SCS5107 Computational Intelligence
Computational Intelligence:

Computational intelligence (CI) is a set of Nature inspired computational
methodologies and approaches to address complex problems of the real world
applications to which traditional methodologies and approaches are ineffective or
infeasible. It primarily includes Fuzzy logic systems, Neural Networks and
Evolutionary Computation. In addition, CI also embraces techniques that stem
from the above three or gravitate around one or more of them, such as Swarm
intelligence and Artificial immune systems which can be seen as a part of
Evolutionary Computation.

Evolutionary Computation

In computer science, evolutionary computation is a subfield of artificial
intelligence (more particularly computational intelligence) that involves
combinatorial

optimization problems. Evolutionary techniques mostly involve metaheuristic
optimization algorithms such as:

Evolutionary algorithms (comprising genetic algorithms, evolutionary
programming, evolution strategy and Genetic programming) Swarm intelligence
(comprising ant colony optimization and particle swarm optimization and in a
lesser extent Artificial immune systems, Cultural

algorithms, Differential evolution, Harmony search algorithm, etc.

In artificial intelligence, an evolutionary algorithm (EA) is a subset of evolutionary
computation, a generic population-based metaheuristic optimization algorithm.

An EA uses some mechanisms inspired by biological evolution: reproduction,
mutation, recombination, and selection. Candidate solutions to the optimization
problem play the role of individuals in population, and the fitness function
determines the environment within which the solutions "live" (see also cost
function). Evolution of the population then takes place after the repeated
application of the

above operators.

Swarm Intelligence

There are two popular swarm inspired methods in computational intelligence areas:
— Ant colony optimization (ACO)

— Particle swarm optimization (PSO)

ACO was inspired by the behaviors of ants and has many successful applications in
discrete optimization problems. The particle swarm concept originated as a
simulation of

simplified social system. The original intent was to graphically simulate the
choreography of bird of a bird block or fish school. However, it was found that
particle swarm model can be used as optimizer

Examples

Artificial Neural Networks

Neural networks are biologically motivated computing structures that are
conceptually modeled after the brain. The neural network is made up of a highly
connected network of individual computing elements (mimicking neurons) that
collectively can be used to solve interesting and difficult problems.

How Our Brain Works?

While neural networks are modeled after our understanding of the way in which our
brain works, surprisingly little is known about how our brains actually function.
Through various types of inspection, we can see our brain in operation, but because of
the massive number of neurons and interconnections between these neurons, how it
works remains a mystery (though many theories exist).

Neurons Inside Our Body

Syrapse

Cell Body

Mucksus

Drendriles.

We are born with about 100 billion neurons. A neuron may connect to as many as
100,000 other neurons. Signals “move” via electrochemical signals. The synapses
release a chemical transmitter —the sum of which can cause a threshold to be
reached —causing the neuron to “fire”

Definition of Neurons (from Wikipedia)

-Neurons are responsive cells in the nervous system that process and transmit
information by chemical signals within the neuron.

*A number of different types of neurons exist: sensory neurons respond to touch,
sound, light and numerous other stimuli affecting cells of the sensory organs that
then send signals to the spinal cord and brain.

*Motor neurons receive signals from the brain and spinal cord and cause muscle
contractions and affect glands.

Inter-neurons connect neurons to other neurons within the brain and spinal cord.

*Neurons respond to stimulus and communicate the presence of that stimuli to the
central nervous system, which processes that information and sends responses to
other parts of the body for action.

Birth of Artificial Neural Networks

*The story of neural networks is interesting because, like Al itself, it’s one of grand
visions, eventual disappointment, and finally, silent adoption.

*In 1943, McCulloch and Pitts developed a neural network model based on their
understanding of neurology, but the models were typically limited to formal logic
simulations (simulating binary operations). McCulloch and Pitts (1943) proposed a
model of a neuron , McCulloch-Pitts Model. Five physical assumptions:

1. The activity of a neuron is an all or none process.

2. A certain fixed number of synapses must be excited within the period of latent
addition in order to excite a neuron at any time, and this number is independent of
previous activity and position on the neuron. The only significant delay within the
nervous system is synaptic delay.

3. The activity of any inhibitory synapse absolutely prevents excitation of the
neuron at that time.
4. The structure of the net does not change with time

Rosenblatt (1958) a new approach to the pattern recognition problem;
perceptron which could classify patterns by modifying its connections. Attracted
attention of engineers and physicists, using model of biological vision. Widrow and
Hoff (1960) introduced the LMS algorithm formulated the Adaline(Adaptive linear
element). Minsky (1961)written a paper contains a large section on what is now
termed neural networks.

Widrow (1962) proposed Madaline (Multiple - adaline) with his students.

Minsky and Papert (1969) demonstrated fundamental limits on what one-layer
perceptrons can compute exclusive-OR problem. In 1979 “decade of dormancy”
for neural networks from physics and engineering, perspective. Grossberg (1980)
established a principle of self-organization, called adaptive Resonance provides the
basis of ART (Adaptive Resonance Theory).

Hopfield (1982) used the idea of energy function to formulate the computation
performed by recurrent networks dynamical stable networks. Kirkpatrick, Galatt,
Vecchi (1983) described a simulated annealing method Boltzmann learning:
stochastic learning algorithm. Barto, Sutton, Anderson (1983) proposed
reinforcement learning. Rumelhart, Hinton, Williams (1986) reported the back-
propagation algorithm. Broomhead, Lowe (1988) proposed the radial basis
function (RBF) network.

Artificial Neuron

An artificial neuron is an information-processing unit that is fundamental to the
operation of an ANN. It consists of three basic elements:

1. A set of connecting links from different inputs, each of which is characterized
by a weight or strength. In general, the weights of an artificial neuron may lie in a
range that includes negative as well as positive values.

2. An adder for summing the input signals weighted by the respective synaptic
strengths.

3. An activation function for limiting the amplitude of the output of a neuron.

McCulloch-Pitts Neuron

Input 1

Input 2
Output

Input n

A set of synapses (connections) brings in activations from other neurons.
A processing unit sums the inputs, and then applies a non-linear activation
function.

An output line transmits the results to other neurons.

My

P |
: i

Input weight weighted Activation
vector x vector w sum function

output y

The n-dimensional input vector x is mapped into variable y by means of the scalar
product and a nonlinear function mapping.

Activation functions

m Types of nonlinear activation functions

Jo () Ji (@) f (@)
+.1 +.1 T +-'| 5
0 a 0 o 0
-1
Hard limiter function Threshold logic Sigmoid function

function

The Adaptive Linear Caombiner (ALC) formed part of the two earliest ANNs -
the Perceptron and the ADALINE

Perceptron : consists of a single neuron with adjustable synaptic weights
Developed by F. Rosenblatt (1958)

Used for the classification of a special type of patterns said to be linearly
separable

Hard-limiting activation function is used

Threshold

Activation
function

z Output
— ()

Summing
Junction

—Q:/

Synaptic
w%m pts

Linear separability of perceptron

From the model, we thus find that the linear combiner output (i.e
hard limiter input) is :

Decision regions in the case of elementary perceptron; two
decision regions separated by a hyperplane defined by

By expanding the output (computation) layer of the perceptron tc
include more than one neuron, we may correspondingly form

classification with more than two classes. ‘
& e “e
O = = @
® o o %
o}
o ® .
L] =

AND, OR, XOR

fitz i,

AND 1 OR

* iy : ,\\ - * i,

"|.'. \\' \\ i

Decision Boundaries

ins

Multilayer perceptrons

Output patterns

m Features

feed forward neural networks

several layers

no inter-connection links in same layer

connection only in the neighboring layer
Input patterns

Error backpropagation learning

The model of each neuron in the network includes a non-linearity at the output end.
The network contains one or more layers of hidden neurons.

The network exhibits a high degree of connectivity.

\ 6, Threshold

o,

. Nonlinear neuron

O Linear neuron

net = z w0,

Input layer Hidden layer Output layer o =f|fner}
! ! !

. S, ‘non —decreasing and differenti able

L

v
=

—s N, ol N,

The number of layers and decision regions

' N layers Complexity E“_]?TE m:? Th : Iﬁ‘:;'tmggsml

e e B ® | el
i /1\ Bounded by ‘,‘;’:t;
i Hyperplane D @: _/C
&
42))

Z

Two—layer Coavex Open
k or
H E.JZ;‘] Closed Regions

‘Three-layer Aabivary

i g (Complexity
j limited by
i MNumber of Units)

Multilayer Error Correction Adaptation

«Credit assignment problem solved by using non-decreasing
and continuously differentiable activation function for PEs

*In our example, we use linear output PEs and nonlinear hidden
PEs with sigmoid activations:

F)=—T /

14 ™ . ,."fl‘l
FE) =y A4 = (™) "
(1+e™)’ (1+e7)° | i //
1 e " R —
= ——— =/1-f(x) . _
1+e™ 1+e~* Saturation Saturation

«\We will also use chain rule of differentiation

. dz dz dv dx
fz= Nyv=g(x).x=h(f)then—=—-—.— = " (V) e'(X)h'(t
i 2= ()= g0 =) then- = 2520 = S (WD)

Minimize cost (error) function :
Summed over

m g
E=D.5£Z{bkj—z”]2 neurons and
k=1j=1 patterns

For linear output neuron,

Zrj = 2 VeiWji = f _.T:h-), where T j zzlj«'hwﬁ \r
i= LR L8

i=l

For nonlinear hidden PE,

i’ n
Fis= fn[2 TenVin] = fulg). wherery, =3 apviy,
=l =1

inputs 7o (1) = !
s l+e ™"

m Move in the direction oppasite to error (cost)) [l
gradient to a minimum i T S

. . . { 7 o) JE:
s Output weights Fy to Fz are adjusted using . PTG 1%/ |
chain rule of differentiation: L:)/{L" PR | w
. . __.-::____.-:".:' __,f: o /; -"""‘-u__b
m (Pattern — k, j — ndex cf neuron in the output e :'\,’i\,&g .
tr) la) Yo |Fr
layer) TERILSN
L P A iy
WO W e e 4
A .-H\-.;-._.-/‘-. W
3 o) 5- Lf;}_ﬁ‘-‘fﬂigﬁ e |
o Efrj . "‘?Ekj E'”'.h’ Foy ;-:'xl ('*_"x %‘%“\p
-~ . 4. . i I i
- r?-lljf iy G_kﬂ? .(;r-lljf o, | :.1!4 -:l!u. o i A,
E?Ek . o] O P ' -
J — _(b - W }_}
Nats 6 - 2 kg “kj =P jis ki
f; -'P"_,r-i' "._-kj, f'?“‘r! i=1

P P
- (bﬁ:j - :kj) Z-ykr’ = _5&'_3’ th
i-1 i1

Next step: adjust weights V between input and
hidden layers

Define error assigned to a hidden neuron,
where ry; is the net input to the hidden neuron

Oi =—cEy 1y
CE; _ FE; Oty

T 41
vy, Ory OV,

= —0p; 0y

The key guestion is how to compute the i values
for hidden neurons

But Vi ' 9 = fu (."h'..] is the derivative of the
sigmoid activation function.

Now use the chain rule twice:

GE, OE, %Y GE,

O g =— = — fr(?"k')
! Oty OV Ny E Vi e

Viiit OEy _ ﬂﬁr"i -

Vi | 5?"}:; E Vi

Z ﬁEk 2 {Z yki““ﬁ} = _Z 'Ekjwjf
i J

7 c’:’rkj E Vi

so therefore J; = f(r; h.}Zkawj J

r

But fn ('Vh] = E}:h f.-:?}"h = }sh[l— J“h)

S0 the error assigned to a hidden PE is
Ori = Vii (1 — Vki ngkjwji
J

/

Hidden PE Output PE

Backpropagation weight adjustments are:

JHew Jold N SE I -] |
wj:' — H’jr‘ L= = H’j!’

-~ +02 Ok Vki
W k

ji

. cE
_HEW —1‘GH —ﬁ X ald

Vin = Vin . TVin F B Ok, A
Whe® = £ =1 - learning rate

Back propagation algorithm

1. Present a training sample to the neural network.

2. Forward propagate the input pattern and compute output.

3. Compare the network's output to the desired output from that sample. Calculate
the error in each output neuron.

4. Calculate error in the hidden layer

5. Adjust the weights of each neuron in the output layer.

6. Adjust the weights of each neuron in the hidden layer.

7. Repeat from step 1 until convergence.

Back propagation/MLP Features
Training:
Back propagation procedure
Gradient descent strategy (usual problems)
Prediction:
Compute outputs based on input vector & weights
Pros:
Very general, Fast prediction
Cons:
Training can be VERY slow (1000’s of epochs), Over fitting
Unstable convergence on noisy data!

Training Strategies

Online training:

Update weights after each sample
Offline (batch training):

Compute error over all samples. Then update weights, Online training
“noisy” Sensitive to individual instances. However, may escape local minima.

Neural Nets for Face Recognition
straight Right uUp AW N ([H 2PN BN

Qutput Layer Weights (including wy=8) after 1 Epoch

Hidden Layer Weights after 25 Ep-ou:hs;

nl

Hiddemn Layer Weights after 1 Epoch

-
|5
i

90% Accurate Learning Head Pose, Recognizing 1-of-20 Faces

hitp/www.cs.cmu. edu/~tom/faces_himl

Radial Basis Function Networks

Hyperplane Kermel function _
yperp ML RRE
RBF networks are more suitable for probabilistic pattern
classification
The probability density function (also called conditional density
function or likelihood) of the k-th class 1s defined as

P(E|Ck)

RBF Neural Network

- One hidden layer of RBF nodes
- Each hidden node corresponds to a basis function center
- The output layer of linear nodes computes the sum
of the weighted outputs from the RBF nodes

The centers and widths of the RBF Gaussian kernels are
deterministic functions of the training data;

RBF: Gaussian basis function

dmput T’ | FeiaEmsRaes
nodes Hhidden layer RBFs - "
. (reeeptive fields) Rl

. \ =
<, <,
N &4 =[(neig)= /| 2 wgyi |= 2wig);
L= Joa=

v . Linear act. fanction
-
-

:j.*:r{.imru; = "\' -1 J"]
__,_,,

2
II =g |
|
\ o I

=e - 43
7 spread constant

What do these parameters represent?

Physical meanings:

The radial basis function for the hidden layer. This is a simple nonlinear mapping
function (typically Gaussian) that transforms the d- dimensional input patterns to a
(typically higher) H-dimensional space. The complex decision boundary will be
constructed from linear combinations (weighted sums) of these simple building
blocks.

uji: The weights joining the first to hidden layer. These weights constitute the
center points of the radial basis functions.

The spread constant(s). These values determine the spread (extend) of each radial
basis function.

Wjk: The weights joining hidden and output layers. These are the weights which
are used in obtaining the linear combination of the radial basis functions. They
determine the relative amplitudes of the RBFs when they are combined to form the
complex function.

Unsupervised Learning

Objectives:

n Clustering: grouping points (x) into inherent regions of mutual similarity

= Vector quantization: discretizing continuous space with best labels

= Dimensionality reduction: projecting many attributes down to a few

= Feature extraction: constructing (few) new attributes from (many) old ones

Intuitive ldea

= Want to map independent variables (x) to dependent variables (y = fix))

» Don't always know what “dependent variables” (y) are

= Need to discover y based on numerical criterion (e.q., distance metric)

Clustering

A Mode of Unsupervised Learning

Given: a collection of data points

Goal: discover structure in the data
m Organize data into sensible groups (how many here?)
m Criteria: convenient and valid organization of the data

m NB: not necessarily rules for classifying future data points

Cluster analysis: study of algorithms, methods for discovering this structure

Cluster: Informal and Formal Definitions
Set whose entities are alike and are different from entities in other clusters

Agagregation of points in the instance space such that distance between any
two points in the cluster is less than the distance between any point in the
cluster and any point not in it

MNUILIUIICIIT TITCLO mm MATCHING AND SELF-ORGANIZING NET\
Cluster 1
-
Cluster 2
Cluster 1 P
PR & “
/ y
/
1 % - Xy ;
\ e Y, ~\ P /
~ ” e
-~ - —
-- T
(&) (b)

Figure 7.5 Measures of similarity for clustering dala: (a) distance and (b) a normalized s
product.

53

SOM Algorithm

Initialise Network

|
‘ Get Input \
'

| Find Focus |

Update Focus ‘
!
l Update Neighbourhood

!
‘Adjust neighbourhood size |—

Kohonen nets

m Finding the focus m Updating

. neighbourhood
min(|x—w,)
J
| wo=w, +n(x—w,)
X: input
w;: J1 neuron n: Learning rate
w;: " neuron for all neurons
within neighbourhood

Kohonen nets

chaxier X = Ceniey of gravity
(c)

‘Figure 76 Winnar-take-all leaming ruls: (a) leaming kayer, (b) vector diagram, and {c) wan
Vegtors on aunky sphem forp = n= 4.

Clustering: Applications

oo ikeckyes E¥cia o Ltgeirvized Loating
 Rulss | :
- szosma Episoda Damagraph|
—ER = E “““"":'i
Exginpls 5 e Banealor [-

Examples 4 b,
[T e) S Pramprocassing Self-Organizing
R l Mags
| ——— ! +
% s ar - o :
¥ P i i B | Sorwaz 7 |
WL URLTS 7}

Transactional Database Mining

o fersaue. 2 7 =

Clustering: Application

= =

e

ThemeScapes - http:/'www. cartia.com

Categorization of text documents

Kohonen nets; VQ/LVQ

m Unsupervised or supervised learning: Vector
Quantization / Learning Vector Quantization.

m LVQ intended for statistical classification. It uses pre-assigned
cluster labels to data items to facilitate the two dimensional
transformation so as to minimize the average expected
misclassification probability.

m Each output unit represents a particular class.

m After training, an LVQ net classifies an input vector by assigning
it to the same class as the output unit that has its weight vector

(reference vector) closest to the input vector.

Kohonen nets: LVQ

LVQ algorithm

The motivation for the algorithm for the LYVQ net is to find the output unit that is
closest to the input vector.

Step0 : Initialize reference vectors and learning rate, a(0)
Step1 : While stopping condition = falss do 2-6

Step2 : For each training input vector x,do 3-4

Step3 : Find J so that || x-w; [[=min

Step4 : Update w; as follows:

If T = Cj, then
= wi(new) = w;(old) + a[x — w;(old)] ;
If T 1= C;, then

" wj(new) = wj(old) - a[x — w;(old)] ;
Stepb : Reduce learning rate

Stepb : Test stopping condition: The condition may specify a fixed

number of iterations or the learning rate reaching a sufficiently small
value

