SEC1313 - DIGITAL COMMUNICATION

UNIT 1 SAMPLING AND QUANTIZATION 9 Hrs.
Review of sampling process -Natural Sampling-Flat Sampling - Aliasing - Signal
Reconstruction-Quantization - Uniform & non-uniform quantization - quantization noise
Bandwidth -Noise trade off-PCM- Noise considerations in PCM- differential pulse code
modulation - Delta modulation -Linear prediction - Adaptive Delta Modulation.

1.1 Introduction

Digital Communication Systems are designed for transmitting digital information using
digital modulation schemes.

1.1.1 Basic Elements of a Digital Communication System
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Fig. 1.1 Basic dialtal communication system

Information Source

The information source generates the message signal to be transmitted. In case of
analog communication, the information source is analog. In case of digital communication,
the information source is digital. The analog signal can be converted to discrete signal by
sampling and quantization.

The examples of discrete information sources are data from computers, teletype etc.

Source Encoder / Decoder

The Source encoder converts the input symbol sequence into a binary sequence of 0’s
and 1’s.



The important parameters of a source encoder are block size, code word lengths,
average data rate and the efficiency.

At the receiver, the source decoder converts the binary output of the channel decoder
into a symbol sequence.

Aim of the source coding is to remove the redundancy in the transmitting information,
so that bandwidth required for transmission is minimized.

Channel Encoder / Decoder

Error control is accomplished by the channel coding operation that consists of
systematically adding extra bits to the output of the source coder. These extra bits do not
convey any information but helps the receiver to detect and / or correct some of the errors in
the information bearing bits.

The Channel decoder recovers the information bearing bits from the coded binary
stream. Error detection and possible correction is also performed by the channel decoder.

The important parameters of coder / decoder are Method of coding, efficiency, error
control capabilities and complexity of the circuit.

Modulator

The Modulator converts the input bit stream into an electrical waveform suitable for
transmission over the communication channel. Modulator can be effectively used to minimize
the effects of channel noise, to match the frequency spectrum of transmitted signal with
channel characteristics, to provide the capability to multiplex many signals.

Demodulator

The extraction of the message from the information bearing waveform produced by the
modulation is accomplished by the demodulator. The output of the demodulator is bit stream.
The important parameter is the method of demodulation.

Channel

The Channel provides the electrical connection between the source and destination.
The different channels are: Pair of wires, Coaxial cable, Optical fiber, Radio channel, Satellite
channel or combination of any of these.

Noise

Noise is an error or undesired random disturbance of a useful information signal.
The noise is a summation of unwanted or disturbing energy from natural and sometimes
man-made sources.



1.2 Sampling process
1.2.1 Representation of CT signals by its samples

* A CT signal cannot be processed in the digital processor or computer.

* To enable digital transmission of CT signals.
Fig. 12 shows the CT signal and its sampled DT signal. In this figure observe
that the CT signal is sampled at t = 0, T,, 2T,, 3T, ... and so on.
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Fig. 1.2 CT and its DT signal

* Here sampling theorem gives the criteria for spacing 'T,' between two
successive samples.
* The samples xz(f) must represent all the information contained in x(t).

The sampled signal xg(t) is called discrete time (DT) signal. It is analyzed with the
help of DTFT and z-transform.



1.3 Statement of sampling theorem

1) A band limited signal of finite energy, which has no frequency components
higher than W Hertz, is completely described by specifying the values of the

signal at instants of time separated by % seconds and
2) A band limited signal of finite energy, which has no frequency components

higher than W Hertz, may be completely recovered from the knowledge of its
' samples taken at the rate of 2W samples per second.

The first part of above statement tells about sampling of the signal and second
part tells about reconstruction of the signal. Above statement can be combined and
stated alternately as follows :

A continuous time signal can be completely represented in its samples and recovered back
if the sampling frequency is twice of the highest frequency content of the signal. i.e.,
Lie W
Here f; is the sampling frequency and
W is the higher frequency content

1.3.1 Proof of sampling theorem

There are two parts : (I) Representation of x(f) in terms of its samples
(IT) Reconstruction of x(t) from its samples.
Part I : Representation of x(t) in its samples x(nT;)

Step 1

(L]

Define xg(1)

Step 2 : Fourier transform of xg{¢} i.e. X5(f)
Step 3 : Relation between X(f) and Xg(f)
Step 4 : Relation between at) and a(n7.)

Step 1 : Define x5(t)
Refer Fig.12.  The sampled signal x5(f) is given as,
xs) = Y xO)8(t-nTy) . (1.1)

Here observe that xj(f) is the product of x5 and impulse train §(t) as shown in
Fig. 12. In the above equation §(t-nT,) indicates the samples placed at tT,, *2T,
13T ... and so on.



Step 2 : FT of x3(t) i.e. X5(f)
Taking FT of equation (1.1).

FI‘[ ix{t)S(t—nT,)}

Xs(f)

= FT {Product of x(t) and impulse train}

We know that FT of product in time domain becomes convolution in frequency
domain. i.e.,

Xs(f) = FT (x(§)}* FT (5(t-nT,)) (1.2)
By definitions, x(f) «— X(f) and

8(t-nT,) s f, iﬁ(f—nf,)

Hence equation (1.2) becomes,
Xs(H = X(N*f 2B(f-nf)

Since convolution is linear, T
Xs(N = fi D XN*8(f-nf)

n=— o

=k f:k'(f =nfs) By shifting property of impulse function

= S X2 XYL+ XD+ XY -+ X =2f) -

Comments

(i) The RHS of above equation shows that X(f) is placed
at +f,,+2f, ,+3f,, -

(i) This means X(f) is periodic in f,.

(iii) If sampling frequency is f, = 2W, then the spectrums X(f) just touch
each other.
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Fig. 1.3 Spectrum of original signal and sampled signal

Step 3 : Relation between X(f) and X (/)

Important assumption : Let us assume that f; = 2W, then as per above diagram.
Xs(N = £ X(H) for—-W<f<Wand f, = 2W

or X() = —Xs() . (1.3)

Step 4 : Relation between x(t) and x(nT)

DTFT is, X(Q) = i;{n)g‘ln"

X = Y xn)e i e (1.4)
n=-— oo
In above equation 'f is the frequency of DT signal. If we replace X(f) by X5(f),
then 'f becomes frequency of CT signal. i.e.,
o -jzsi-n
Xs() = Y xne



In above equation 'f' is frequency of CT signal. And ?'(— = Frequency of DT signal
3

in equation (1.4). Since x(n) = x(nT), i.e. samples of x(f), then we have,

Xg() = SAnT)e P since £ =1,
5

Putting above expression in equation (1.3),
X() = 5 SoAnT,)eriohm

5"--..

Inverse Fourier Transform (IFT) of above equation gives x{f) i.e.,

) = rrr[?l- )'jx(nrs)e-ﬁ*f"s] .. (15)
5"

= - 00

Comments :
i) Here x({) is represented completely in terms of x(nT;).
ii) Above equation holds for f; = 2W. This means if the samples are taken at the
rate of 2W or higher, x{(f) is completely represented by its samples.

iii) First part of the sampling theorem is proved by above two comments.

Part Il: Reconstruction of x(t) from its samples

Step 1: Take inverse Fourier transform of X(f) which is in terms of X;(f).

Step 2 : Show that x(f) is obtained back with the help of interpolation function
Step 1 : The IFT of equation (1.5) becomes,

x(t) = T{%n 2J¢(nTsJE'i2“f”’3‘}ef2“f' df

Here the integration can be taken from -W<f<W. Since X(f) = 71-)(5({) for
5

—-WSf<W. (See Fig. 1.3).

W -
. ) = ,F J_}_ S x(nT,) e I27InTs L oi2nft gf
— S H= — oo

Interchanging the order of summation and integration,



2

x(t) = Ex{nTj—— I ef2nflt=nTs) g

= — oo f -
; W
j2rf(t —nTs)
= x(nT,)- c
”_E_:_, f; [)Zﬂ(f—nn}]_w
T, 1 ef2mW(t—nT) _ —j2rW(t—nT;)
1 mnir:W(t—nT)
= T,
ngi‘f” ) fs n(t—nT.)

o L SinR(2WE—2W nT,)
2. x(nT;) n(fef—fonTs)

M= — o=

Here £, = 2W, hence T, = j; ilh-F Simplifying above equation,
_ sinn(2Wi-n)
Hh = NE_’(”T" RQEWi-1)
- . sinn .
= ¥ x(nT,)sinc(QWi-n)  since —g = sinc® ...(1.6)

Step 2 : Let us interpret the above equation. Expanding we get,
x(f) = oot x(=2T,)sinc(2W t+ 2)+ x(=T,) sinc(2Wt+1) + x(0) sinc(2W 1) + (T, sinc(2 Wt =1) 4+

Comments :

i) The samples x(nT,) are weighted by sinc functions.

ii) The sinc function is the interpolating function. Fig.1.4  shows, how x(f) is

interpolated.

Step 3 : Reconstruction of x(t) by lowpass filter

When the interpolated signal of equation (1.6) is passed through the lowpass
filter of bandwidth -W<f<W, then the reconstructed waveform shown in above
Fig. 1.4 (b) 1is obtained. The individual sinc functions are interpolated to get smooth
x(0).
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Fig. 1.4 (a) Sampled version of signal x(t)
(b) Reconstruction of x(t) from its samples

1.3.2 Aliasing (Effect of undersampling)
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Comments :
i) The spectrums located at X(f), X(f - f;), X(f =2f;), ... overlap on each other.

ii) Consider the spectrums of X(f) and X(f-f;) shown as magnified in above
figure. The frequencies from (f; =W) to W are overlapping in these spectrums.

ili) The high frequencies near ‘0’ in X(f-f;) overlap with low frequencies (f; -W)
in X(f).
1.3.2.1 Definition of aliasing:
When the high frequency interferes with low frequency and appears as low frequency,
then the phenomenon is called aliasing.
1.3.2.2 Effects of aliasing:

i) Since high and low frequencies interfere with each other, distortion is generated.
i) The data is lost and it cannot be recovered.

1.3.2.3 Different ways to avoid aliasing

Aliasing can be avoided by two methods

i) Sampling rate fs = 2W.
i) Strictly bandlimit the signal to ' W ".

| | |

! | |

- SN —— . | S ol $ i
|

' xﬁ(f) J This gap avoids |

= .

N/
| [ |

Fig. 1.6 fs 2 2W avoids aliasing by creating a bandgap
i) Sampling rate fs 2 2W

When the sampling rate is made higher than 2W, then the spectrums will not overlap
and there will be sufficient gap between the individual spectrums. This is shown in Fig. 1.6.
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ii) Bandlimiting the signal

The sampling rate is, f; = 2W. Ideally speaking there should be no aliasing. But
there can be few components higher than 2W. These components create aliasing.
Hence a lowpass filter is used before sampling the signals as shown in Fig.17. Thus
the output of lowpass filter is strictly bandlimited and there are no frequency
components higher than 'W'. Then there will be no aliasing,. :

Band limiting x(t)
lowpass filter

x{t)————e Sampler p————Xg(t)

Fig. 1.7 Bandlimiting the signal. The bandlimiting LPF is called prealins filter
1.3.3 Nyquist Rate and Nyquist Interval

Nyquist rate : When the sampling rate becomes exactly equal to '2W' samples/sec,
for a given bandwidth of W Hertz, then it is called Nyquist rate.

Nyquist interval : It is the time interval between any two adjacent samples when
sampling rate is Nyquist rate.

Nyquist rate = 2W Hz .. (1.7)
Nyquist interval = - seconds o (18)

1.3.4 Sampling Theorem in Frequency Domain

Statement

We have seen that if the bandlimited signal is sampled at the rate of (f; >2W) in
time domain, then it can be fully recovered from its samples. This is sampling
theorem in time domain. A dual of this also exists and it is called sampling theorem
in frequency domain. It states that,

“A timelmited signal which is zero for [t|>T is uniquely determined by the samples of
|

- Hertz apart”.

its frequency spectrum at intervals less than 57
“

1.4 Introduction to Pulse Modulation techniques

e There are three types of modulation
(i) Amplitude modulation
(ii) Angle modulation

(iii) Pulse modulation
11



s Pulse modulation can be further classified as,
(i) Pulse analog modulation
(ii) Pulse digital modulation
= The above two techniques can be further classified as,

l Pulse modulation

I

1
Anilog Digital
' '
() Pulse amplitude modulation (1) Pulse code modulation
(d) Pulse position modulation (i) Delta modulation
(i) Pulse duration modulation (ili) Adaptive delta modulation

(iv) Differential pulse code mddulation
1.5 Pulse Amplitude Modulation (PAM)
» Definition : The amplitude of the pulse change according to amplitude of
modulation signal at the sampling instant.

* Types of PAM : Depending upon the shape of the pulse of PAM, there are
three types of PAM :

(i) Ideally or instantaneously sampled PAM.
(ii) Naturally sampled PAM.
(iii) Flat top sampled PAM.

1.5.1 Natural Sampling or Chopper Sampling

* Basic Principle

In natural sampling the pulse has a finite width 1. Natural sampling is some times
called chopper sampling because the waveform of the sampled signal appears to be
chopped off from the original signal waveform.

* Explanation
c{tl.l'l.mln){ Let us consider an analog continuous
s time signal x(f) to be sampled at the
x(t) s(t) rate of f; Hz and f; is higher than

Nyquist rate such that sampling
Fig. 1.8 Natural sampler theorem is satisfied. A sampled signal

12
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Fig-1.9 (a) Continuous time signal x(t)
(b) Sampling function waveform lLe. periodic pulse train
(c) Naturally sampled signal waveform s(t)

= (<)

s(t) is obtained by multiplication of a sampling function and signal x(f).
Sampling function oft) is a train of periodic pulses of width t and frequency
equal to f; Hz. Fig.1.8 shows a functional diagram of natural sampler. When
c(t) goes high, a switch s’ is closed. Therefore,

A

s(f) = x(t) when ¢(t)
s() = 0 when c¢f) = 0
Here A is amplitude of c(t).
» The waveforms of x(f), c(f) and s(t) are shown in Fig. 1.9(a), 1.9(b) and
1.9 (c) respectively. Signal s{f) can also be defined mathematically as,
s(t) = o) - «t) - (1.9)
Here, (f) is the periodic train of pulses of width t and frequency f.

13



Spectrum of Naturally Sampled Signal
¢ Exponential Fourier Series for a periodic waveform is given as

xt) = i ¢, e/t /Ty

T -
For the periodic pulse train of c(f) we have,
To = T, =— = Period of c(t).

s

or fo = f; =s— == = Frequency of c(t).

1 1
TO Ts

Above equation will be, [with x(f) = d(t)],
ot) = Z ¢, e/ T Putting %=I, « (1.10)
N -
(f) is a rectangular pulse train. C,, for this waveform is given as :

C, = Bsinc(f, D

To
Here T = Pulse width =1
and f, = Harmonic frequency. Here f, =nf, or fn=%="fﬂ
C, = Esinc(f,,t) e (1.11)

f 9

s

.. Fourier series for periodic pulse train will be written from equation 1.10 and
equation 1.11 as,

o) = i -;.ﬁsinc(f,, 1) e/ 2¥nt - (1.12)
H=—oe S
On putting the value of d(f) in equation 1.9 we get,
s(t) = Tﬂ i sinc (f,,7) el TNt . x(t) .. (1.12 (a))
S pmeee

This equation represents naturally sampled signals.
Now Fourier transform of s(f) is obtained by definition of FT as,

14



FT {s(t))

S

;%4 i sine (f,7) FT {eiz"?-;"“ 'x(f)} e (1.13)

e

We know from frequency shifting property of Fourier transform that,

elamfnt xt) & X(f-fin) e (1.14)
S = % E sinc (f,0) X (f = fin) v (1.15)

We know that f, =nf; i.e. harmonic frequency

. Above equation becomes,

Spectrum of Naturally Sampled Signal : S (f) =¥1— 2 sinc (nf,0) X(f —nf;) .. (1.16)

Comments
(i) X(f) are periodic in f; and are weighed by the sinc function. Fig. 1.10(a)
shows some arbitrary spectra for x(f) and corresponding spectrum S(f) is
shown in Fig. 1.10 (b).

(ii) Thus the spectrum of naturally sampled signal is weighted by sinc function.

X(NH

o W o w - -
S(n sinc (nf,1)

. & o, W o W T, o, % T =

Fig. 1.10 (a) Spectrum of continuous time signal x (t)
(b) Spectrum of naturally sampiled signal

1.5.2 Flat Top sampling or Rectangular Pulse Sampling

Basic Principle

This is also a practically possible sampling method. Natural sampling is little
complex, but it is very easy to get flat top samples. The top of the samples remains
constant and equal to instantaneous value of baseband signal x(f) at the start of

sampling. The duration of each sample is T and sampling rate is equal to f; =%—.

15



Generation of flat top samples
Fig. 1.11(a) shows the functional diagram of sample and hold circuit generating
flat top samples and Fig. 1.11(b) shows waveforms.

f Sampling switch Discharge switch R
(= x(t) ) o1 -J— c Ja)
G, Gz T
X T

(b)

Fig. 1.11 (a) Sample and hold circuit generating flat top sampling
(b) Waveforms of fiat top sampling

Normally the width of the pulse in flat top sampling and natural sampling is
increased as far as possible to reduce the transmission bandwidth.
Explanation of Flat top Sampled PAM

Here we can see from Fig. 1.11 (b) that only starting edge of the pulse represents
instantaneous value of the baseband signal x(f). The flat top pulse of s(f) is
mathematically equivalent to the convolution of instantaneous sample and pulse h (t)

as shown in Fig. 1.12.

A 51 A hin A h{t)
A
- =
o -‘lh 1 -t" T 'I-

Fig. 1.12 Convolution of any function with delta function is equal to that function

e That is width of the pulse in s(f) is determined by width of h(t), and
sampling instant is determined by delta function. In the waveforms shown in
Fig. 1.11 (b), the starting edge of pulse represents the point where baseband
signal is sampled and width is determined by function h (t). Therefore s(t)

will be given as,
16



sit) = xz(O*h(®)

e (1.17)

The meaning of this equation is further explained by Fig. 1.13.

By the replication property of delta function we know that

x()*8(@) = x(@)

e (1.18)

This is explained in Fig. 1.12 also. The same property is used to obtain flat top

samples.

* The delta function in equation 1.18 is instantaneously sampled signal x; (f),

and function h(t) is convolved with x; (f). Clearly observe that we are not
directly applying equation 1.18 here, but we are using it similarly. In
equation 1.18, 3 (f) is constant amplitude delta function. But in Fig. 1.13(b),
x5 () is varying amplitude train of impulses. Therefore on convolution of
xz()andh(f) we get a pulse whose duration is equal to h(f) only but

amplitude is defined by x; (f).
From equation 1.1 x; (f) is given as,
() = Y x(nT)d(t-nTy)

fl=—m=
. From equation 1.17 we can write the convolution as,

s) = x5 O*h(®

| x5 @ k(¢ —w)du

—

ie,

= [ 3 x0T)sw-nT)h(t-1du

p— L

= Y x(nT,) IEIH—HT;)h{t—u)du

o = -
From the sifting property of delta function we know that
[ fO8¢-19) = ft)
Using this equation we can write equation 120 as,

s) = Y, x(nT)h(t-nT,)

HE -

17

e (1.19)

From equation (1.19)

-+ (1.20)
Fr

e (1.21)

e (1.22)
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T Fig. 1.13 (a) Baseband signal x (f)
(b) Instantaneously sampled signal x; (t)
ﬂ’“_m\ (c) Constant pulse width function h (t)
_ (d) Flat top sampled signal s(t) obtained
-2My~T, 0 T, ﬂ.ﬂT.ﬂ.\Lu\ t through convolution of h (t)and x; (t)
LU ti"_ Y
M00Mnn0A0AL.
A s(=xg{0)* K1)

S

» This equation represents value of s(f) in terms of sampled value x(nT,) and
function h (t - nT,) for flat top sampled signal.
we also know from equation 117 that,
s() = xg(O)*h()
By taking Fourier transform of both sides of above equation,

SN = Xg(DH( eee (123)

Convolution in time domain is converted to multiplication in frequency domain.

X5 (f) is given as,
xﬁ(n - fs Z X(f—-nj;) e (1.24)

N=-—oe

~.Equation 123 becomes,
Spectrum of Flat Top Sampled Signal : S(A=f, Y X(f-nf)H() (1.25)

This equation represents the spectrum of flat top sampled signal.
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The spectrum of a rectangular pulse is given as,

H({f) = tsinc(ft)e I"f*

A n)
A

‘*A=1 --(1.26)

o

A 1H(D]

~—

(4] T t
Fig.1.14 (a) One pulse of rectangular pulse train

N

-3/t -2/t -1/t it 2/t

3t

Fig. 1.14 (b) Spectrum of the pulse of Fig. (a)

1.6 Aperture Effect

In flat top sampling, due to the lengthening of the sample, amplitude distortion as well
as a delay of T/2 was introduced. This distortion is referred to as Aperture effect.

1.7 Comparison of various sampling technigues

Sr. | Parameter of | Ideal or instantaneous Natural sampling Flat top sampling
No. comparison sampling
1 Principle of It uses multiplication by | It uses chopping It uses sample and
sampling an impulse function principle hold circuit
2 | Circuit of sampler Sampling Discharge
: ALY 2vieh _ swch
Lo D L
B 4 | i
— | T
3 | Waveforms 1) x(t)
x(nty) )
- i e ‘
4 | Realizability This is not practically This method is used This method is used
possible method practically practically

19



5 Sampling rate Sampling rate tends to | Sampling rate satisfies | Sampling rate satisfies
infinity Nyquist criteria N)-qum_r _grilu_r_ia
6 | Noise Noise interference is Noise interference is Noise interference is
interference maximum minimum maximum
7 |Time domain repre- = A = =
sentation xs(t)= 2 st=y; X si)= X
= == = = [
x(nTg)8(t=nT,) x (t)sinc (nfg 1) x(nTh(t=-nTy)
al2znigt :
8 Frequency = A < -
domain Xy (F)=fy %, S=y X Si)=f, 2
l'&PI‘mntlﬂon f=—u. § p=cm nNe =
X (f =nf) sinc (nf,x) X (f = nf,) X(f=nf)H ()
Example : The spectrum of signal x(t) is shown below. This signal is sampled
at the Nyquist rate with a periodic train of rectangular pulses of duration
50/3 milliseconds. Find the spectrum of the sampled signal for frequencies upto 50 Hz

giving relevant expression.

Solution :
w
Nyquist rate

fs

-
~f

= 10 Hz

-10 0 10

Fig.

= 2xW =2x10=20Hz
Since the signal is sampled at Nyquist rate, the sampling frequency will be,

= 20 Hz

It is clear from Fig. that the signal is bandlimited to 10 Hz.

Rectangular pulses are used for sampling. That is flat top sampling is used. The

spectrum of flat top sampled signal is given by equation 1.25 as,

S = £ T XF-nf)HP

H=—aa

Value of H (f) is given by equation 1,26 as,

H(

= tsinc(fr)e- InSs

- (1.27)

- (1.28)

Here 1 is the width of the rectangular pulse used for sampling. The given value of
rectangular sampling pulse is 50/3 milliseconds. i.e.,

20



T = %XIO‘:’

or tngg‘f-seconds

Putting the value of t in equation 1,28 we get,
H(f) = 0.;)5 s,."c(at;s; )riﬁmd/:’

Put this value of H(f) and f; in equation 1.25
S(h = 20 ix(f-zon)xo'gssinc[o'(?f)e-io.muﬂs (since f; =20)

. - 2 005f \ - joos=f/3

SN = 3'!;3)(([ 20n)><stnc( 3 )e 7

This expression gives the spectrum up to 60 Hz
(since n =+ 3) for the sampled signal.

Example 1 A flat top sampling system samples a signal of maximum 1 Hz with
2.5 Hz sampling frequency. The duration of the pulse is 0.2 seconds. Calculate the
amplitude distortion due to aperture effect at highest signal frequency. Also find out the
equalization characteristic.

Solution : It is given that

Sampling frequency fi =25Hz

Maximum signal frequency f.,, = 1 Hz

Pulse width T = 0.2 sec.

By equation 1.26 . the aperture effect is given by a transfer function H (f) as,
H(f) = tsinc(fr)e inSt

The magnitude of the above equation is given as,
[H()| = tsinc(fr) - (1.29)
|H(A)| = 02sinc(fx02)

Aperture effect at highest frequency will be obtained by putting f=f_. =1Hz in
above equation i.e.,

|HQ@)| = 0.2 sinc (0.2) = 0.18709
or |H@)| = 18.70% - (Ans)
From equation the equalizer characteristic is given as,
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k
T sinc (fr)

Putting T =02 second and assuming k =1, the above equation will be,

1
Ha ) = ozcimcozp) =t

Hy(f) =

This equation is the plot of H,(f)Vsf and it represents the equalization
characteristic to overcome aperture effect.

1.8 Transmission Bandwidth of PAM
signal

The pulse duration "7’ is supposed to be very very small compared to time period
T, between the two samples. If the maximum frequency in the signal x(f) is ‘W' then
by sampling theorem, f; should be higher than Nyquist rate or,

fi 2 2Wor
L. 1
T, 4 ZTV. smoef, =f
1
and I << TS < 2—w oo (1.4-29)
If ON and OFF time of the pulse is
same, then frequency of the PAM pulse
becomes,
1 1
I f= v = ..(1.4.30)
o ¢ o alT ke Thus Fig. 14.11 shows that if ON

and OFF times of PAM signal are

Fig. 1.4.11 Maxlrml:m ‘flnquoncy of PAM  same, then maximum frequency of
sign
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PAM signal is given by equation 1.4.30 i.e,
foax = 2 . (1431)
. Bandwidth required for transmission of PAM signal will be equal to maximum
frequency fn.,« given by above equation. This bandwidth gives adequate pulse
resolution i.e.,
B T 2 )F max

1
Br 2 — - (1.4.32
T2 ( )

: 1 1 :
5:111|:|a-|:-¢-::ﬁ By 2 E:-:-w i.e.,

Transmission bandwidth of PAM signal : By >>W .. (1.4.33)

Thus the transmission bandwidth B of PAM signal is very very large compared
to highest frequency in the signal x(f).

PAM signal is given by equation 1.4.30 ie,,

1
foax = 5= . (1431)

. Bandwidth required for transmission of PAM signal will be equal to maximum
frequency fh.« given by above equation. This bandwidth gives adequate pulse
resolution i.e.,

BT 2 )Fn'l.ix
1

Br 2 7% - (1.4.32)

1.9 Disadvantages of PAM

1. As we have seen just now, the bandwidth needed for transmission of PAM
signal is very very large compared to its maximum frequency content.

2. The amplitude of PAM pulses varies according to modulating signal. Therefore
interference of noise is maximum for the PAM signal and this noise cannot be
removed very easily.

3. Since amplitude of PAM signal varies, this also varies the peak power required
by the transmitter with modulating signal.
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1.10 Uniform Quantization (Linear Quantization)

We know that input sample value is quantized to nearest digital level. This
quantization can be uniform or nonuniform. In uniform quantization, the quantization
step or difference between two quantization levels remains constant over the complete
amplitude range. Depending upon the transfer characteristic there are three types of

uniform or linear quantizers as discussed next.

1.10.1 Midtread Quantizer
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Fig. 1.8.3 (a) Quantization characteristic of midtread guantizer
(b)) Quantization error

The transfer characteristic of the midtread quantizer is shown in Fig. 1.8.3.
As shown in this figure, when an input is between - 8/2 and + 6/2 then the

quantizer output is zero. i.e.,

For ~8/2 < x(nT,) <8/2; .'u:q (nTy) =0

Here &’ is the step size of the quantizer.
for 8/2 < x(nTy) <38/2; Xq (nTy) =6
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Similarly other levels are assigned. It is called midtread because quantizer output

is zero when x(nT,) is zero. Fig.18.3 (b) shows the quantization error of midtread
quantizer. Quantization error is given as,

E = Xg (nT,) = x (nT) w (1.8.7)

In Fig. 1.8.3 (b) observe that when x(nT,) = 0, x,(nT,) = 0. Hence quantization error
is zero at origin. When x(nT,) = 8/2, quantizer output is zero just before this level.
Hence error is §/2 near this level. From Fig. 1.8.3 (b) it is clear that,

-8/2 < e<b/2 .. (1.8.8)

Thus quantization error lies between - §/2 and + 8/2. And maximum quantization

error is, maximum quantization error, €., = % ... (1.8.9)
1.10.2 Midriser Quantizer
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Fig. 1.8.4 (a) Transfer characteristic of midriser quantizer
{b) Quantization ermor

The transfer characteristic of the midriser quantizer is shown in Fig. 1.8.4.

In Fig. 1.8.4 observe that, when an input is between 0 and §, the output is 6/2.
Similarly when an input is between 0 and - §, the output is - 6/2. i.e.,
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For 0 = x(nT) <3; xq(nT,}=5f'2
-8 x(nTY) <0; xq{nTJ=-&f2

Similarly when an input is between 3 & and 4 3, the output is 7 /2. This is called
midriser quantizer because its output is either + 6/2 or — §/2 when input is zero

Fig. 1.8.4 (b) shows the quantization error in midriser quantization. When input
x(nTy) = 0, the quantizer will assign the level of §/2. Hence quantization error will be,

Xq (nTy) - x (nTy)
8/2-0=258/2
Thus the quantization error lies between - §/2 and + 8/2. i.e,,
-8/2 s €58/2 .. (1.8.10)

£

And the maximum quantization error is,
5
Eax = |E| . (1.8.11)
1.10.3 Biased Quantizer

The midriser and midtread quantizers are rounding quantizers. But biased
quantizer is truncation quantizer. This is clear from above diagram. When input is
between 0 and §, the output is zero. i.e.,

for 0 = x(nTy) <&; Xq (nTy) = 0

Similarly, for -8 < x (nT,) <0; Xq (nT,) = -8

Fig. 1.8.5 shows quantiration error. When input is § output is zero. Hence
quantization error is,
E = X5 (nT) - x(nTy)

= 0-8=-5
Thus the quantization error lies between 0 and - & i.e,
-8 < e<0 v (1.8.12)

And the maximum quantization error is,
Emax = | 8| .. (1.8.13)
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Fig. 1.85 shows the transfer characteristic of biased uniform quantizer.
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Fig. 1.8.5 (a) Biased quantizer transfer characteristic
(b) Quantization error

1.11 Non-uniform Quantization

In nonuniform quantization, the step size is not fixed. It varies according to certain
law or as per input signal amplitude. Fig. 1.8.8 shows the transfer characteristic and
error in nonuniform quantization.

In this figure observe that step size is small at low input signal levels. Hence
quantization error is also small at these inputs. Therefore signal to quantization noise
power ratio is improved at low signal levels. Stepsize is higher at high input levels.
Hence signal to noise power ratio remains almost same throughout the dynamic range
of quantizer.
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Fig. 1.8.8 {(a) Nonuniform guantization transfer characteristic
() Quantization error

1.12 Bandwidth — Noise trade off

The noise analysis of PPM and FM have similar results as follows :

i) For both systems, the figure of merit is proportional to square of the ratio

Br
Wl
ii) As the signal to noise ratio is reduced, both the systems exhibit threshold

effect.

* With digital pulse modulation, the better noise performance than square law
can be obtained.

» The digital pulse modulation such as pulse code modulation gives negligible
noise effect by increasing the average power in binary PCM signal.
* With PCM, the bandwidth noise trade-off can be related by exponential law.
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1.13 Pulse Code Modulation (PCM)

1.13.1 PCM Generator

The pulse code modulator technique samples the input signal x(f) at frequency
fs 22W. This sampled 'Variable amplitude' pulse is then digitized by the analog to
digital converter. The parallel bits obtained are converted to a serial bit stream.
Fig.1.8.1 shows the PCM generator.

v digits
Lowpass x(nT nT.)| Binary | Parallel | PCM
ﬂ. fiter }—»f SH [(—'). qﬁ;'g:;r M encoder " o serial |—»
'c =W (digitzer) = CONverter | r=v f;

@-—b Timer

f,z2w

Fig. 1.8.1 PCM generator

In the PCM generator of above figure, the signal x(f) is first passed through the
lowpass filter of cutoff frequency 'W' Hz. This lowpass filter blocks all the frequency
components above 'W' Hz. Thus x(f) is bandlimited to "W' Hz. The sample and hold
circuit then samples this signal at the rate of f;. Sampling frequency f, is selected
sufficiently above Nyquist rate to avoid aliasing i.e.,

f 2z 2W
In Fig. 1.8.1 output of sample and hold is called x(nT;). This x(nT;) is discrete in
time and continuous in amplitude. A g-level quantizer compares input x(n T;) with its
fixed digital levels. It assigns any one of the digital level to x(nT;) with its fixed
digital levels. It then assigns any one of the digital level to x(nT;) which results in
minimum distortion or error. This error is called gquantization error. Thus output of
quantizer is a digital level called xq (nT).

Now coming back to our discussion of PCM generation, the quantized signal level
X, (nT;) is given to binary encoder. This encoder converts input signal to 'v' digits
binary word. Thus x, (nT) is converted to V" binary bits. The encoder is also called
digitizer.

It is not possible to transmit each bit of the binary word separately on
transmission line. Therefore '’ binary digits are converted to serial bit stream to
generate single baseband signal. In a parallel to serial converter, normally a shift
register does this job. The output of PCM generator is thus a single baseband signal of
binary bits.
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An oscillator generates the clocks for sample and hold an parallel to serial
converter. In the pulse code modulation generator discussed above ; sample and hold,
quantizer and encoder combinely form an analog to digital converter.

1.13.2 PCM Receiver

Fig. 1.8.2 (a) shows the block diagram of PCM receiver and Fig. 1.8.2 (b) shows the
reconstructed signal. The regenerator at the start of PCM receiver reshapes the pulses
and removes the noise. This signal is then converted to parallel digital words for each
sample.

v digits
PCM+ Noise Serial |—] Digital x(t) yolt)
to parallel] to analog }—»{ S/H }—> fiter }—»
converter] - converter 'c =W

%q(t)
O=w_
5/7q x(t) ',-"' - h“ ‘
L
1 x{kT"}d, "1“
3 f q - ’f ‘\‘
* LY
- ~
Fd ~
"
1/q- ﬁ’ ~——
0 i — - -t
o KT, ’

Fig. 1.8.2 (b) Reconstructed waveform

The digital word is converted to its analog value x, (f) along with sample and
hold. This signal, at the output of S/H is passed through lowpass reconstruction filter
to get vy, (. As shown in reconstructed signal of Fig. 1.8.2 (b), it is impossible to
reconstruct exact original signal x(f) because of permanent quantization error
introduced during quantization at the transmitter. This quantization error can be
reduced by increasing the binary levels. This is equivalent to increasing binary digits
(bits) per sample. But increasing bits 'v' increases the signaling rate as well as
transmission bandwidth as we have seen in equation 183 and equation 1.8.6.
Therefore the choice of these parameters is made, such that noise due to quantization
error (called as quantization noise) is in tolerable limits.
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1.13.3 Transmission Bandwidth in PCM

Let the quantizer use ‘v’ number of binary digits to represent each level. Then the
number of levels that can be represented by "2’ digits will be,

q = 2 . (1.8.1)

Here ‘g’ represents total number of digital levels of g-level quantizer.
For example if v =13 bits, then total number of levels will be,

q = 23 =8levels
Each sample is converted to o' binary bits. i.e. Number of bits per sample = v
We know that, Number of samples per second = f

. Number of bits per second is given by,
(Number of bits per second) = (Number of bits per samples)

X (Number of samples per second)
= v bits per sample x f, samples per second ... (1.8.2)
The number of bits per second is also called signaling rate of PCM and is denoted

by 't ie.,
Signaling rate in PCM : r = v f - (1.8.3)
Here f, 2 2W.
Bandwidth needed for PCM transmission will be given by half of the signaling
rate ie.,
Br2yr .. (184)
Transmission Bandwidth of PCM : {By 2%0;’, Since f, 22W ... (1.8.5)
Brz2vW ... (1.8.6)
L

1.14 Noise considerations in PCM

The performance of a PCM system is influenced by two major sources of noise:
1. Channel noise, which is introduced anywhere between the transmitter output and
the receiver input. Channel noise is always present, once the equipment is
switched on.

2. Quantization noise, which is introduced in the transmitter and is carried all the way
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along to the receiver output. Unlike channel noise, quantization noise is signal
dependent in the sense that it disappears when the message signal is switched off.

The main effect of channel noise is to introduce bit errors into the received signal. In
the case of a binary PCM system, the presence of a bit error causes symbol 1 to be mistaken
for symbol O, or vice versa.

Clearly, the more frequently bit errors occur, the more dissimilar the receiver output
becomes compared to the original message signal.

The fidelity of information transmission by PCM in the presence of channel noise may
be measured in terms of the average probability of symbol error, which is defined as the
probability that the reconstructed symbol at the receiver output differs from the transmitted
binary symbol, on the average.

The average probability of symbol error, also referred to as the bit error rate (BER),
assumes that all the bits in the original binary wave are of equal importance.

To optimize system performance in the presence of channel noise, we need to
minimize the average probability of symbol error.

For this evaluation, it is customary to model the channel noise as additive, white, and
Gaussian.

The effect of channel noise can be made practically negligible by ensuring the use of
an adequate signal energy-to-noise density ratio through the provision of short-enough
spacing between the regenerative repeaters in the PCM system.

Quantization noise is essentially under the designer's control. It can be made
negligibly small through the use of an adequate number of representation levels in the
guantizer and the selection of a companding strategy matched to the characteristics of the
type of message signal being transmitted.

1.15 Advantages and Limitations of PCM
Advantages of PCM
(i) Effect of channel noise and interference is reduced.

(ii) PCM permits regeneration of pulses along the transmission path. This reduces
noise interference.

(iii) The bandwidth and signal to noise ratio are related by exponential law.
(iv) Multiplexing of various PCM signals is easily possible.
(v) Encrypton or decrypton can be easily incorporated for security purpose.
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Limitations of PCM
(i) PCM systems are complex compared to analog pulse modulation methods.

(ii) The channel bandwidth is also increased because of digital coding of analog
pulses.

1.16 Differential Pulse Code Modulation
1.16.1 Redundant Information in PCM
The samples of a signal are highly corrected with each other. This is because any
signal does not change fast. That is its value from present sample to next sample does
not differ by large amount. The adjacent samples of the signal carry the same
information with little difference. When these samples are encoded by standard PCM
system, the resulting encoded signal contains redundant information. Fig. 1.11.1
illustrates this.
1.16.2 Principle of DPCM
If this redundancy is reduced, then overall bit rate will decrease and number of
bits required to transmit one sample will also be reduced. This type of digital pulse
modulation scheme is called Differential Pulse Code Modulation.
1.16.3 DPCM Transmitter
The differential pulse code modulation works on the principle of prediction. The
value of the present sample is predicted from the past samples. The prediction may
not be exact but it is very close to the actual sample value. Fig. 1.11.2 shows the
transmitter of Differential Pulse Code Modulation (DPCM) system. The sampled signal
is denoted by x(nT,) and the predicted signal is denoted by (n T,). The comparator
finds out the difference between the actual sample value x(nT,) and predicted sample
value X(nT,). This is called error and it is denoted by ¢(n T,). It can be defined as,

e(nT,) = x(nT)-x(nT,) .. (1.11.1)

Comparator
Sampled

input + e(nT,) - e,(nTy) S

x{nT.)
y RnTL)
-
—:('2)
Predictionj__

filter | s (nT,)

-

Fig. 1.11.2 Differential pulse code modulation transmitter
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Thus error is the difference between unquantized input sample x(nT,) and
prediction of it X(1T,). The predicted value is produced by using a prediction filter.
The quantizer output signal e, (17;) and previous prediction is added and given as
input to the prediction filter. This signal is called x, (nT.). This makes the prediction
more and more close to the actual sampled signal. We can see that the quantized error
signal e, (nT;) is very small and can be encoded by using small number of bits. Thus
number of bits per sample are reduced in DPCM.

The quantizer output can be written as,
g (nT) = e(nT,)+q(nT,) . (1.11.2)
Here q(nT;) is the quantization error. As shown in Fig. 1.11.2, the prediction filter
input x, (nT;) is obtained by sum X(nT,) and quantizer output i..,

X, (nTy) = E{H'I;H»eq{n?‘,] .. (1.11.3)

Putting the value of ¢, (nT;) from equation 1.11.2 in the above equation we get,

Xg (nT) = x(nT)+e(nT,)+q(nT,) .. (1.11.4)
Equation 1.11.1 is written as,
e(nT,) = x(nT,)~x(nT,)
e(nT)+x(nT;) = x(nT,) .. (1.11.5)
-, Putting the value of ¢(nT;) + X(nT;) from above equation into equation 1.11.4 we
get,
xq(n L)y = x(nT ) +q(nTy) .. (1.11.6)
Thus the quantized version of the signal x, (nT;) is the sum of original sample
value and quantization error q(nT.). The quantization error can be positive or
negative. Thus equation 1.11.6 does not depend on the prediction filter characteristics.

1.16.4 Reconstruction of DPCM Signal
Fig. 1.11.3 shows the block diagram of DPCM receiver.

DFCM

input_.' Decoder

= Qutput

Prediction
filter

Fig. 1.11.3 DPCM receiver
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The decoder first reconstructs the quantized error signal from incoming binary
signal. The prediction filter output and quantized error signals are summed up to give
the quantized version of the original signal. Thus the signal at the receiver differs
from actual signal by quantization error q(n7T.), which is introduced permanently in
the reconstructed signal.

1.17 Delta Modulation

We have seen in PCM that, it transmits all the bits which are used to code the sample.
Hence signaling rate and transmission channel bandwidth are large in PCM.To overcome this
problem Delta Modulation is used.

1.17.1 Operating Principle of DM

Delta modulation transmits only one bit per sample. That is the present sample
value is compared with the previous sample value and the indication,whether the
amplitude is increased or decreased is sent. Input signal x(f) is approximated to step
signal by the delta modulator. This step size is fixed . The difference between the
input signal x(f) and staircase approximated signal confined to two levels, ie.
+8and - 8. If the difference is positive, then approximated signal is increased by one
step i.e. ‘8. If the difference is negative, then approximated signal is reduced by 'd.
When the step is reduced, ‘0’ is transmitted and if the step is increased, ‘1’ is
transmitted. Thus for each sample, only one binary bit is transmitted. Fig. 2.1.1 shows
the analog signal x(f) and its staircase approximated signal by the delta modulator.

———_— g — =

i - 1 I T ! 1 [
| | | [] i
i _ *‘ ' u(t) i
I ol— —— e il A -J.-}-A.'.__-- P - .T_-.‘.-.., aall snnm / s . -.A._;.. -
- I .,.fﬂp Step size i — ™
i Z ot o N e N
B L T e
_ - I S A S T | Sampling
I i i | period
- i
! i |
Binary one : - LA S S — i ma ——m
mtsmuence:"""ﬂ 1. 1(1, 11110110 0f0 (1. 011.0

Fig. 2.1.1 Delta modulation waveform
35



1.17.2 DM Transmitter
Fig. 2.1.2 (a) shows the transmitter based on equations 2.1.3 to 2.1.5.

The principle of delta modulation can be explained by the following set of
equations. The error between the sampled value of x(f) and last approximated sample
is given as,

e(nT,) = x(nT,)-x(nT,) v (213)
Here, e(nT,) = Error at present sample
x(nT,) = Sampled signal of x(t)
X(nT,) = Last sample approximation of the staircase waveform.
Errar
s ed -
?:;':-It AL worr e BRI CR S
= *1quantizer == Output
x(nT,) - .2
x(nT,)
i wl(n-=1)T. + 1
E DTS A L e
a ] D
' 5 u(nT,) !
" Accumutator

Fig. 2.1.2. a) Delta Modulation Transmitter
We can call u(nT) as the present sample approximation of staircase output.

Then, u[(n-1)T,] = %(nT.) .. (212)

= Last sample approximation of staircase waveform.

Let the quantity b(nT,) be defined as,
b(nT,) = dsgnle(nT,)] sue- Ll o)

That is depending on the sign of error ¢(nT,) the sign of step size & will be
decided. In other words,

b(nT,) = +3 if x(nT,) =2 x(nT,)

= -3 if x(nT,) < .i'(nTs) e (2.1.4)
If b(nT,) = +38; binary ‘1’ is transmitted
and if b(nT,) = -3; binary ‘0" is transmitted.

T, = Sampling interval.

5
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The summer in the accumulator adds quantizer output (£8) with the previous
sample approximation. This gives present sample approximation. i.e.,

u(nTy) =u(nT, -T,)+[£d] or
= u[(n-1)T]+b(nT) ... (2.1.5)

The previous sample approximation u[(n-1)T,] is restored by delaying one
sample period T;. The sampled input signal x(nT,) and staircase approximated signal
x(nT,) are subtracted to get error signal e(nT,).

Depending on the sign of e(nT,) one bit quantizer produces an output step of +&
or -b. If the step size is +§, then binary ‘1’ is transmitted and if it is -8, then binary
‘0" is transmitted.

1.17.3 DM Receiver

Input Lowpass L Output

filter

Fig. 2.1.2 (b) Deita modulation receiver
At the receiver shown in Fig. 2.1.2 (b), the accumulator and low-pass filter are
used. The accumulator generates the staircase approximated signal output and is
delayed by one sampling period T.. It is then added to the input signal. If input is
binary ‘1’ then it adds +3 step to the previous output (which is delayed). If input is
binary ‘0’ then one step '8’ is subtracted from the delayed signal. The low-pass filter
has the cutoff frequency equal to highest frequency in x(f). This filter smoothen the
staircase signal to reconstruct x(f).
1.17.4 Advantages and Disadvantages of Delta Modulation
Advantages of Delta Modulation
The delta modulation has following advantages over PCM,

1. Delta modulation transmits only one bit for one sample. Thus the signaling
rate and transmission channel bandwidth is quite small for delta modulation.

2. The transmitter and receiver implementation is very much simple for delta
modulation. There is no analog to digital converter involved in delta
modulation.
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Disadvantages of Delta Modulation
Granular noise

Siope - overioad e =5

distortion eerlg \
23T A
re TS

o ien s
X“)\ L S 50 l
:' - " ._ - —
Staircase i 6 > Tg [
approximation——  f - :
uit) t

Fig. 2.2.1 Quantization errors in delta modulation
The delta modulation has two drawbacks -

Slope Overload Distortion (Startup Error)

This distortion arises because of the large dynamic range of the input signal.

As can be seen from Fig. 2.2.1 the rate of rise of input signal x(t) is so high that
the staircase signal cannot approximate it, the step size 'd' becomes too small for
staircase signal u(f) to follow the steep segment of x(f). Thus there is a large error
between the staircase approximated signal and the original input signal x(t). This error
is called slope overload distortion. To reduce this error, the step size should be increased
when slope of signal of x(¢) is high.

Since the step size of delta modulator remains fixed, its maximum or minimum
slopes occur along straight lines. Therefore this modulator is also called Linear Delta
Modulator (LDM).

Granular Noise (Hunting)
Granular noise occurs when the step size is too large compared to small variations

in the input signal. That is for very small variations in the input signal, the staircase
signal is changed by large amount (8) because of large step size. Fig. 2.2.1 shows that
when the input signal is almost flat, the staircase signal u (f) keeps on oscillating by +8
around the signal. The error between the input and approximated signal is called
granular noise. The solution to this problem is to make step size small.

Thus large step size is required to accommodate wide dynamic range of the input
signal (to reduce slope overload distortion) and small steps are required to reduce
granular noise. Adaptive delta modulation is the modification to overcome these
errors.

1.18 Linear Prediction

Linear prediction is used for estimating the future samples of the signal fron
present and past input sample values. Prediction is said to be linear if the future
sample value is linear combination of present and past input samples. The predicted
sample value is given as,
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xn) = Ewkn‘nuh ... (1.13.1)
k=1

Here i(n) is the predicted value of x(n).
x(n—1), x (n-2), ... x(tn — M) are the past input samples.
w;, Wy, Wy ... wy, are the set of multipliers, called filter coefficients.
Above equation is a linear equation. It shows that x(n) is linear combination of

x(n—1), xtn - 2), ... x(n - M). Hence it is linear prediction. Basically above equation is
the linear convolution for discrete signals.

Let the actual sample value be x(n). Then the difference between actual sample
value and predicted sample value is called prediction error. It is denoted by e(n) i.e.

Prediction error, e(n) = x(n) - x(n) ... (1.13.2)

The filter coefficients w,, w, ... w,, should be selected such that the mean square
value of error ¢2(n) is minimized. Starting from this condition, an equation is derived

which gives values of 'w,’ i.e,,

M

YwR(k-j) = Rk) andk=1,2 ..M ... (1.13.3)

j=1

Here 'w;" are the prediction filter coefficients,

Rik - j) = x(n-k)-x(n-j), is autocorrelation of x(n)

and R(k) = x(n)-x(n=k), is autocorrelation of x(n)

Above equation gives 'M' simultaneous linear equations with '™’ values of
unknowns. These equations can be solved to get w,, w,, ... wy, values.

1.18.1 Prediction Filter

Delay x(n-1) Delay x(n=2) x(n—M+1) Delay x(n— M)
x(n) - T = B o T
5 5 -]
This indicates
multiplication —= | "1 1w | Wit g
by wy
T + FY Y
- E\ ‘{J ¥ ) Kin)
+ + +

Fig. 1.13.1 Prediction filter
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Implementation of linear predictor of equation 1.13.1 is also called prediction filter.
Fig. 1.13.1 shows the block diagram of such filter. In this figure the input sample is
delayed by one sampling duration (T, ). Hence we get x(n - 1), it is the previous input
sample. Similarly if x(n — 1) is delayed by T, we get x(n — 2). The past input samples
are multiplied by w,, w,, ... w, and then added to give ¥n). It is called ‘filter' since
equation 1.13.1 represents linear convolution. And such - convolution represents
filtering. Here x(n = 1), x(n = 2), ... x(in = m) are past inputs, x(n) is present input.
These input samples are used for filtering with the help of coefficients w,, w,, ... wy,
Such filter 1s of the type of finite impulse response digital filter. The filtering operation
can be modified by changing the filter coefficients. Prediction filter is used earlier in
DPCM.

Prediction error can also be calculated using prediction filter. Fig. 1.13.2 shows the
implementation of equation 1.13.2. Consider equation 1.13.2,

e(n) = x(n) - X (n)

Putting for X(n) from equation 1.13.1,

M
x(n) - ZH"HTH = k)
k=1

efn)

x(n) = fw; xn = 1) +w, x (n=2)+ ... +wy x(n-M)

Il

= x(n) —w; x(tn - 1) = w, xtn = 2) - ... = wy, x(tn - M)
| petay | x(n-1) | Delay | x(n-2) Delay |*("—M)

x(n) T: Ts Ts

Wy | ] T 1r"'h'|

- | - r —

={ L) A ) J\l:.j " z e(n)
Fig. 1.13.2 Prediction filter used to calculate error e(n)

In the above diagram observe that w; x(n - 1), wyx(n~2), ... wyx(n-M) are

subtracted from x(n). Hence output of prediction filter is error e(n).

1.19 Adaptive Delta Modulation
1.19.1 Operating Principle
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To overcome the quantization errors due to slope overload and granular noise, the
step size (8) is made adaptive to variations in the input signal x(f). Particularly in the
steep segment of the signal x(t), the step size is increased. When the input is varying
slowly, the step size is reduced. Then the method is called Adaptive Delta Modulation
(ADM).

The adaptive delta modulators can take continuous changes in step size or discrete
changes in step size.
1.19.2 Transmitter and Receiver

Fig. 2.3.1 (a) shows the transmitter and 2.3.1 (b) shows receiver of adaptive delta
modulator. The logic for step size control is added in the diagram. The step size
increases or decreases according to certain rule depending on one bit quantizer output.

Logic for
stap size
control
error i
a(nT, E
+ (nTs) | Onebit - Output
A & —= variable
wnTg) | x(nTg) _ size
i——— summer
uf(n—-1)T.} : (@)
Delay
- TI
T T
Pt :_[Cowpass | output.
input F~ ; filter
Logic for Delay
step size : T, o
control : :
....... - ul' (b)

Fig. 2.3.1 Adaptive delta modulator (a) Transmitter (b) Receiver
For example if one bit quantizer output is high (1), then step size may be doubled for
next sample. If one bit quantizer output is low, then step size may be reduced by one
step. Fig. 2.3.2 shows the waveforms of adaptive delta modulator and sequence of bits
transmitted.

In the receiver of adaptive delta modulator shown in Fig. 2.3.1 (b) the first part
generates the step size from each incoming bit. Exactly the same process is followed as
that in transmitter. The previous input and present input decides the step size. It is
then given to an accumulator which builds up staircase waveform. The low-pass filter
then smoothens out the staircase waveform to reconstruct the smooth signal.
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Fig. 2.3.2 Waveforms of adaptive delta modulation
1.19.3 Advantages of Adaptive Delta Modulation

Adaptive delta modulation has certain advantages over delta modulation. i.e.,

1. The signal to noise ratio is better than ordinary delta modulation because of
the reduction in slope overload distortion and granular noise.

2. Because of the variable step size, the dynamic range of ADM is wide.
3. Utilization of bandwidth is better than delta modulation.

Plus other advantages of delta modulation are, only one bit per sample is required
and simplicity of implementation of transmitter and receiver.
1.20 Comparision of Digital Pulse Modulation Methods

Sr. Parameter PCM Delta Adaptive Delta | Differential Pulse
No. modulation Modulation Code Modulation
(DM) (ADM) (DPCM)

1. | Number of It can use 4, 8 It uses only one | Only one bit is Bits can be more
hits or 16 bits per bit for one used to encode | than one but are

sample. sample. one sample. less than PCM.

2 Levels, step The number of Step size is According to the | Fixed number of
size levels depend fixed and signal variation, levels are used.

on number of cannot be step size varies
bits. Level size varied. (Adapted).
is fixed.

3 Cuantization Quantization Slope overload Quantization Slope overload
error and error depends distortion and arror is present distortion and
distortion on number of granular noise but other errors | quantization noise

levals used. is present. are absent. is present.
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4 Bandwidth of Highest Lowest Lowest Bandwidth required
transmission bandwidth is bandwidth is bandwidth is is lower than PCM.
channel required since required, required.

number of bits
are hlgh.

5 Faadback. There is no Feedback exists | Feedback exists.| Feedback exists.

feedback in in transmitter.
transmitter or
recejver,

6 Complexity of | System is Simple. Simple. Simple.
notation complex,

T. Signal to Good. Poor. Better than DM. Fair.
noise ratio

8. Area of Audio and video | Speech and Speech and Speech and video.
applications Telephony. images. images,

Sr.No. Parameter PCM DM ADM DPCM

9 Sampling rate kHz 8 64-128 48-64 B

10 Bits/sample 7-8 1 1 4-6

1 Bit rate 56-64 64-128 46-64 32-48
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