bit binary numbers.

SCHOOL OF ELECTRICAL AND ELECTRONICS COURSE MATERIAL SEC1207-DIGITAL LOGIC CIRCUITS UNIT-2

2.10.2 Gray-to-Binary

Truth-table:

Gray code					Natural-binary code				
G3	G2	G1	G0	B3	B2	B1	B0		
0	0	0	0	0	0	0	0		
0	0	0	1	0	0	0	1		
0	0	1	0	0	0	1	1		
0	0	1	1	0	0	1	0		
0	1	0	0	0	1	1	1		
0	1	0	1	0	1	1	0		
0	1	1	0	0	1	0	0		
0	1	1	1	0	1	0	1		
1	0	0	0	1	1	1	1		
1	0	0	1	1	1	1	0		
1	0	1	0	1	1	0	0		
1	0	1	1	1	1	0	1		
1	1	0	0	1	0	0	0		
1	1	0	1	1	0	0	1		
1	1	1	0	1	0	1	1		
1	1	1	1	1	0	1	0		

Then the K-maps:

$$
\begin{aligned}
B_{1}= & G_{3}^{\prime} G_{2}^{\prime} G_{1}+G_{3}^{\prime} G_{2} G_{1}^{\prime}+G_{3} G_{2} G_{1}+G_{3} G_{2}^{\prime} G_{1}^{\prime} \\
& =G_{3}^{\prime}\left(G_{2} \oplus G_{1}\right)+G_{3}\left(G_{2} \oplus G_{1}\right)^{\prime} \\
& =G_{1} \oplus G_{2} \oplus G_{3}
\end{aligned}
$$

$$
\begin{aligned}
B_{2} & =G_{3}^{\prime} G_{2}+G_{3} G_{2}^{\prime} \\
& =G_{3} \oplus G_{2}
\end{aligned}
$$

And
Regulation 2015

B3 = G3

SCHOOL OF ELECTRICAL AND ELECTRONICS COURSE MATERIAL SEC1207-DIGITAL LOGIC CIRCUITS UNIT-2
The realization of Gray-to-Binary converter is

2.11 Comparators

- A comparator will evaluate two binary strings and output a 1 if the two strings are exactly the same.
- The Exclusive-NOR (Equality gate) is used to perform the comparison.
- One Exclusive-NOR is used per pair of Binary bits and the outputs of all Exclusive-NORS are ANDed together.

- The 7485 is a 4-bit magnitude comparator.

A magnitude comparator will determine if $A=B, A>B$ or $A<B$.

- Expansion inputs are provided on the 7483 so that word sizes larger then 4 -bits may be compared.

Magnitude Comparator

Definition
A magnitude comparator is a combinational circuit that compares two numbers A \& B to determine whether:
$A>B$, or
$A=B$, or
A < B

2-bit magnitude comparator

SATHYABAMA UNIVERSITY
SCHOOL OF ELECTRICAL AND ELECTRONICS COURSE MATERIAL SEC1207-DIGITAL LOGIC CIRCUITS UNIT-2

Inputs					Outputs		
\mathbf{A}_{1}	\mathbf{A}_{0}	\mathbf{B}_{1}	\mathbf{B}_{0}	$\mathbf{A}>\mathbf{B}$	$\mathbf{A}=\mathbf{B}$	$\mathbf{A}<\mathbf{B}$	
0	0	0	0	0	1	0	
0	0	0	1	0	0	1	
0	0	1	0	0	0	1	
0	0	1	1	0	0	1	
0	1	0	0	1	0	0	
0	1	0	1	0	1	0	
0	1	1	0	0	0	1	
0	1	1	1	0	0	1	
1	0	0	0	1	0	0	
1	0	0	1	1	0	0	
1	0	1	0	0	1	0	
1	0	1	1	0	0	1	
1	1	0	0	1	0	0	
1	1	0	1	1	0	0	
1	1	1	0	1	0	0	
1	1	1	1	0	1	0	

4-bit magnitude comparator
Inputs: 8-bits ($A \Rightarrow 4$-bits, $B \Rightarrow 4$-bits)
A and B are two 4-bit numbers
Let $A=A 3 A 2 A 1 A 0$, and
_ Let B = B3B2B1B0
_ Inputs have 28 (256) possible combinations
Not easy to design using conventional techniques
The circuit possesses certain amount of regularity \Rightarrow can be designed algorithmically.
Design of the EQ output $(A=B)$ in 4-bit magnitude comparator

SATHYABAMA UNIVERSITY
SCHOOL OF ELECTRICAL AND ELECTRONICS COURSE MATERIAL SEC1207-DIGITAL LOGIC CIRCUITS UNIT-2

HEMTIE								HTTPETL=		
-1를	-77	4.7	\#1010	$\square 1$	121	핌	L-	-	-	-
ㅌㅡㅡㄹ	1	11	11	1	1	1	E	E	-	1
-	\square	\square	\square	\square	\square	0	1	-	플	$\underline{1}$
-	0	1	4	\pm	\square	1.	-	-	-	$\underline{1}$
E-	1	1	4	1	1	1	1	=	1	\pm
플	π	$\underline{1}$	4	$1]$	1	\square	E	-	[\underline{L}
-	0	1	4	\square	1	\square	1	-	-	$\underline{1}$
븡	1	1	11	1	1.	1	-		1	1
플	\square	$1]$	1	1	1	1	1	를	T	$\underline{1}$
=	0	1	\square	1	\square	\square	-	=	3	$\underline{1}$
-	1	4	4	1	4	1	1	-	4	1
-ㅡㄹ	1	$1]$	1	L	1	1.	-	-	1	-
프․	0	[\pm	1	\pm	1	1	-	=	$\underline{1}$
-	\square	4	4	1.	1.	4	-	=	-	$\underline{1}$
-	1	4	1	1	1	1	1	${ }^{-1}$	1	-
플	0	\square	\square	1.	1.	1.	든	-	-	$\underline{1}$
-	0	1	\pm	\underline{L}	1.	1.	1	픙	픈	$\underline{1}$
틀	1	1	1	1	4	1	-	-	4	1
-	\square	11	L	$1]$	1	0	1	-	-	1
-	0	$\underline{1}$	1	\square	\square	1	-	-	-	$\underline{1}$
=	4	4	1	\pm	4	1	1	=	13	t
\square			\square							\square
-	1	$\underline{1}$	\underline{L}	1.	1	1.	1	=	-	4

