
SATHYABAMA UNIVERSITY 
SCHOOL OF ELECTRONICS AND ELECTRICAL ENGG. 

COURSE MATERIAL – SEC1207 – DIGITAL LOGIC CIRCUITS – UNIT 1 

 
Regulation 2015 1 SEC1207 – DIGITAL LOGIC CIRCUITS-UNIT 1 
Prepared by Dayanandhan K /ETCE   

 

COURSE MATERIAL 

UNIT 1 

SEC1207-DIGITAL LOGIC CIRCUITS 

SYLLABUS 

UNIT I  BOOLEAN ALGEBRA AND LOGIC GATES 9 Hrs. 

Review of number systems - Binary arithmetic - Binary codes - Boolean algebra  and theorems - 

Boolean functions -Minimization of Boolean functions-Sum of Products(SOP)-Product of 

Sums(POS)-Simplifications of Boolean functions using Karnaugh map and tabulation methods - 

Logic gates- NAND and NOR implementation. 

 

TABLE OF TOPICS 

S.NO TOPIC PAGE NO. 

1.1 Review of Number systems 2 

1.1.1 Number Systems: Decimal, Binary, Octal, Hexadecimal 2 

1.1.2 Conversion from one system to another 3 

1.2 Binary Codes 16 

1.3 Binary Arithmetic 22 

1.4 Boolean Algebra and Theorems 32 

1.5 Boolean Functions 36 

1.5.1 Minimization of Boolean functions 41 

1.5.2 Simplification Using Boolean Functions 47 

1.5.2.1 Simplification Using Karnaugh map method 47 

1.5.2.2 Simplification Using Tabulation method 67 

1.6 Logic gates 74 

1.6.1 Universal Gates 83 

1.6.2 NAND and NOR implementation 85 
 



SATHYABAMA UNIVERSITY 
SCHOOL OF ELECTRONICS AND ELECTRICAL ENGG. 

COURSE MATERIAL – SEC1207 – DIGITAL LOGIC CIRCUITS – UNIT 1 

 
Regulation 2015 2 SEC1207 – DIGITAL LOGIC CIRCUITS-UNIT 1 
Prepared by Dayanandhan K /ETCE   

 

1.1 REVIEW OF NUMBER SYSTEMS 

 Numbers are used to count, communicate, measure etc. The common number systems used in 

this modern world are decimal and binary system. Decimal system is used by humans and binary system 

is used in machines. Other human-machine interface systems are octal and hexadecimal. 

 Decimal system used by humans has 10 digits ranging from 0 to 9.  

 They are 0 1, 2, 3, 4, 5, 6, 7, 8 and 9.   

 Since it uses 10 digits, it is named “decimal” system, where “deci” means “by 10”. 

 So Radix or Base of this Decimal system is 10. 

1.1.1 NUMBER SYSTEMS 

 The number systems, their base or Radix and the digits used are shown in the below table. 

Number 
Systems 

Number 
of 

digits 
(Base 

OR 
Radix) 

Digits in ascending order 

Binary 2 0 1               

Ternary 3 0 1 2              

Quinary 5 0 1 2 3 4            

Octal 8 0 1 2 3 4 5 6 7         

Decimal 10 0 1 2 3 4 5 6 7 8 9       

Hexadecimal 16 0 1 2 3 4 5 6 7 8 9 A B C D E F 

Note: The systems in BOLD are discussed further and others are for reference only. 

 Thus radix of binary is 2, that of octal is 8 and that of hexadecimal is 16. The hexadecimal is an 

exception with 16 digits and uses digits 0-9 (10 digits) and CAPITAL alphabets (A-F) where (A=10, 

B=11, C=12, D=13, E=14, F=15) 

 Let us discuss about position and weight of number systems. 

Example: Let us consider a Decimal number 8279.312 

Decimal Number 8 2 7 9 . 3 1 2 

Position 3 2 1 0  -1 -2 -3 

Weight = (RadixPosition) 
103 102 101 100  10-1 10-2 10-3 

1000 100 10 1  0.1 0.01 0.001 
 

 As shown in the above table, position increases from floating point to the left and decreases 

after floating point to the right. Weight of any position is Radixposition. For example, weight of position 2 

is 102=100=hundred. 

 So tables denoting position and weights are shown below for other systems. 

Binary Number 1 0 1 1 . 1 0 1 

Position 3 2 1 0  -1 -2 -3 

Weight = (RadixPosition) 
23 22 21 20  2-1 2-2 2-3 

8 4 2 1  0.5 0.25 0.125 
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Octal Number 3 6 7 2 . 1 5 4 

Position 3 2 1 0  -1 -2 -3 

Weight = (RadixPosition) 
83 82 81 80  8-1 8-2 8-3 

512 64 8 1  0.125 0.0625 0.001953125 
 

Hexadecimal Number D 6 4 E . A 3 9 

Position 3 2 1 0  -1 -2 -3 

Weight = (RadixPosition) 
163 162 161 160  16-1 16-2 16-3 

4096 256 16 1  0.5 0.00390625 0.000244140625 
 

 Weights and position play important role in conversions from one number system to other. 

 Note: Each number is called digit in decimal, octal and hexadecimal system but in binary each is 

called bit. 

Solve the questions below: 

What is base or radix of a number? 

Write the weights of (1.) 1110.1101b, (2.)3579.2178d, (3.) (7543.215)8 and (4.) 9AD.E347h 

 

Representation of numbers: 

 The below table shows two methods of representation of number systems when all are mixed 

and used in a system 

 Method 1: Writing the number in braces and using subscript of the number radix at the end of 

the number as shown in column 2 of the table shown below. (Number)radix 

 Method 2: Writing the number using alphabets like b, o, d and h for binary, octal, decimal and 

hexadecimal respectively as shown in column 3 of the table shown below. (Number)radix 

Writing binary, decimal and hexadecimal is not a problem. But while writing octal, alphabet o confuses 

for number 0, thus method 1 is extensively followed for octal numbers. 

NUMBER SYSTEM 
Method 1 Representation: 

USING RADIX AS SUBSCRIPT 
Method 2 Representation: 
USING ALPHABET AT END 

Binary (110101.1101)2 110101.1101b 

Octal (3472.2561)8 3472.2561o (NOT TO BE USED) 

Decimal (4569.2345)10 4569.2345d 

Hexadecimal (3A49E.15FC)16 3A49E.15FCh 
 

Solve the questions below: 

How to represent a decimal, a binary, an octal and a hexadecimal number? 

 

1.1.2 NUMBER SYSTEM CONVERSIONS FROM ONE TO ANOTHER: 

 Three methodologies are discussed here where  

1. First one being converting decimal to others, 

2. Second being converting others to decimal and 
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3. The third being Binary to Octal/ Hexadecimal and vice versa 

The first one of converting Decimal to others discussed below 

 
1.1.2.1. Decimal to others 

 For converting decimal number to others, the decimal number is split into integer number before 

floating point and number after floating number. 

 For Example: If the Decimal number is 95.215, then the number is split into 95 Integer) and 

.215 (floating number) 

 For the integer part use Successive Euclidean Division method and for the fractional part use 

Successive Euclidean Multiplication method. 

Decimal Number 95.215d 

Split into integer and fraction parts 95 (Integer Part) .215 (Fractional part) 

Use Successive Euclidean methods 
separately for each part 

Successive Euclidean  
Division method 

Successive Euclidean  
Multiplication method 

 

Successive Euclidean Division method: (For Integer Part Only) 

 95 (Whole Number Part) 

Here for Division, the 
divisor is R2 (the Radix of 
the number system to be 
converted to.) 
R2 for binary is 2 
R2 for octal is 8 
R2 for hexadecimal is 16 

Divisor Divident Remainder Direction 
R2 Integer   

 
 
 

R2 Quotient1 -Remainder1 

R2 Quotient2 -Remainder2 

R2 Quotient3 -Remainder3 
    

 

Continues till Quotient is less than divisor 

The Converted Integer part 
is  

Quotient3  Remainder3 Remainder2 Remainder1 
 

Decimal to Binary 
conversion 
Suppose it is converted to 
binary R2 is 2 (Radix) 

 

Divisor Dividend  Remainder Direction 
2 95    

 
 
 
 
 

2 47 - 1 

2 28 - 1 

2 14 - 0 

2 7 - 0 

2 3 - 1 

 1  1  

     
 

 

The Integer part of 
converted binary is written 
in the direction shown  

 

       

1 1 1 0 0 1 1 
 

95d=1110011b 
 

Successive Euclidean Multiplication method: (For Fractional part only) 

 .215 (Fractional part) 

 Successive Euclidean Multiplication method 
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Here for multiplication, 
the multiplicand is R2 
(the Radix of the number 
system to be converted 
to.) 
R2 for binary is 2 
R2 for octal is 8 
R2 for hexadecimal is 16 

 

 

Multiplication of 
 fraction only 

product Integer 
part 

Direction 

Fractional part x R2= Integer1.Fraction1 Integer1 
 
 
 
 

Fraction1 x R2= Integer2.Fraction1 Integer2 

Fraction2 x R2= Integer3.Fraction1 Integer3 

Fraction3 x R2= Integer4.Fraction1 Integer4 

Fraction4 x R2= Integer5.Fraction1 Integer5 
 

The fraction part of the 
converted number is 
written in the following 
format with floating 
point 

 

 

. Integer1 Integer2 Integer3 Integer4 Integer5 
 

Decimal to Binary 
conversion 
Suppose it is converted 
to binary R2 is 2 (Radix) 

 

Multiplication of 
fraction only 

product Integer 
part 

Direction 

0.215 x 2 = 0.43 0 
 
 
 
 

0.43 x 2 = 0.86 0 

0.86 x 2 = 1.72 1 

0.72 x 2 = 1.44 1 

0.44 x 2 = 0.88 0 

 
The number can be multiplied till it ends but if it is a recurring number, it 

can stop at any point 
 

The fraction part of 
converted binary is 
written in the direction 
shown  

 

 

. 0 0 1 1 0 

 

0.215 d=0.0011b 
The answer is absolute answer since it has been stopped at 5th 

multiplication and the number is recurring. This is a rounded off to 5 
answer. 

 

The integer part and 
fractional part shall be 
joint together as single 
number 

 

Integer part.Fractional part 

1110011.0011b 
 

 

 

Thus binary equivalent to 95.215d=1110011.0011b *(rounded to 4 fractional bits) 
 

a) Decimal to Binary conversion: 

 
Convert 95.215d to binary 

Integer part =95 
Fractional part = .215 

Decimal to Binary 
conversion 
Suppose Integer 
part is converted to 
binary divided by 2 
(Binary Radix) 

 
Divisor Divident  Remainder Direction 

2 95    
 
 
 

2 47 - 1 

2 28 - 1 

2 14 - 0 
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Successive Euclidean 
Division Method  

2 7 - 0  
 2 3 - 1 

 1  1  

     
 

The Integer part of 
converted binary is 
written in the 
direction shown  

1 1 1 0 0 1 1 

 

95d=1110011b 

Decimal to Binary 
conversion 
Suppose fractional 
part is converted to 
binary multiplied by 
2 (Binary Radix) 
Successive Euclidean 
Multiplication 
Method 

 

Multiplication of 
fraction only 

product Integer 
part 

Direction 

0.215 x 2 = 0.43 0 
 
 
 
 

0.43 x 2 = 0.86 0 

0.86 x 2 = 1.72 1 

0.72 x 2 = 1.44 1 

0.44 x 2 = 0.88 0 

 
The number can be multiplied till it ends but if it is a recurring number, it 

can be stopped at any point 
 

The fraction part of 
converted binary is 
written in the 
direction shown  

 
 

. 0 0 1 1 0  

     Discarded because 0 end 
of fraction is valueless  

 

0.215 d=0.0011b 
The answer is absolute answer, Since it has been stopped at 5th 

multiplication and the number is recurring. This answer is rounded off to 5 
fractional points. 

 

The integer part and 
fractional part shall 
be joint together as 
single number 

 

Full number = Integer part.fractional part 

95.215d=1110011.0011b 

 
 

 

Thus binary equivalent to 95.215d= 1110011.0011b *(rounded to 4 fractional bits) 

 

b) Decimal to Octal conversion: 

 
Convert 95.215d to octal 

Integer part =95 
Fractional part = .215 

Decimal to Octal 
conversion 
Suppose Integer part 
is converted to Octal 
divided by 8 (Octal 

 
Divisor Divident  Remainder Direction 

8 95 - 7  
 8 11 - 3 

 1    
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Radix) 
Successive Euclidean 
Division Method 

     
 

The Integer part of 
converted Octal is 
written in the 
direction shown  

 
   

1 3 7 

 

95d=(137)8 

Decimal to Octal 
conversion 
Suppose fractional 
part is converted to 
Octal multiplied by 8 
(Octal Radix) 
Successive Euclidean 
Multiplication Method 

 

Multiplication of 
fraction only 

product Integer 
part 

Direction 

0.215 x 8 = 1.72 1 
 
 
 
 

0.72 x 8 = 5.76 5 

0.76 x 8 = 6.08 6 

0.08 x 8 = 0.64 0 

0.64 x 8 = 5.12 5 

 
The number can be multiplied till it ends but if it is a recurring number, it 

can be stopped at any point 
 

The fraction part of 
converted Octal is 
written in the 
direction shown  

 
 

. 1 5 6 0 5 

 

0.215 d=(0.15605)8 

The answer is absolute answer, Since it has been stopped at 5th 
multiplication and the number is recurring. This answer is rounded off to 5 

fractional points. 
 

The integer part and 
fractional part shall 
be joint together as 
single number 

 

Full number = Integer part.fractional part 

95.215d=(137.15605)8 

 
 

 

Thus Octal equivalent to 95.215d= (137.15605)8 *(rounded to 5 fractional digits) 
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c) Decimal to Hexadecimal conversion: 

 
Convert 95.215d to Hexadecimal 

Integer part =95 
Fractional part = .215 

Decimal to 
Hexadecimal 
conversion 
Suppose Integer part 
is converted to 
Hexadecimal 
divided by 16 
(Hexadecimal Radix) 
Successive Euclidean 
Division Method 

 
Divisor Dividend  Remainder Direction 

16 95 - 15 (F)  

 5    

     
 

15 cannot be written as double digit in hexadecimal because 15d=Fh in 
hexadecimal (given in bracket) 

10d=Ah, 11d=Bh, 12d=Ch, 13d=Dh, 14d=Eh, 15d=Fh 

The Integer part of 
converted 
Hexadecimal is 
written in the 
direction shown  

 
  

5 F 

 

95d=5Fh 

Decimal to 
Hexadecimal 
conversion 
Suppose fractional 
part is converted to 
Hexadecimal 
multiplied by 16 
(Hexadecimal Radix) 
Successive Euclidean 
Multiplication Method 

 

Multiplication of 
fraction only 

product Integer 
part 

Direction 

0.215 x 16 = 3.44 3 
 
 
 
 

0.44x 16 = 7.04 7 

0.04 x 16 = 0.64 0 

0.64 x 16 = 10.24 10(A) 

0.24 x 16 = 3.84 3 

 
The number can be multiplied till it ends but if it is a recurring number, it 

can be stopped at any point 
 

The fraction part of 
converted 
Hexadecimal is 
written in the 
direction shown  

 
 

. 3 7 0 A 3 

 

0.215 d= 0.370A3h 

The answer is absolute answer, Since it has been stopped at 5th 
multiplication and the number is recurring. This answer is rounded off to 5 

fractional points. 
 

The integer part and 
fractional part shall 
be joint together as 
single number 

 

Full number = Integer part.fractional part 

95.215d=5F.370A3h 

 
 

Thus Hexadecimal equivalent to 95.215d= 5F.370A3h *(rounded to 5 fractional 

digits) 

Thus the conversion from decimal to binary/octal/hexadecimal has been discussed. 
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1.1.2.2. Others to decimal 

 For converting other system of numbers like binary/octal/hexadecimal to decimal, position and 

weight of the number is considered. The method used is position with weight multiplication.  

 For Example: Any other number AA.AAA is considered. 

Let radix of the number is Y. 

Number A A . A A A 

Position 1 0 . -1 -2 -3 

Weight Y1 Y0 . Y-1 Y-2 Y-3 

Digit/Bit x Weight A x Y1 = E1 A x Y0= E0 . A x Y-1 = E-1 A x Y-2 = E-2 A x Y-3 = E-3 

Converted to  
Decimal Number 

E1+E0 . E-1+E-2+E-3 

Sum Integer part 
separately 

. Sum Fractional part separately 

Integer part. Fractional part 

 
 As shown in above table, each digit/bit is multiplied by its weight, (Where weight of the number 
is radix of the number POWER to its position from the fractional point=Radixposition). Then summed 
integer part and summed fractional part are joined together as shown in the above table. This is the 
converted decimal number. 
 
Binary to Decimal Number: 

 Example: Converting binary number (11.011b) to Decimal  

Number 1 1 . 0 1 1 

Position 1 0 . -1 -2 -3 

Weight 
21 20 . 2-1 2-2 2-3 

2 1  0.5 0.25 0.125 

Bit x Weight 

1 x 21  1 x 20 . 0 x 2-1 1 x 2-2  1 x 2-3 

1 x 2 1x 1  0 x 0.5 1 x 0.25 1 x 0.125 

2 1 . 0 0.25 0.125 

Converted to 
 Decimal Number 

2+1=3 . 0+0.25+0.125=0.375 

3.375d 

Hence Binary number (11.011b) =3.375d (Decimal) 

Octal to Decimal Number: 

 Example: Converting Octal number [(73.245)8] to Decimal 

Number 7 3 . 2 4 5 

Position 1 0 . -1 -2 -3 

Weight 
81  80  . 8-1 8-2 8-3 

8 1  0.125 0.015625 0.001953125 

Digit x Weight 

7 x 81 3 x 80 . 2 x 8-1 1 x 8-2  5 x 8-3  

7 x 8  3 x 1 . 2 x 0.125  4 x 0.015625 5 x 0.001953125 

56 3 . 0.25 0.0625 0.009765625 

Converted to  
Decimal Number 

56+3=59 . 0.25+0.0625+0.009765625=0.322265625 

59.322265625d 

59.32227d (Rounded to 5 floating points) 

Hence Octal number (73.245)8 =59.322265625d (Decimal) 
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Hexadecimal to Decimal Number: 

Example: Converting Hexadecimal number (5F.37Bh) to Decimal 

Number 5 F . 3 7 B 

Position 1 0 . -1 -2 -3 

Weight 
161 160 . 16-1 16-2 16-3 

16 1 . 0.0625 0.00390625 0.000244140625 

Digit x Weight 

5 x 161  F(15) x 160 . 3 x 16-1  7 x 16-2  B(11) x 16-3 

5 x 16 15 x 1 . 3 x 0.0625  7 x 0.00390625  11 x 0.00244140625 

80 15 . 0.1875 0.02734375 0.002685546875 

Converted to 
 Decimal Number 

80+15=95 . 
0.1875+0.02734375+0.002685546875 

=0.217529296875 

95.217529296875d 

95.21753d (Rounded to 5 floating points) 

Hence Hexadecimal number 5F.37Bh =95.217529296875d (Decimal) 

Thus the conversion from binary/octal/hexadecimal to decimal has been discussed. 

1.1.2.3 Binary to Octal/Hexadecimal and Vice-versa 

(a) Binary to Octal Number 

 If any binary number is to be converted to octal, group of three (3) bits are formed with both 

sides of the fractional point. Fractional point is the reference. 

Binary 
Number 

b7 b6 b5 b4 b3 b2 b1 b0 . b-1 b-2 b-3 b-4 b-5 

Direction 
 of  
Grouping 

        .      

Group 
In 
3 bits 

b7 b6 b5 b4 b3 B2 b1 b0 . b-1 b-2 b-3 b-4 b-5 

               

Add 0 as prefix for  
Integer part 
Add 0 as suffix  
for Fractional part  
if group is less than  
3 bits 

0 b7 b6 b5 b4 b3 b2 b1 b0 . b-1 b-2 b-3 b-4 b-5 0 

Each group is  
converted into a 
octal number 

O2 O1 O0 . O-1 O-2 

Final Octal  
Converted  
number 

O2O1O0.O-1O-2 

Note: Check reference table: 1.1.2.3 at the end of the chapter to convert binary to octal 

Thus Binary number b7b6b5b4b3b3b2b1.b-1b-2b-3b-4b-5 is converted to  

octal number (O2O1O0.O-1O-2)8 
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 Example: convert 1101111.10011b to octal number 

Binary 
Number 

1 1 0 1 1 1 1 . 1 0 0 1 1 

Direction 
 of  
Grouping 

       .      

Group 
In 
3 bits 

1 101 111 . 100 11 

              

Add 0 as prefix for  
Integer part 
Add 0 as suffix  
for Fractional part  
if group is less than  
3 bits 

0 0 1 101 111 . 100 11 0 

Each group is  
converted into a 
octal number 

1 5 7 . 4 6 

Final Octal  
Converted  
number 

(157.46)8 

Note: Check reference table: 1.1.2.3 at the end of the chapter to convert octal to binary 

Hence 1101111.10011b = (157.46)8 

(b) Binary to Hexadecimal Number 

 If any binary number is to be converted to hexadecimal, group of four (4) bits are formed with 

both sides of the fractional point. Fractional point is the reference. 

Binary 
Number 

b7 b6 b5 b4 b3 b2 b1 b0 . b-1 b-2 b-3 b-4 b-5 

Direction 
 of  
Grouping 

        .      

Group 
In 
4 bits 

b7b6b5b4 b3b2b1b0 . b-1b-2b-3b-4 b-5 

Add 0 as prefix for  
integer part 
Add 0 as suffix  
for Fractional part 
if group is less than  
4 bits 

b7b6b5b4 b3b2b1b0 . b-1b-2b-3b-4 b-5000 

Each group is  
converted into a 
Hexadecimal number 

H1 H0 . H-1 H-2 

Final Hexadecimal 
Converted  
number 

H2H1H0.H-1H-2 
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Note: Check reference table: 1.1.2.3 at the end of the chapter to convert binary to Hexadecimal 

Thus Binary number b7b6b5b4b3b3b2b1.b-1b-2b-3b-4b-5 is converted to  

Hexadecimal number H1H0.H-1H-2 

 Example: convert 1101111.10011b to Hexadecimal number 

Binary 
Number 

1 1 0 1 1 1 1 . 1 0 0 1 1 

Direction 
 of  
Grouping 

       .      

Group 
In 
4 bits 

110 1111 . 1001 1 

Add 0 as prefix for  
integer part 
Add 0 as suffix  
for Fractional part 
if group is less than  
4 bits 

0110 1111 . 1001 1000 

Each group is  
converted into a 
Hexadecimal number 

6 F(15) . 9 8 

Final Hexadecimal 
Converted  
number 

6F.98h 

Hence 1101111.10011b = 6F.98h 

Note: Check reference table: 1.1.2.3 at the end of the chapter to convert binary to hexadecimal 

 
(c) Octal to Binary Number 

 If any octal number is to be converted to binary, each octal digit is replaced by equivalent three 

(3) binary bits. Fractional point is the reference. 

Octal Number  
to be 
Converted to 
Binary number 

O2 O1 O0 . O-1 O-2 

Direction 
 of  
Grouping 

         .       

Convert each 
Digit into 
3 binary bits 

b8 b7 b6 b5 b4 b3 b2 b1 b0 . b-1 b-2 b-3 b-4 b-5 b-6 

Binary 
Number 

b8 b7 b6 b5 b4 b3 b2 b1 b0 . b-1 b-2 b-3 b-4 b-5 b-6 

Note: Check reference table: 1.1.2.3 at the end of the chapter to convert binary to octal 

Thus octal number O2O1O0.O-1O-2 is converted to Binary number  



SATHYABAMA UNIVERSITY 
SCHOOL OF ELECTRONICS AND ELECTRICAL ENGG. 

COURSE MATERIAL – SEC1207 – DIGITAL LOGIC CIRCUITS – UNIT 1 

 
Regulation 2015 13 SEC1207 – DIGITAL LOGIC CIRCUITS-UNIT 1 
Prepared by Dayanandhan K /ETCE   

 

b8b7b6b5b4b3b3b2b1.b-1b-2b-3b-4b-5b-6 

 Example: convert (157.46)8to binary number 

Octal Number  
to be 
Converted to 
Binary number 

1 5 7 . 4 6 

Direction 
 of  
Grouping 

         .       

Convert each 
Digit into 
3 binary bits 

001 101 111 . 100 110 

Binary 
Number 

1101111.10011b 

Note: Check reference table: 1.1.2.3 at the end of the chapter to convert octal to binary 

Hence (157.46)8=1101111.10011b 

(d) Hexadecimal to Binary Number 

 If any hexadecimal number is to be converted to binary, each hexadecimal digit is replaced by 

equivalent four (4) binary bits. Fractional point is the reference. 

Hexadecimal 
Number  
to be 
Converted to 
Binary 
number 

H1 H0 . H-1 H-2 

Direction 
 of  
Grouping 

        .         

Convert each 
Digit into 
4 Equivalent 
binary bits 

b7 b6 b5 b4  b3 b2 b1 b0 . b-1 b-2 b-3 b-4 b-5 b-6 b-7 b-8 

Binary 
Number 

b7 b6 b5 b4 b3 b2 b1 b0 . b-1 b-2 b-3 b-4 b-5 b-6 b-7 b-8 

Note: Check reference table: 1.1.2.3 at the end of the chapter to convert Hexadecimal to binary 

Thus Hexadecimal number H1H0.H-1H-2 is converted to  

Binary number b7b6b5b4b3b3b2b1.b-1b-2b-3b-4b-5b-6b-7b-8 
 

 Example: convert 6F.98h to binary number 

Hexadecimal 
Number  
to be 
Converted to 
Binary 

6 F . 9 8 
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number 

Direction 
 of  
Grouping 

        .         

Convert each 
Digit into 
4 Equivalent 
binary bits 

0110  1111 . 1001 1000 

Binary 
Number 

1101111.10011b 

Note: Check reference table: 1.1.2.3 at the end of the chapter to convert Hexadecimal to binary 

Thus Hexadecimal number 6F.98h is converted to Binary number 1101111.10011b 

 

Table:1.1.2.3.  

REFERENCE TABLE-for octal/Hexadecimal to binary conversion and vice versa 

 

OCTAL 
Binary 

Equivalent 
(3 Bits) 

0 000 

1 001 

2 010 

3 011 

4 100 

5 101 

6 110 

7 111 
 

 

HEXADECIMAL 
Binary 

Equivalent 
(4 Bits) 

0 0000 

1 0001 

2 0010 

3 0011 

4 0100 

5 0101 

6 0110 

7 0111 

8 1000 

9 1001 

A 1010 

B 1011 

C 1100 

D 1101 

E 1110 

F 1111 

 
 

 

Solve the questions below: 
Convert the following to equivalent binary number 

(1.) 564.689d, (2.) (732.672)8 , (3.) FA5.37Bh 

Convert the following to equivalent Decimal number 

(1.) 110111.111101b, (2.) (732.672)8 , (3.) FA5.37Bh 

Convert the following to equivalent Hexadecimal number 

(1.) 110111.111101b, (2.) (732.672)8 , (3.) 739.3471d 
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Binary System 

 Binary system is extensively used in machines. The language used for communication inside 

digitized machines is machine language comprising of orderly way of binary system. 

Binary system uses two digits 0 and 1 called individually as bit. So bit is the basic unit of binary system. 

1 0 are single bit numbers, 00, 01, 10, 11 are two-bit numbers and so on. 

TECHNICAL NAME BIT NIBBLE BYTE 

NO. OF BITS Single bit Four bits Eight bits 

EXAMPLE 1 or 0 1110 1110 0101 

 

 Group of 4-bit are termed as NIBBLE, group of 8-bit are termed as BYTE.  

WORD-SIZE or WORD-LENGTH is a term used in computers which denotes the number of bits; the 

machine can handle at one instance. 

 What is a complement?  

 For bit 0, bit 1 is the complement and for bit 1, bit 0 is the complement. 

 What is 1‟s complement? 

 For a binary word, taking complement for each bit is termed as 1‟s complement.  

 For 1001, 1‟s complement is 0110. We can see each bit is complemented individually. 

4-bit number 

 MSB   LSB 

Weight 8 4 2 1 

Binary Number 1 1 1 1 

 

8-bit number 

 MSB       LSB 

Weight 128 64 32 16 8 4 2 1 

Binary Number 1 1 1 1 1 1 1 1 

 

MSB - MOST SIGNIFICANT BIT- the bit at the left most end of any binary word 
MSB - the bit that has highest weight and so termed MOST SIGNIFICANT BIT 
LSB - LEAST SIGNIFICANT BIT - the bit at the Right most end of any binary word 
LSB - the bit that has lowest weight and so termed LEAST SIGNIFICANT BIT 
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1.2 Binary Codes 

 Binary code is which assigns binary word to each symbol or instruction. Like alphabet „A” can be 

assigned a binary word 110111 termed as code for letter „A‟. 

Let us see some of the binary codes: 

Binary Code 1: BCD (Binary Coded Decimal) 

 The BCD (Binary Coded decimal) or otherwise termed as „8421‟ code comprises of four-bit binary 

equivalent for each decimal digit 0 -9. (Fixed-width) as name states the each decimal digit is encoded in 

its binary form. 

 

 Usually BCD can be represented by using four-bit (Nibble) or eight-bit (Byte) binary equivalent 

for each decimal digit from 0 to 9. But 4-bit representation is taken as common one. 

Table- A 4-bit BCD code for equivalent for each Decimal Digit 

Decimal 0 1 2 3 4 5 6 7 8 9 

BCD 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 

 
BCD code for some decimal numbers are shown in the following tables  

Decimal 1 0 

BCD 0001 0000 

 

Decimal 4 9 

BCD 0100 1001 

 

Decimal 3 5 7 

BCD 0011 0101 0111 

 

 The decimal 10d is written as 0001 0000, 49d as 0100 1001 and 358 as 0011 0101 0111 in BCD. 

This is termed as 8421 code because the four-bit position weights from MSB to LSB are 8421 

respectively. 

Decimal 6 

Weights 8 4 2 1 

BCD 0 1 1 0 

 In the above table, when we add the weights where bit 1 appears below the particular weights. 

Now in the above table, bit 1 appears where weights are 4 and 2. If 4 and 2 are added we get the 

decimal number. 

Example: 

Decimal 9 

Weights 8 4 2 1 

BCD 1 0 0 1 
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 In the above table, adding weights 8 and 1 where bits are 1, we get 9 (=8+1) which is the 

decimal equivalent of the BCD code 1001. 

 BCD is a weighted code because it uses weights while encoding. Weighted code is one that 

uses position and its weight while coding. As stated in above tables we can see the addition of 

respective weights whose bits are 1, it equals the decimal number. 

Binary Code 2: Excess-3 Code 

 It is also nearly a four-bit representation like BCD code. It is just a BCD representation added 

with binary 3 for each decimal. 

 

Decimal 0 1 2 3 4 5 6 7 8 9 

BCD 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 

Excess -3 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 

 

How excess-3 codes are formed. 

 Decimal 5 

 BCD 0101 

+ Binary Equivalent of 3d 0011 

= Excess -3 1000 

Step 1: Convert each decimal digit into its 4-bit BCD equivalent code. 

Step 2: Add 0011 with the BCD equivalent code 

Step 3: The final 4-bit code is the Excess-3 Code. Meaning is each BCD is excess 3 of original number. 

For decimal 5d, the excess-3 code is four-bit binary equivalent of number 8d, which is excess 3d than 

5d.  

The knowledge of 9‟s complement is inevitable to learn about self-complement 

Decimal 0 1 2 3 4 5 6 7 8 9 

9‟s Complement 9 8 7 6 5 4 3 2 1 0 

 

 The table above shows 9‟s complement of each decimal. As shown, 9d is 9‟s complement of 

decimal 0d and 6d is 9‟s complement of decimal 3d.  

How to obtain 9‟s complement? 

With a decimal number, if the complement is added the final answer is 9d (maximum value digit in 

decimal). Thus 6 + 3 = 9, 3d is the complement of decimal 6d. 

 What is self-complementing code? 

 Self-complementing codes have the property that the 9's complement of a decimal number is 

obtained directly by changing 1's to 0's and 0's to 1's. 

 Excess-3 is an example of self complementing code. 
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Row Decimal Excess -3 1‟s complement 9‟s complement 

1 6 1001 0110 3 

2 3 0110 1001 6 

     

3 4 0111 1000 5 

4 5 1000 0111 4 

 

 In the above table two examples are shown for self-complementing codes. 

Taking rows 1 & 2 to consideration. 

Row 1: 1001 is the excess-3 code of decimal 6d, and 0110 is its 1‟s complement.  

Row 2: But 0110 is the excess-3 code of decimal 3d and 1001 is its 1‟s complement. 

 It proves that 6 and 3 are 9‟s complements. Their excess-3 codes are 1‟s complements. 

With rows 3 & 4: 

 It proves that 4 and 5 are 9‟s complements. Their excess-3 codes are 1‟s complements. 

This property of complementing is called self-complementing. 

This code is not a weighted code, because the weight of binary equivalent is not equal to the decimal 

equivalent. For decimal 4d, the excess-3 code is 0111b, the weight of the code is 7 not 4. So the code is 

non-weighted code. 

 Thus BCD is a weighted code and Excess-3 code is a non-weighted code and self-

complementing code. 

 

Binary Code 3: Gray code 

 Gray code else termed as reflected binary code is one of the non-weighted binary code. 

What is a transition? 

 Assume that when an electrical switch is replaced for each bit in a binary number. Suppose 

switch ON is considered as bit „1‟ and switch OFF is considered as „0‟ as shown in the table below. 

 Binary 

Switch OFF 0 

Switch ON 1 
 

 Now the decimal numbers 0d and 1d are converted to 2-bit binary equivalent are shown in table 

below. As shown in the table, switches A & B are used for each bit. To change from decimal „0‟ to „1‟, 

only switch B should be switched ON (Arrow). Switch B should change from 0 to 1 position, ie.. OFF to 

ON. 

Decimal 
2-bit Binary 
equivalent 

Transition 

01, 10 

 Switch Switch  

 A B  

0 0 0  

1 0 1 0 to 1 
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This change is termed as TRANSITION. If 1 is changed to 0 or 0 to 1 it is called transition. 

 When decimal 0d is to be changed to 3d, then there needs 2 transitions. Both switches should 

be changed. Thus it causes two transitions. (Below table) 

Decimal 
2-bit Binary 
equivalent 

Transition 

01, 10 

 Switch Switch  

 A B  

0 0 0  

3 1 1 0 to 1 
 When decimal 3d is to be changed to 2d, then there needs 2 transitions. Switch B should be 

changed from „1‟ to „0 that is ON to OFF. Thus it causes one transitions. (Below table) 

Decimal 
2-bit Binary 
equivalent 

Transition 

01, 10 

 Switch Switch  

 A B  

3 1 1  

2 1 0 1 to 0 
 

 So three transitions had been discussed till now to understand what a transition is. 

 

 Now in the table below, decimal numbers are converted into their equivalent binary numbers in 

ascending order.  

 Third column informs about the SWITCHes that transits. Fourth column informs the count of 

switch transitions. 

Decimal 
4-bit Binary 
equivalent 

SWITCH 
Transition 

 

Transition 
count 

 A B C D   

0 0 0 0 0   

1 0 0 0 1 D-01 1 

2 0 0 1 0 C-01, D-10 2 

3 0 0 1 1 C-01, D-01 1 

4 0 1 0 0 B-01,C-10, D-10 3 

5 0 1 0 1 D-01 1 

6 0 1 1 0 C-01, D-10 2 

7 0 1 1 1 C-01, D-01 1 

8 1 0 0 0 A-01, B-10,C-01, D-10 4 

9 1 0 0 1 D-01 1 
 It is seen that the transitions are ambiguous and more than one transition are done when 

switched from one number to another number. So a code that avoids and has only one transition per 

number change should be devised. The code is GRAY CODE shown in next table. 
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Gray code was developed by Frank Gray that only has one transition per number change.  

 

How to convert binary number to Gray code? 

 

Figure: 1.2.1 Binary to Gray Code Conversion 

 In the figure 1.2.1 above, the BCD (or binary) is converted to Gray code. Binary 4-bit number 

B3B2B1B0 (1001) is converted to 4-bit Gray code (G3G2G1G0) by using following steps. 

Step 1: MSB is used as such. As shown in figure above, bit B3 is kept as 1. Thus MSB is not changed and 

the gray code is G3. 

Step 2: For next position B2, MSB bit B3 and B2 are compared. When both the bits are same the gray 

code at position is Binary Bit „0‟. If they are different the bit is „1‟. In example, both the bits are 

different, so the gray code at position G2 is bit „1‟. 

Step 3: For next position B1, Position bit B2 and B1 are compared. When both the bits are same the gray 

code at position is Binary Bit „0‟. If they are different the bit is „1‟. In example, both the bits are same 

(bit „0‟), so the gray code at position G1 is bit „0‟. 

Step 4: For next bits the comparison is continued.  

 In the table below decimal and relevant Gray code are shown. The transition columns show that 

only one transition happens per number increment. 
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Decimal Gray code 
SWITCH 

Transition 
Transition 

count 

 A B C D   

0 0 0 0 0   

1 0 0 0 1 D-01 1 

2 0 0 1 1 C-01 1 

3 0 0 1 0 D-10 1 

4 0 1 1 0 B-01 1 

5 0 1 1 1 D-01 1 

6 0 1 0 1 C-10 1 

7 0 1 0 0 D-10 1 

8 1 1 0 0 A-01 1 

9 1 1 0 1 D-01 1 
 

How to convert Gray code to binary number? 

 As shown in the figure 1.2.2 below, the method to convert Gray code to BCD (or Binary) is to be 

followed.  

 

Figure: 1.2.2 to Gray Code to Binary Coded Decimal Conversion 

It is the same as BCD to Gray code only change is here Binary output and gray code input is compared.  
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Solve 

Try converting the following into Gray code 

(1.) 5d, (2.) 9d (3.) 30d 

(2.) BCD 1011b, (3.) Binary 11001b 

 

1.3 Binary Arithmetic 

Binary arithmetic is also an essential part used in Digital computers. 

 There are binary addition, subtraction, multiplication and division that shall be discussed further. 

1.3.1 Binary addition 

Here are some rules for binary addition 

Two binary bit (A and B) addition - Table 

Rule A B A+B CARRY SUM 

1 0 0 0+0 0 0 

2 0 1 0+1 0 1 

3 1 0 1+0 0 1 

4 1 1 1+1 1 0 

 

Six binary bit addition (A, B, C, D, E and F) - Table 

Rule A B C D E F A+B+C+D+E+F 
CARRY- 
SECOND 

CARRY-
FIRST 

SUM 

5 1 1 1 0 0 0 1+1+1+0+0+0 0 1 1 

6 1 1 1 1 0 0 1+1+1+1+0+0 1 0 0 

7 1 1 1 1 1 0 1+1+1+1+1+0 1 0 1 

8 1 1 1 1 1 1 1+1+1+1+1+1 1 1 0 

The above tables are the key to binary addition and multiplication.  

Binary Addition 

 2 1 0 Position 

 C1 C0  Carry (C ) 

  A1 A0 Augend 

+  B1 B0 Addend 

 
C1 C0+A1+B1=S1 & C1 A0+B0=S0 & C0 

Sum (S) 

= C1 S1 S0 

 When two binary numbers A and B are added, their bits are individually added with reference to 

its positions. Here two bit numbers are shown, in the above table.  

 The augend number A has bits A0 and A1, the addend number B has bits B0 and B1.  
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The LSB bits A0 and B0 are added first. The sum generated is S0 and the carry generated is C0. The 

sum S0 is kept at same position 0 and carry C0 is carried to next higher position 1. 

In position 1, bits C0, A1 and B1 are added so as to generate a sum of S1 and a carry C1. The sum S1 

is kept at same position 1 but carry C1 is carried to next higher position 2.  

Since the numbers added have two bits only, the position 2 has only Carry C1. Thus the numbers added 

sum is C1 S1 S0.  

Sample addition: 

Row Decimal Binary 

1  4 3 2 1 0 Position 

2  C3 C2 C1 C0  
Carry (C ) 

3  0 0 1 1  

4 9  1 0 0 1 Augend 

5 +3  0 0 1 1 Addend 

6 
  

0+1+0 1+0+0 1+0+1 1+1 

Sum (S) 
7 =12 0 1 1 0 0 

8  C3 S3 S2 S1 S0 

 The number 9d and 3d are added in the above sample addition. [9d (Augend) and 3d (addend)] 

 First Number augend 9d whose binary equivalent is a 4-bit number 1001b but second number 

addend 3d is a 2-bit number 11b. So both the numbers should be equal in bit size, thus both the 

numbers are made 4-bit size. Second number 3d shall be made 4-bits by adding „0‟ as prefix to the 

binary bits 11 that is 0011b=3d. This is shown in the above table in rows 4 & 5.  

 First position 0 is considered for addition. The sum S0 is written in the same position 0 in the 

row 7 and its carry C0 is written in the column C0, row 3. 

 Then second position 1 is considered for addition. The carry C0 is also considered for generating 

the sum S1 written in the same position 1 in the row 7 and its carry C1 is written in the column C1, row 

3. 

 The remaining positions are also done as done in position 1. The sums S0, S1, S2 and S3 are 

generated with a carry C3. Since in position 4, only carry C3 is available which generates the sum S4. 

 Now the resultant sum is C3 S3 S2 S1 S0 that is 0 1 1 0 0 which can be written as 1100b 

equivalent to decimal 12d. (Discarding prefix 0) 

 Summary: 



SATHYABAMA UNIVERSITY 
SCHOOL OF ELECTRONICS AND ELECTRICAL ENGG. 

COURSE MATERIAL – SEC1207 – DIGITAL LOGIC CIRCUITS – UNIT 1 

 
Regulation 2015 24 SEC1207 – DIGITAL LOGIC CIRCUITS-UNIT 1 
Prepared by Dayanandhan K /ETCE   

 

 Both the numbers to be added should have same number of bits. If not so, bit 0 is appended as 

prefix to make both the binary numbers equal. 

 The final sum is appended with final carry as a prefix. MSB shall be finally generated carry and 

discarded if carry is 0. 

1.3.2 Binary subtraction 

Here are some rules for binary subtraction 

Two binary bit (A and B) Subtraction - Table 

Rule A B A-B Borrow Difference 

1 0 0 0-0 0 0 

2 0 1 0-1 1 0 

3 1 0 1-0 0 1 

4 1 1 1-1 0 0 

 

Binary Subtraction 

 2 1 0 Position 

 BR3 BR2 BR1 Borrow(BR) 

  A1 A0 Minuend 

-  B1 B0 Subtrahend 

 BR3 (BR2+A1)-B1=D1 (BR1+A0)-B0=D0 
Difference (D) 

= BR3 D1 D0 

 

Concept of binary Borrow is explained below 

 2 1 0 Position 

 BR3 BR2 BR1 

Borrow(BR) 

  
1     

1     

1 
1 

Number 
1 
0 

  

 

When a bit 1 is donated to 

next lower position, then bit 
0 shall be replaced instead 

of bit 1  

When a bit 1 is 
borrowed from higher 

position, then it is 

equivalent to 2 that is 
consist 2 bits of 1 each.  

When a bit 1 is 
borrowed from 

higher position, then 
it is equivalent to 2 

that is consist 2 bits 
of 1 each.  

 

 

 The method of subtraction is explained through a sample subtraction below with the methods 

explained above. 
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Sample addition: 

Row Decimal Binary 

1  3 2 1 0 Position 

2  B4 B3 B2 B1 

Borrow(BR) 
3   

1  

1 

1 

1 
 

4 9 1 0 0 0 1 Minuend 

5 -3 0 0 1 1 Subtrahend 

6 
 

(0+0)-0=0 (1+0)-0=1 (1+1) -1=1 1-1=0 

Difference (D) 
7 =6 0 1 1 0 

8  D3 D2 D1 D0 

 The number 9d and 3d are SUBTRACTED in the above sample addition. [9d (Minuend) and 3d 

(Subtrahend)] 

 First Number Minuend 9d whose binary equivalent is a 4-bit number 1001b but second number 

subtrahend 3d is a 2-bit number 11b. So both the numbers should be equal in bit size, thus both the 

numbers are made 4-bit size. Second number 3d shall be made 4-bits by adding „0‟ as prefix to the 

binary bits 11 that is 0011b=3d. This is shown in the above table in rows 4 & 5.  

First position 0 is considered for Subtraction. The difference D0 is 0 as shown in the above table.  

 Then second position 1 is considered for subtraction. The minuend is smaller (0) than 

subtrahend (1) and thus direct subtraction cannot be done.  

 Now for subtraction we need to borrow from higher position 2. But there also the minuend bit 2 

is 0 then number can be borrowed from position 3. When borrowed bit 1 from position 3 to position 2, 

the bit becomes 0 at position 3 and position 2 has two bit 1. Similarly now bit 1 is borrowed from 

position 2 to position 1. Thus position 1 has two borrow bits of 1 as shown in row 3 of above table. 

Now position 1 has two borrow bits position 2 has one borrow bit and Minuend bit at position 3 is 0.  

 After subtraction [(borrow bits+ Minuend bit)-Subtrahend bit- Difference] we get difference as 

0110 which is decimal 6d. 

 Than this direct subtraction methods, 1‟s complement addition and 2‟s complement addition are 

adapted. 

1‟s complement addition method for Binary subtraction: 

 What is 1‟s complement? 
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 For a binary word, taking complement for each bit is termed as 1‟s complement.  

 For 1001, 1‟s complement is 0110. We can see each bit is complemented individually. 

 Steps of 1‟s complement addition instead of subtraction. 

Step 1: 1‟s complement of Subtrahend is taken. 

Step 2: Then the 1‟s complemented subtrahend is added with minuend. 

Step 3:  

 Here final carry (MSB) generated is 1, and then add the carry to the remaining sum 

becomes the final difference.  

 If the final carry (MSB) generated is 0, then the final difference is the 1‟s complement 

of the sum generated. 

Sample 1‟s complement subtraction:  

(1.) Subtract 11d – 9d by converting to binary. 

(2.) Subtract 9d – 11d 9d by converting to binary. 

 

(1.) Subtract 11d – 9d by converting to binary. 

(1) Minuend = 11d, Subtrahend = 9d 

11d= 1011b, 9d =1001b 

 Step 1:   

 1‟s complement of Subtrahend is taken. 

 Subtrahend 9d=1001b is converted to its 1‟s complement, 1‟s complement 1001b is 0110b 

 Step 2: Then the 1‟s complemented subtrahend is added with minuend. 

 Step 3: Here final carry (MSB shown in highlight with thick border) generated is 1, then add the 

carry to the remaining sum becomes the final difference. 

Decimal Equivalent  4 3 2 1 0 Position 

  1 1 1 0  Carry 

11d   1 0 1 1 Minuend 

1‟s Complement of 9d +  0 1 1 0 1‟s Complement Subtrahend 

        

1d   0 0 0 1 Sum 

 +     1 Add Carry 

2d   0 0 1 0 Final Difference 

Note: When minuend is greater than subtrahend, the carry generated shall be bit 1. 

(2.) Subtract 9d – 11d 9d by converting to binary. 

(2) Minuend = 9d, Subtrahend = 11d 

9d =1001b, 11d= 1011b 

 Step 1:  
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 1‟s complement of Subtrahend is taken. 

 Subtrahend 11d=1011b is converted to its 1‟s complement, 1‟s complement 1011b is 0100b 

 Step 2: Then the 1‟s complemented subtrahend is added with minuend. 

 Step 3:  

 If the final carry (MSB) generated is 0, then the final difference is the 1‟s complement of the 

sum generated. 

Decimal Equivalent  4 3 2 1 0 Position 

  0 0 0 0  Carry 

9d   1 0 0 1 Minuend 

1‟s Complement of 11d +  0 1 0 0 1‟s Complement Subtrahend 

        

13d   1 1 0 1 Sum 

2d   0 0 1 0 1‟s Complement of Sum 
Is the Difference 

Note: When minuend is less than subtrahend, the carry generated shall be bit 0. 

 

2‟s complement addition method for Binary subtraction: 

 What is 2‟s complement? 

 For a binary word, taking complement for each bit is termed as 1‟s complement and adding bit 1 

to it is termed as 2‟s complement of the number.  

 For 1001, 1‟s complement is 0110. We can see each bit is complemented individually. 

The bit 1 is added. 

 1 0 1 1 Number (9d) 

 0 1 1 0 1‟s Complement 
+    1 Add Bit 1 

 0 1 1 1 2‟s Complement 
 

Steps of 2‟s complement addition instead of subtraction. 

 Step 1: 2‟s complement of Subtrahend is taken. 

 Step 2: Then the 2‟s complemented subtrahend is added with minuend. 

 Step 3:  

 Here final carry (MSB) generated is 1, and then sum discarding the carry shall be the final 

difference.  

 If the final carry (MSB) generated is 0, then the final difference is the 2‟s complement of the 

sum generated. 

Sample 2‟s complement subtraction:  

 (1.) Subtract 11d – 9d by converting to binary. 
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 (2.) Subtract 9d – 11d 9d by converting to binary. 

(1.) Subtract 11d – 9d by converting to binary. 

(1) Minuend = 11d, Subtrahend = 9d 

11d= 1011b, 9d =1001b 

 Step 1:   

 2‟s complement of Subtrahend is taken. 

 Subtrahend 9d=1001b is converted to its 2‟s complement, 2‟s complement 1001b is 0111b 

 Step 2: Then the 2‟s complemented subtrahend is added with minuend. 

 Step 3:  

 Here final carry (MSB shown in highlight with thick border) generated is 1, and then discard 

carry, remaining sum becomes the final difference.  

Decimal Equivalent  4 3 2 1 0 Position 

  1 1 1 1  Carry 

11d   1 0 1 1 Minuend 

2‟s Complement of 9d +  0 1 1 1 2‟s Complement Subtrahend 

        

2d   0 0 1 0 Sum 

 + 1     Discard Carry 

2d   0 0 1 0 Final Difference 

Note: When minuend is greater than subtrahend, the carry generated shall be bit 1. 

(2.) Subtract 9d – 11d 9d by converting to binary. 

(2) Minuend = 9d, Subtrahend = 11d 

9d =1001b, 11d= 1011b 

 Step 1:  

 2‟s complement of Subtrahend is taken. 

 Subtrahend 11d=1011b is converted to its 2‟s complement, 2‟s complement 1011b is 0101b 

 Step 2: Then the 2‟s complemented subtrahend is added with minuend. 

 Step 3:  

 If the final carry (MSB) generated is 0, then the final difference is the 2‟s complement of the 

sum generated. 

Decimal Equivalent  4 3 2 1 0 Position 

  0 0 0 1  Carry 

9d   1 0 0 1 Minuend 

2‟s Complement of 11d +  0 1 0 1 2‟s Complement Subtrahend 

  0     Carry is bit 0 sum shall be 2‟s 
complemented 

13d   1 1 1 0 Sum 

   0 0 0 1 1‟s Complement of Sum 
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2d   0 0 1 0 2‟s Complement of Sum 
Is the Difference 

Note: When minuend is less than subtrahend, the carry generated shall be bit 0. 

 

1.3.3 Binary multiplication 

 It is nearly similar to the known decimal multiplication. Here addition upto six bits are shown 

separately in different successive tables. Carry generated in positions are shown. This may give us pre-

requisite study on multiplication when we add upto six bits. 

 Add two bits- all being 1 

 1+1 = 10b=0(sum)1(carry) 

 2 1 0 Position 
Here carry generated by position 0 is put in next higher position 1 

  1  Carry 

     

   1 Number 1 

+   1 Number 2 

     

   0 Sum 

  1 0 Final Sum (including Carry) 
 

 Add three bits- all being 1 

 1+1+1=11b= 1(sum)1(carry) 

 2 1 0 Position 
Here carry generated by position 0 is put in next higher position 1 

  1  Carry 

     

   1 Number 1 

   1 Number 2 

+   1 Number 3 

     

   1 Sum 

  1 1 Final Sum (including Carry) 
 

 Add Four bits- all being 1 

 1+1+1+1=100b= 0(sum)10(carry) 

 2 1 0 Position 
Here carry generated by position 0 is put in next higher positions 2 & 1 

as 1 & 0 respectively 

 1 0  Carry 

     

   1 Number 1 

   1 Number 2 

   1 Number 3 

+   1 Number 4 

     

   0 Sum 

 1 0 0 Final Sum (including Carry) 
 



SATHYABAMA UNIVERSITY 
SCHOOL OF ELECTRONICS AND ELECTRICAL ENGG. 

COURSE MATERIAL – SEC1207 – DIGITAL LOGIC CIRCUITS – UNIT 1 

 
Regulation 2015 30 SEC1207 – DIGITAL LOGIC CIRCUITS-UNIT 1 
Prepared by Dayanandhan K /ETCE   

 

 Add Five bits- all being 1 

 1+1+1+1+1=101b= 1(sum)10(carry) 

 2 1 0 Position 
Here carry generated by position 0 is put in next higher positions 2 & 1 
as 1 & 0 respectively 

 1 0  Carry 

     

   1 Number 1 

   1 Number 2 

   1 Number 3 

   1 Number 4 

+   1 Number 5 

     

   1 Sum 

 1 0 1 Final Sum (including Carry) 
 

 Add Six bits- all being 1 

 1+1+1+1+1+1= 110b=0(sum)11(carry) 

 2 1 0 Position 
Here carry generated by position 0 is put in next higher positions 2 & 1 

as 1 & 1 respectively 

 1 1  Carry 

     

   1 Number 1 

   1 Number 2 

   1 Number 3 

   1 Number 4 

   1 Number 5 

+   1 Number 6 

     

   0 Sum 

 1 1 0 Final Sum (including Carry) 

 

Sample Multiplication 

Multiply 31d x 14d using binary multiplication. 

31d = 11111b, 14d=1110b 

Decimal 
equivalent 

 7 6 5 4 3 2 1 0 Position 

15d      1 1 1 1 Multiplicand 

x14d      1 1 1 0 Multiplier 

 Carry 
added to 

same 
position 

1 
(5) 

 
1 

(3) 
     

Carry from (position shown in 
brackets) 
Example: Carry generated in 
position 3 put in position 5 
highlighted 

 Carry 
added to 

same 
 

 
 

1 
(4) 

 
1 

(2) 
   

Carry from next immediate lower 
position (position shown in 
brackets) 
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position 

 0 x 1111     0 0 0 0  
 1 x 1111    1 1 1 1   

 1 x 1111   1 1 1 1    

 1 x 1111  1 1 1 1     

210  1 1 0 1 0 0 1 0 Product 
 

 

1.3.4 Binary Division 

This is also similar to decimal division. 

Sample Division 

Divide 31d x 3d using binary multiplication. 

31d = 11111b, 3d=110b 

    3 2 1 0   Position 

    1 0 1 0   Quotient 

  1 1 1 1 1 1 1   

    1 1     Quotient bit 1 is written in position 3 

    0 0     Answer is 0 so Quotient bit 0 is written in position 2 

      1 1    

      1 1   Quotient bit 1 is written in position 1 

       0 1  Difference less than the Divisor 11b , so in Quotient 
bit 0 is written in position 0 

          Now 01 is the remainder 

Thus 31d  3d = Quotient 10d=1010b and remainder 1d=01b 

Solve the questions below: 

Add the following using their equivalent binary numbers 

(1.) 25d + 31d, (2.) (76)8 + (13)8, (3.) FAh +37h 

Subtract the following using their equivalent binary numbers by 2‟s complement method. 

(1.) 45d - 31d, (2.) (76)8 - (13)8, (3.) FAh -37h 

Add the following using their equivalent binary numbers 

(1.) 25.32d + 31.21d, (2.) (7.62)8 + (1.32)8, (3.) FA5h +37Bh 

Add the following using their equivalent binary numbers 

(1.) 25.32d + 31.21d, (2.) (7.62)8 + (1.32)8, (3.) FA5h +37Bh 
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1.4 BOOLEAN ALGEBRA AND THEOREMS 

1.4.1. Boolean Algebra: 

 In computer language, Boolean is a data-type which only has two values: true or false 

Thus Boolean variables have only two values true (1) or false (0). 

Boolean variable representation: 

 If a variable is A, then it is considered to be true (1). Thus A=1.  

 If the same variable A is complemented as Ā, then it is considered to be false (0). Thus Ā =0 

Thus A=1 and Ā =0. 

 Note: Complement can be used in these formats too: Ā (a bar on variable A) or A‟ (Apostrophe 

after variable A. 

 The variables often used are A, B, C, D, E, W, X, Y, Z 

1.4.1.1. Boolean operators: 

 There are two types of Boolean operators: (1) Basic operators, (2) Derived operators. 

Basic boolean operators: 

There are three basic operators: 

1. Negation (NOT) operator,  

2. Disjuction (OR) operator and  

3. Conjunction (AND) operator 

 
 

Table 1.4.1: Basic Boolean Operators and operations 
 

BASIC  
OPERATOR 

OPERATION 
VARIABLE 

OPERATION 
TRUE OR FALSE 0 OR 1 

NOT 
(¯ or „) 

NOT (A) = Ā (or A‟) 
NOT (A)=A‟ or Ā 
NOT (A‟ or Ā)=A 

NOT (True)=false 
NOT (False)=True 

NOT (0)=1 
NOT (1)=0 

OR 
(+) 

A + B  

False + False= False 
False + True = True 
True + False= True 
True + True= True 

0 + 0= 0 
0 + 1 = 1 
1 + 0= 1 
1 + 1= 1 
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AND 
(.) 

A . B  

False . False= False 
False . True = False 
True . False= False 
True . True= True 

0 . 0= 0 
0 . 1 = 0 
1 . 0= 0 
1 . 1= 1 

 

 The above table 1.4.1, the operations and operators are shown. 

Summary: 

 NOT operation complements each variable. It‟s usually a single variable operator. 

OR and AND operations are not single variable operators. They need minimum two operators for 

operation to happen.  

 OR operation: when one variable of the operation is „1‟ (True), the output is „1‟ (True) 

Example: A + B + C = 1 when only A=1, or B=1, or C=1, and when A=B=1, A=C=1, B=C=1, or 

A=B=C=1. 

Output is „1‟ (=True) when  

Case 1: A=1, B=0, C=0 

Case 2: A=0, B=1, C=0 

Case 3: A=0, B=0, C=1 

Case 4: A=1, B=1, C=0 

Case 5: A=1, B=0, C=1 

Case 6: A=0, B=1, C=1 

Case 7: A=1, B=1, C=1 

Other combinations have output as „0‟ (=False).  

 

 AND operation: when one variable of the operation is „0‟ (False), the output is „0‟ (False) 

Example: A . B . C = 0 when only A=0, or B=0, or C=0, and when A=B=0, A=C=0, B=C=0, or 

A=B=C=0. 

Output is „0‟ (=False) when  

Case 1: A=0, B=0, C=0 

Case 2: A=1, B=0, C=0 

Case 3: A=0, B=1, C=0 

Case 4: A=0, B=0, C=1 

Case 5: A=1, B=1, C=0 

Case 6: A=1, B=0, C=1 

Case 7: A=0, B=1, C=1 

Other combination is when all the variables are „1‟(=True). Ie A=B=C=1 only the output is „1‟ (=True) 

NOTE: OR operation is termed as “inclusive OR” 
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1.4.1.2. Derived operators: 

 One of the main derived operator is exclusive disjunction or exclusive OR (XOR) operator. 

Table 1.4.2: Derived Boolean Operator and operation 

DERIVED  
OPERATOR 

OPERATION 
VARIABLE 

OPERATION 
TRUE OR FALSE 0 OR 1 

XOR 

() 
A  B 

 False  False= False 

False  True = True 

True  False= True 

True  True= False 

0  0= 0 

0  1 = 1 

1  0= 1 

1  1= 0 

 

 The XOR operation is such that when odd number of variables is True (or „1‟) then output is True 

(or „1‟) 

 Example: When variables A, B, C, and D are operated with XOR operator, then ABCD, the 

output is „1‟ (=True) when  

Case 1: A=1, B=0, C=0 

Case 2: A=0, B=1, C=0 

Case 3: A=0, B=0, C=1 

Case 4: A=1, B=1, C=1 

 Other combinations have output as „0‟ (=False). Thus when one variable is „1‟(=True) or all three 

variables are „1‟ (=True) have output as „1‟ (=True) 

 This operation XOR is called ODD parity Checker since it gives output when odd number of 

input variables are „1‟ (=True) 

 

1.4.2 BOOLEAN THEOREMS: 

The below given are the properties and theorems related to Boolean variables.  

THEOREM 
NAME  

EXPLANATION 
NOT FUNCTION 

THEOREM APPLICATION 

INVOLUTION 
When the complement is of even times (Given Example 

is 2 times complement), output is the same signal 𝐴 = A 
0 = 0 

1 = 1 

INVOLUTION 

(odd times) 

When the complement is of Odd times (Given Example 
is 3 times complement), output is the complement 

signal 𝐴  = 𝐴  
0  = 1 

1  = 0 
 

 

THEOREM 

NAME  
EXPLANATION 

OR FUNCTION AND FUNCTION 
THEOREM APPLICATION THEOREM APPLICATION 

IDEMPOTENT 
When identical 
variables are 
processed 

A + A= A 
0 + 0= 0 

A.A=A 
0.0= 0 

1 + 1= 1 1.1= 1 

COMPLEMENT 
When complement 

variables are 
processed 

A + 𝐴 =1 
0 + 1= 1 

A. 𝐴 =0 
0.1= 0 

1 + 0= 1 0.1= 0 
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COMBINING 
When both operators 

are used, the 
complement vanishes 

(A.B)+(Ā.B)=B 
(1.0)+(0.0)=0 

(A+B).(Ā+B)=B 
(1+0)+(0+0)=0 

(1.1)+(0.1)=1 (1+1)+(0+1)=1 

ADSORPTION 

Repeated variables is 
the output  

A+(A.B)=A 
0+(0.1)=0 

A.(A+B)=A 
0.(0+1)=0 

1+(1.1)=1 1.(1+1)=1 

Repeated variables is 
the output  

A+(Ā.B)=A+B 
0+(1.1)=1 

A.(Ā+B)=A.B 
0.(1+1)=0 

1.(0+1)=1 1.(0+1)=1 
 

Boolean Property: 

PROPERTY 

NAME  
OR FUNCTION AND FUNCTION 

THEOREM APPLICATION THEOREM APPLICATION 

COMMUTATIVE A + B= B + A 
0+1= 0+1 = 1 

A.B= B.A 
0.1= 0.1 = 0 

1+1= 1+1 = 1 1.1= 1.1 = 1 

ASSOCIATIVE A+(B+C)=(A+B)+C 
0+(1+1)= (0+1)+1 = 1 

A.(B.C)=(A.B).C 
0.(1.1)= (0.1).1 = 0 

0+(0+1)= (0+0)+1 = 1 0.(0.1)= (0.0).1 = 0 

DISTRIBUTIVE A.(B+C)=A.B+A.C 
0.(1+0)=0.1+0.0=0 

A+(B.C)=(A+B).(A+C) 
0+(1.0)=(0+1).(0+0)=0 

1.(1+0)=1.1+1.0=1 1+(1.0)=(1+1).(1+0)=1 

 

DEMORGANS THEOREM 

THEOREM PROOF 

𝐴 +  𝐵         = 𝐴  . 𝐵  

0 +  0        = 0  . 0 =0  

0 +  1        = 0  . 1 =0  

1 +  0        = 1  . 0 =0  

1 +  1        = 1  . 1 =1 

𝐴 . 𝐵      = 𝐴  + 𝐵  

0 . 0     = 0  + 0 =1  

0 . 1     = 0  + 1 =1  

1 . 0     = 1  + 0 =1  

1 . 1     = 1  + 1 =0 
 

 Prove 𝐴 +  𝐵         = 𝐴  . 𝐵   

 LHS (Left Hand Side of the equation) 

 RHS (Right Hand Side of the equation) 

   LHS   RHS 
A B A + B 𝑨 +  𝑩          𝐴  𝐵  𝑨  . 𝑩  

0 0 0 1 1 1 1 

0 1 1 0 1 0 0 

1 0 1 0 0 1 0 

1 1 1 0 0 0 0 

 Prove 𝐴 . 𝐵      = 𝐴  + 𝐵  

   LHS   RHS 
A B A . B 𝑨 . 𝑩       𝐴  𝐵  𝑨  + 𝑩  

0 0 0 1 1 1 1 
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0 1 0 1 1 0 1 

1 0 0 1 0 1 1 

1 1 1 0 0 0 0 

 The columns LHS and RHS are the same. Thus the theorem is proved. This table is termed as 

truth table which exhibits truth about the several possible combinations of input variables. 

 The output is remembered as “break the line” and “Change the sign” 

 𝐴 +  𝐵         = 𝐴  . 𝐵   

LHS= 𝐴 +  𝐵          

RHS=𝐴  . 𝐵   

 In LHS “break the line” or bar on the expression A + B, (𝐴 +  𝐵         ) =  𝐴  + 𝐵  . Then “Change 

the sign” OR operator „+‟ is changed as AND operator „.‟  Thus it becomes  𝐴  . 𝐵  

 Same for another theorem 𝐴 . 𝐵      = 𝐴  + 𝐵 . 

 

1.5 BOOLEAN FUNCTIONS: 

 Boolean function: it describes the combinations of Boolean variables that infer particular required 

output. 

 

 a). When an expression is written in X+Y+Z form, it is called SUM form or using OR variable. 

 b). When an expression is written in X.Y.Z form, it is called PRODUCT form or using AND 

variable. 

 

Sum of products expression (SOP): 

 When an expression is written in this form  𝐴 𝐵 +  𝐴𝐵 𝐶 + 𝐴𝐶 , the ANDed variables are ORed 

later. The ANDed are Products and ORing (SUMming) the products is termed as SUM of PRODUCTS 

(SoP or SOP). 

 

 As shown in the above figure product1, product2 and product3 are AND expressions. The sum is 

an OR expression, being the OR (Sum) expression of all AND (Products). 
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Product of Sums expression (POS): 

 When an expression is written in this form   𝐴 + 𝐵 .   𝐴 + 𝐵  + 𝐶 . (𝐴 + 𝐶  ), the ORed variables 

are ANDed later. The ORed are Sums and ANDing (PRODUCTing) the sums is termed as PRODUCT of 

SUMS (PoS or POS). 

 

 As shown in the above figure, sum1, sum2 and sum3 are OR expressions. The product is an AND 

expression, being the AND (Product) expression of all OR (Sums). 

 

Maxterms and minterms: 

 

Table 1.5.1: Two variable truth table 

Input Output 
Minterm Maxterm 

A B F 

0 0 0 m0= 𝐴 𝐵  M0=(𝐴 + 𝐵) 

0 1 1 m1= 𝐴 𝐵 M1= (𝐴 + 𝐵 ) 

1 0 1 m2= 𝐴𝐵  M2= (𝐴 + 𝐵) 

1 1 0 m3= 𝐴𝐵 M3= (𝐴 + 𝐵 ) 

  

 Minterm: In the above table termed as truth table, two inputs A & B are exciting an output F. 

Since two variables, four combinations 00(𝐴 𝐵 ), 01(𝐴 𝐵), 10(𝐴𝐵 ) and 11(𝐴𝐵) and their respective output 

(F) are shown. 

The combinations 01(𝐴 𝐵) and 10(𝐴𝐵 ) excite the output F to True (1). The expressions 01(𝐴 𝐵) and 

10(𝐴𝐵 ) are termed as Minterm. Minterm is a product expression 

 It is expressed as 𝑭 (𝑨,𝑩) = 𝑨 𝑩+𝑨𝑩  or as 𝑭 (𝑨, 𝑩) =  (𝟏, 𝟐)𝒎  

 where  

   (Sigma) Represents Sum of Products 

  m represents minterm 

  m1 & m2 represents 01(𝐴 𝐵) and 10(𝐴𝐵 ) respectively. They are decimal equivalents of 

the respective expressions. 

Thus minterms lead to Sum of products.(SoP) 
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 Maxterm: The combinations 00(𝐴 𝐵 ) and 11(𝐴𝐵) excite the output F to False (0). The 

expressions 00(𝐴 𝐵 )and 11(𝐴𝐵) are to be complemented. 

Complement of 00(𝐴 𝐵 ) =00     =1+1 (Demorgan‟s theorem) 

1+1 = 𝐴 + 𝐵 

Likewise complement of 11(𝐴𝐵) = 0 + 0 = 𝐴  + 𝐵  

Thus 𝐹 (𝐴, 𝐵)= (𝐴 + 𝐵).( 𝐴  + 𝐵)     

The product expressions (𝐴 + 𝐵) and ( 𝐴  + 𝐵)     are termed as Maxterms. 

Maxterm is a sum expression. 

 It is expressed as  (𝑨, 𝑩) = (𝑨 + 𝑩) . ( 𝑨  + 𝑩)      or as 𝑭 (𝑨,𝑩) =  (𝟎, 𝟑)𝑴   

 where  

   (pi) Represents Product of Sums  

  M represents Maxterm 

 M0 & M3 represents (𝐴 + 𝐵) and ( 𝐴  + 𝐵)     respectively. They are decimal equivalents of 

the respective expressions. 

Thus maxterms lead to Product of Sums (PoS) 

 

Duality of Minterm and Maxterms: 

1)  Maxterm = Complement of Minterm 

 𝑭 (𝑨, 𝑩) = 𝑨 𝑩+𝑨𝑩  = 𝑭  (𝑨,𝑩)  = 𝑨 𝑩 + 𝑨𝑩              = 𝒎𝟏, 𝒎𝟐 

 𝑭  (𝑨, 𝑩) = 𝑨 𝑩 + 𝑨𝑩              =  𝑨 𝑩    .𝑨𝑩        (Demorgan‟s Theorem) 

 𝑭  (𝑨, 𝑩) = 𝑨 𝑩    .𝑨𝑩      =   𝑨 + 𝑩  . (𝑨 + 𝑩) (Demorgan‟s Theorem) 

 𝑭  (𝑨, 𝑩) =   𝑨 + 𝑩  . (𝑨 + 𝑩) = 𝒎𝟏     , 𝒎𝟐      =𝑴𝟏, 𝑴𝟐 

 𝑴𝟏 = (𝐴 + 𝐵 ) = 𝒎𝟏     = 𝐴 . 𝐵      

 𝑴𝟐 = (𝐴 + 𝐵) = 𝒎𝟐      = 𝐴. 𝐵       

2) Minterm = Complement of Maxterm 

 𝑭 (𝑨, 𝑩) = (𝑨 + 𝑩) . ( 𝑨  + 𝑩)     =𝑭  (𝑨, 𝑩)  =  𝑨 + 𝑩 . ( 𝑨  + 𝑩)                             = 𝑴𝟎,𝑴𝟑 

 𝑭  (𝑨, 𝑩)  =  𝑨 + 𝑩 . ( 𝑨  + 𝑩)                             =  𝑨 + 𝑩           + (𝑨 + 𝑩         ) (Demorgan‟s Theorem) 

 𝑭  (𝑨, 𝑩)  =   𝑨 + 𝑩           + (𝑨 + 𝑩         ) =  𝑨 .𝑩  + (𝑨. 𝑩) (Demorgan‟s Theorem) 

 𝑭  (𝑨, 𝑩)  =  𝑨 . 𝑩  + (𝑨. 𝑩) = 𝑴𝟎     , 𝑴𝟑      = 𝒎𝟎, 𝒎𝟑 

 𝑴𝟎 = (𝐴 + 𝐵) = 𝒎𝟎     = (𝐴 . 𝐵 )         

 𝑴𝟑 = (𝐴 + 𝐵 ) = 𝒎𝟑      = (𝐴. 𝐵      ) 
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EXAMPLE 2: list the minterms and max terms of given Three variable 
 

Table 2.5.2: Three variable truth table 

Input Output 
Minterm Maxterm 

A B C F 

0 0 0 0 m0= 𝐴 𝐵 𝐶  M0=(𝐴 + 𝐵 + 𝐶) 

0 0 1 1 m1= 𝐴 𝐵 𝐶 M1= (𝐴 + 𝐵 + 𝐶 ) 

0 1 0 1 m2= 𝐴 𝐵𝐶  M2= (𝐴 + 𝐵 + 𝐶 ) 

0 1 1 0 m3= 𝐴 𝐵𝐶 M3= (𝐴 + 𝐵 + 𝐶 ) 

1 0 0 0 m4= 𝐴𝐵 𝐶  M4=(𝐴 + 𝐵 + 𝐶) 

1 0 1 0 m5= 𝐴𝐵 𝐶 M5=(𝐴 + 𝐵 + 𝐶 ) 

1 1 0 1 m6= 𝐴𝐵𝐶  M6=(𝐴 + 𝐵 + 𝐶) 

1 1 1 0 m7= 𝐴𝐵𝐶 M7=(𝐴 + 𝐵 + 𝐶 ) 

 

Using output F=True (1): 

𝑭 (𝑨, 𝑩,𝑪) =  (𝟏, 𝟐,𝟔)𝒎  using output F is true (1) [minterm] 

𝑭 (𝑨, 𝑩,𝑪) = 𝒎𝟏 +  𝒎𝟐 +  𝒎𝟔 

𝑭 (𝑨, 𝑩,𝑪) =  𝑨 𝑩 𝑪 + 𝑨 𝑩𝑪 + 𝑨𝑩𝑪  [SUM OF PRODUCTS] 

This SOP Function excites output to true (1) 

Complement of F 

𝑭 (𝑨,𝑩, 𝑪) = 𝒎𝟏 +  𝒎𝟐 +  𝒎𝟔                       

𝑭 (𝑨,𝑩, 𝑪) =  𝑨 𝑩 𝑪 + 𝑨 𝑩𝑪 +  𝑨𝑩𝑪                             

𝑭 (𝑨,𝑩, 𝑪) =  𝑨 𝑩 𝑪       .𝑨 𝑩𝑪       .𝑨𝑩𝑪        

𝑭 (𝑨,𝑩, 𝑪) =  𝑨 + 𝑩 + 𝑪  . (𝑨 + 𝑩 + 𝑪). (𝑨 + 𝑩 + 𝑪) 

𝑭 (𝑨,𝑩, 𝑪) =  𝑴𝟏 . (𝑴𝟐). (𝑴𝟔) 

The above function  𝑭  is true(1) when F is false(0). The maxterms M1, M2, and M6 excites output to 𝑭  

which is true(1).  

 

Using output F=False(0): 

Products of sums (POS)-[Maxterms]: 

𝑭 (𝑨, 𝑩,𝑪) =  (𝟎, 𝟑, 𝟒, 𝟓, 𝟕)𝑴  using output F is False (0)[Maxterm] 

𝑭 (𝑨, 𝑩,𝑪) =  𝑴𝟎 .  𝑴𝟑 .  𝑴𝟒 .  𝑴𝟓 . (𝑴𝟕) 

𝑭 (𝑨, 𝑩,𝑪) =  𝑨 + 𝑩 + 𝑪 .  𝑨 + 𝑩 + 𝑪  .  𝑨 + 𝑩 + 𝑪 .  𝑨 + 𝑩 + 𝑪  . (𝑨 + 𝑩 + 𝑪 ) [PRODUCTS OF SUM] 

Complement of F 

𝑭 (𝑨,𝑩, 𝑪) =  𝑴𝟎 .  𝑴𝟑 .  𝑴𝟒 .  𝑴𝟓 . (𝑴𝟕)                                         

𝑭  (𝑨, 𝑩,𝑪) =  𝑨 + 𝑩 + 𝑪 .  𝑨 + 𝑩 + 𝑪  .  𝑨 + 𝑩 + 𝑪 .  𝑨 + 𝑩 + 𝑪  . (𝑨 + 𝑩 + 𝑪 )                                                                                    

𝑭  (𝑨, 𝑩,𝑪) = (𝑨 + 𝑩 + 𝑪)                +  𝑨 + 𝑩 + 𝑪                  +  𝑨 + 𝑩 + 𝑪                 +  𝑨 + 𝑩 + 𝑪                  + (𝑨 + 𝑩 + 𝑪 )                 

𝑭 (𝑨,𝑩, 𝑪) = 𝑨 𝑩 𝑪 + 𝑨 𝑩𝑪 + 𝑨𝑩 𝑪 + 𝑨𝑩 𝑪 + 𝑨𝑩𝑪 
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𝑭 (𝑨,𝑩, 𝑪) =  𝒎𝟎 +  𝒎𝟑 +  𝒎𝟒 +  𝒎𝟓 + (𝒎𝟕) 

The above function  𝑭  is False(0) when F is True(1). The minterms m0, m3, m4, m5, and m7 excites 

output to 𝑭  which is False(0).  

 

Summary: 

1. 𝑭 (𝑨, 𝑩,𝑪) =  (𝟏, 𝟐, 𝟔)𝒎    (Minterm form) 

2. 𝑭 (𝑨,𝑩, 𝑪) =  (𝟎, 𝟑, 𝟒, 𝟓, 𝟕)𝑴        (Maxterm form) 

3. 𝑭 (𝑨,𝑩, 𝑪) =  𝑨 𝑩 𝑪 + 𝑨 𝑩𝑪 + 𝑨𝑩𝑪        [SUM OF PRODUCTS] 

4. 𝑭(𝑨, 𝑩,𝑪) =  𝑨 + 𝑩 + 𝑪 .  𝑨 + 𝑩 + 𝑪  .  𝑨 + 𝑩 + 𝑪 .  𝑨 + 𝑩 + 𝑪  . (𝑨 + 𝑩 + 𝑪 ) [PRODUCTS OF SUM] 

 

DON‟T CARE CONDITIONS 

 What is a DON‟T care condition? 

 The condition that can be predicted as true(1) or False(0) as per circumstances is termed as 

DON‟T care condition. 

 
Example: Consider representing days of a week with numbers starting from 0 to 7 as shown in the 

table.  

Days of week Sunday Monday Tuesday Wednesday Thursday Friday Saturday 

Number 0 1 2 3 4 5 6 

 

 As per binary representation, 1 variable represent 21=2 expressions, 2 variables represent 22=4 

expressions, 3 variables represent 23=8 expressions, 4 variables represent 24=16 expressions and so on. 

The formula for Representation is BASEVARIABLE=TOTAL EXPRESSIONS. 

According to the above representation rule, weekdays can be expressed by 3 variables. 3 variables can 

represent maximum 8 expressions. But only days are to be expressed. Thus the function is written as 

F(A, B, C) = m(0, 1, 2, 3, 4, 5, 6) +d(7) 

 In the above switching function F, d(7) can be termed as DON‟T care because it can be wither 

used or not.  

 How to use? Represent the numbers from „1‟ to „7‟ omitting „0‟. Now number „7‟ is used and 

number „0‟ becomes unused. Thus don‟t care means it may or may not be considered. When we use 1 

to 7, then we could say „0‟ becomes don‟t care.  

 Another example: 

 We have five fingers in one hand (normal Human). Suppose we should show to a child count 

upto 4. That is, we should show the counts 1, 2, 3 & 4 to the child.  

 There are many options to show number 4 by using the stated combinations of fingers. 

1. Index, middle, ring and little, 
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2. thumb, index, middle and ring, 

3. thumb, middle, ring and little, 

4. thumb, index, middle and little, 

5. thumb, index, ring and little and 

6. thumb, middle, ring and little. 

 But usually we show number 4 by using option 1 stated above. Thus  

F (Function to show number 4 fingers in one hand)= show by (index, middle, ring, little) + 

don‟t care (Thumb) 

 So now thumb finger is stated to be DON‟T care. Don‟t care shall be extensively used while 

designing digital circuits. 

Standard and Canonical forms: 

Canonical form is formed directly from the truth table by using minterms or maxterms. 

Canonical form consists of all variables in each expression of the function.  

1. 𝑭(𝑨,𝑩,𝑪) =  𝑨 𝑩 𝑪 + 𝑨 𝑩𝑪 + 𝑨𝑩𝑪        [SUM OF PRODUCTS] 

2. 𝑭(𝑨, 𝑩,𝑪) =  𝑨 + 𝑩 + 𝑪 .  𝑨 + 𝑩 + 𝑪  .  𝑨 + 𝑩 + 𝑪 .  𝑨 + 𝑩 + 𝑪  . (𝑨 + 𝑩 + 𝑪 ) [PRODUCTS OF SUM] 

 For example, in the above three variable (variables A, B & C) functions, all the variables are 

occuring in each expression.  

 In function 1, three (3) expressions  𝑨 𝑩 𝑪, 𝑨 𝑩𝑪  𝑎𝑛𝑑 𝑨𝑩𝑪   exist. It can be noticed three variables 

existing in all the expressions. In function 2 also same can be noticed in all 5 expressions. 

3. 𝑭(𝑨,𝑩,𝑪) =  𝑨 𝑪 + 𝑨 𝑩 + 𝑨𝑩𝑪        [SUM OF PRODUCTS] 

 But in the function 3 above it is noticed that only variables A & C are found in expression  𝑨 𝑪 

and variables A & B are found in expression 𝑨 𝑩. This is supposed to be termed as standard form. 

  

 Thus function f with three variables A, B and C can be written in four forms.  

1. f (A, B, C) = 𝐴 𝐵 +  𝐴𝐵 𝐶 + 𝐴𝐶  (Standard form) 

2. f (A, B, C) = 𝐴 𝐵𝐶 + 𝐴 𝐵𝐶  +  𝐴𝐵 𝐶 + 𝐴𝐵𝐶 + 𝐴𝐵 𝐶    (Canonical form) 

3. f (A, B, C) = m(0, 2, 3, 6, 7)     (Minterm form) 

4. f (A, B, C) = m(1, 4, 5)     (Maxterm form) 

 

1.5.1 MINIMIZATION OF BOOLEAN FUNCTIONS: 

 Usually converting a canonical form function to a standard form function is termed as 

minimization. This minimization can be done by using various methods. 

We shall discuss three methods of boolean minimization  

1. Using Boolean theorems. 

2. Using Karnaugh map (or K-Map) and 
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3. Using Tabulation method (or Quine Mclusky Method) 

 

Why minimization is done? 

 Minimization is done to reduce number of redundant (reoccurring) expressions without which the 

desired output can be derived. 

Suppose 5 expressions are there in a function initially and the output is true(1). By using minimization, 

the function consists only 3 expressions but the output is true(0), then the minimization technique is 

said to be appropriate. This reduces the usage of less physical components in the circuit. 

 Thus if the same original output is derived from the minimized or reduced function, the function 

can be considered to be minimized.  

Minimization using Boolean theorems: 

 It is one of the basic methods to minimize Boolean function. 

 
Example 1: 

Minimize the function 𝑭  𝑨, 𝑩 = 𝑨𝑩 + 𝑨𝑩 + 𝑨𝑩 

Minimization using Boolean theorems: 

𝑭  𝑨, 𝑩 = 𝑨𝑩 + 𝑨𝑩 + 𝑨𝑩 (Equation 1) 

This is a two variable function in canonical form. The two variables are A & B. 

by taking common identity A, the function can be rewritten as  

𝑭  𝑨, 𝑩 = 𝑨𝑩 + 𝑨(𝑩 + 𝑩)  (Equation 2) 

by using complement OR theorem 𝑩 + 𝑩 = 𝟏, the function can be rewritten as 

𝑭  𝑨, 𝑩 = 𝑨𝑩 + 𝑨 (Equation 3) 

by using Adsorption theorem 𝑨 + 𝑨𝑩 = 𝑨, the function can be rewritten as 

𝑭  𝑨, 𝑩 = 𝑨 (Equation 4) 

Thus the function which had 3 variables has been reduced to one variable and it is now a standard 

form. 

𝑭  𝑨, 𝑩 = 𝑨𝑩 + 𝑨𝑩 + 𝑨𝑩 can be written as 𝑭  𝑨, 𝑩 = 𝑨 in minimized form. 

 
Example 2: 

Minimize the function 𝑭  𝑨, 𝑩,𝑪 = 𝑨 𝑩 𝑪 + 𝑨 𝑩𝑪 + 𝑨𝑩 𝑪 + 𝑨𝑩𝑪 + 𝑨𝑩𝑪 

Minimization using Boolean theorems: 

𝑭  𝑨, 𝑩,𝑪 = 𝑨 𝑩 𝑪 + 𝑨 𝑩𝑪 + 𝑨𝑩 𝑪 + 𝑨𝑩𝑪 + 𝑨𝑩𝑪 (Equation 1) 

This is a three variable function in canonical form. The two variables are A, B & C. 

by taking common identity 𝑨 𝑪 in 1st and 2nd expressions (shown in color) and 𝑨𝑪 in the 3rd and 5th 

expressions , the function 𝑭  𝑨,𝑩, 𝑪 = 𝑨 𝑩 𝑪 + 𝑨 𝑩𝑪 + 𝑨𝑩 𝑪 + 𝑨𝑩𝑪 + 𝑨𝑩𝑪 can be rewritten as  
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 𝑭  𝑨,𝑩, 𝑪 = 𝑨 𝑪 𝑩 + 𝑩 + 𝑨𝑪 𝑩 + 𝑩 + 𝑨𝑩𝑪  (Equation 2) 

by using complement OR theorem 𝑩 + 𝑩 = 𝟏, the function can be rewritten as 

𝑭  𝑨, 𝑩,𝑪 = 𝑨 𝑪 + 𝑨𝑪 + 𝑨𝑩𝑪  (Equation 3) 

by taking common C of expression 1 & 2 of equation 3 we get 

𝑭  𝑨, 𝑩 = 𝑪 𝑨 + 𝑨 + 𝑨𝑩𝑪 = 𝑪 + 𝑨𝑩𝑪  (Equation 4) 

By using adsorption theorem 𝑨 + 𝑨 𝑩 = 𝑨 + 𝑩 in equation 4, we get 

𝑭  𝑨, 𝑩 = 𝑪 + 𝑨𝑩𝑪 = 𝑪 + 𝑨𝑩 (Equation 5) 

Thus the function which had 5 variables has been reduced to two variables and it is now a standard 

form. 

𝑭  𝑨, 𝑩 = 𝑨 𝑩 𝑪 + 𝑨 𝑩𝑪 + 𝑨𝑩 𝑪 + 𝑨𝑩𝑪 + 𝑨𝑩𝑪 can be written as 𝑭  𝑨, 𝑩 = 𝑨𝑩 + 𝑪 in minimized form. 

Note: As stated earlier, variables can also be w, x, y, z. 
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 This method is very tedious to work with when the variables and expressions are more in 

number. Thus next method Karnaugh map method is used to minimize the functions. 

 Disadvantage of minimization using Boolean theorems: 

1. If function has more variables or expressions, it is tedious to minimize it accurately. 

2. Redundancy should be analyzed with toughness. 

3. Theorems should be remembered for reduction 
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COURSE MATERIAL 

UNIT 1 

SEC1207-DIGITAL LOGIC CIRCUITS 

SYLLABUS 

UNIT I  BOOLEAN ALGEBRA AND LOGIC GATES 9 Hrs. 

Review of number systems - Binary arithmetic - Binary codes - Boolean algebra  and theorems - 
Boolean functions -Minimization of Boolean functions-Sum of Products(SOP)-Product of 
Sums(POS)-Simplifications of Boolean functions using Karnaugh map and tabulation methods - 
Logic gates- NAND and NOR implementation. 

 

TABLE OF TOPICS 

S.NO TOPIC PAGE NO. 

1.1 Review of Number systems In part 1 

1.1.1 Number Systems: Decimal, Binary, Octal, Hexadecimal In part 1 

1.1.2 Conversion from one system to another In part 1 

1.2 Binary Codes In part 1 

1.3 Binary Arithmetic In part 1 

1.4 Boolean Algebra and Theorems In part 1 

1.5 Boolean Functions In part 1 

1.5.1 Minimization of Boolean functions In part 1 

1.5.2 Simplification Using Boolean Functions 46 

1.5.2.1 Simplification Using Karnaugh map method 46 

1.5.2.2 Simplification Using Tabulation method 66 

1.6 Logic gates 74 

1.6.1 Universal gates 82 

1.6.2 NAND and NOR implementation 84 
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1.5.2 SIMPLIFICATION OF BOOLEAN FUNCTIONS 

1.5.2.1 SIMPLIFICATION OF BOOLEAN FUNCTIONS USING K-MAP 

K-map introduction: 

 K-Map or Karnaugh map is a graphical representation of Boolean logic system directly drawn 

from minterm (SOP) or maxterm (POS) expressions. 

It is used to minimize the SOP or POS expressions in simplified form without altering the output. 

 

Construction of K-map: 

 A „n‟ variable K-map is represented by 2n squares. Each minterm or maxterm is allotted a square. 

 For representing SOP (minterm), if the output of the minterm is „1‟(True) then the 

square is represented by „1‟ else represented by „0‟ 

 For representing POS (maxterm), if the output of the maxterm is „0‟(False) then the 

square is  represented by „0‟ else represented by „1‟ 

 For representing DON‟T CARE, the respective square is marked by X both in SOP and POS. 
 

 

Steps involved in minimizing with K-map: 

Step 1: Map representation using number of variables. 

Step2: Plotting the map using truth table, minterm (SOP) function and Maxterm (POS) function. 

Step 3: Grouping the function  

Step 4: Rewriting the variables in minimizied minterm form or minimized maxterm form 

according to the groups. 

 

 

1.5.1.2. Two-variable K-map  

 A „2‟ variable K-map is represented by 22 squares=4 squares. Each minterm or maxterm is 

allotted a square. [Number of squares in K-Map= 2number of variables] 

Step 1: Map representation using number of variables: 

 SOP: If „F‟ is a function with two a variables A & B are represented by 

𝑭 (𝑨, 𝑩) = 𝑨 𝑩 + 𝑨 𝑩 + 𝑨𝑩 + 𝑨𝑩 

2 variables, 22 =4 Squares [Number of squares in K-Map= 2number of variables] 

K-Map is done with 2 rows and 2 columns 

Rows hold the variable A and Columns hold the variable B 

Row 1= 𝐴  

Row 2= 𝐴 

Column 1= 𝐵  

Column 2= 𝐵 

 Each square shows minterm in binary form and in variable form. 
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BINARY PLOTTING 

(SOP) 
DECIMAL PLOTTING 

(SOP) 
VARIABLE PLOTTING 

(SOP) 
 

F B 0 1 
A  𝐵  𝐵 

0 𝐴  00 10 

1 𝐴 10 11 
 

 
F B 0 1 
A  𝐵  𝐵 

0 𝐴  0 1 

1 𝐴 2 3 
 

 
F B 0 1 
A  𝐵  𝐵 

0 𝐴  𝐴 𝐵  𝐴 𝐵 

1 𝐴 𝐴𝐵  𝐴𝐵 
 

 
 

MINTERM PLOTTING 
(SOP) 

 

 

 
F B 0 1 
A  𝐵  𝐵 

0 𝐴  m0 m1 

1 𝐴 m2 m3 
 

 

 

 In the above figures,  

 we can see that first one (Binary Plot) shows, if a function is given as  

F (A, B) = 00 + 01+10+11 

Then the function is plotted in each respective square (discussed in next section) 

 we can see that Second one (Decimal Plot) shows if a function is given as  

F ( A, B)= m(0, 1, 2, 3) 

Then the function is plotted in each respective square (discussed in next section) 

 we can see that Third one (Variable Plot) shows if a function is given as  

F ( A, B)= 𝐴 𝐵 +  𝐴 𝐵 +  𝐴𝐵  + 𝐴𝐵   

Then the function is plotted in each respective square (discussed in next section) 

 we can see that Fourth one (Minterm Plot) shows if a function is given as  

F ( A, B)= m(0, 1, 2, 3) 

Then the function is plotted in each respective square (discussed in next section) 

 

 POS: If „F‟ is a function with two a variables A & B are represented by 

 

𝑭  𝑨, 𝑩 =  𝑨 + 𝑩 .  𝑨 + 𝑩 .  𝑨 + 𝑩  .   𝑨 + 𝑩   

2 variables = 22 =4 Squares 

K-Map is done with 2 rows and 2 columns 

Rows hold the variable A and Columns hold the variable B 

Row 1=  𝐴 

Row 2= 𝐴  

Column 1= 𝐵 

Column 2= 𝐵  
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 Each square shows maxterm in binary form and in variable form. 
 
  

BINARY PLOTTING 
(POS) 

DECIMAL PLOTTING 
(POS) 

VARIABLE PLOTTING 
(POS) 

 
F B 1 0 
A  𝐵 𝐵  

1 𝐴 1+1 0+1 

0 𝐴  0+1 0+0 

 
 

 
F B 1 0 
A  𝐵 𝐵  

1 𝐴 0 1 

0 𝐴  2 3 

 
 

 
F B 1 0 
A  𝐵 𝐵  

1 𝐴 𝐴 + 𝐵 𝐴 + 𝐵  

0 𝐴  𝐴 + 𝐵 𝐴 + 𝐵  

 
 

 
MAXTERM PLOTTING 

 (POS) 
 

 

 
 

F B 1 0 
A  𝐵 𝐵  

1 𝐴 M0 M1 

0 𝐴  M2 M3 

 
 

 

 

 In the above figures,  

 we can see that first one (Binary Plot) shows, if a function is given as  

F (A, B) = (1+1).(1+0).(0+1).(0+0) 

Then the function is plotted in each respective square (discussed in next section) 

 we can see that Second one (Decimal Plot) shows if a function is given as  

F ( A, B)= M(0, 1, 2, 3) 

Then the function is plotted in each respective square (discussed in next section) 

 we can see that Third one (Variable Plot) shows if a function is given as  

F ( A, B)= (𝐴 + 𝐵 ). (𝐴 + 𝐵). (𝐴 + 𝐵  ). (𝐴 + 𝐵)   

Then the function is plotted in each respective square (discussed in next section) 

 
Step 2: Plotting the variables: 

 (a) Plotting from simple minterms (SOP): 
 
 To understand more, consider the below function: 
  

𝑭 (𝑨,𝑩) = 𝑨 𝑩 + 𝑨 𝑩 
 

F B 0 1 
A  𝐵  𝐵 

0 𝐴  𝟏 𝟏 

1 𝐴 0 0 
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 Binary „1‟ is plotted in the map wherever 𝑨 𝑩 𝑎𝑛𝑑 𝑨 𝑩 represented (refer last section). Others are 
represented by binary „0‟. 
 
 (b) Plotting from minterms (SOP) with don‟t care: 
 
 For another function,  

𝑭 (𝑨,𝑩) =  𝒎  𝟎, 𝟏 + 𝒅(𝟐) 

  
  𝑚  0,1  represents sum of products (SOP) or minterms represented by binary „1‟. 𝑑(2) 

represents that minterm 2 is a DON‟T CARE plotted in the table by using „X‟. others are plotted by using 

binary „0‟. 

 This is shown in the two-variable K-map below. 

0 = 00 = 𝐴 𝐵 , 

 1 = 01 = 𝐴 𝐵 and 

2 = 10 = 𝐴𝐵 . 
  

F B 0 1 
A  𝐵  𝐵 

0 𝐴  𝟏 𝟏 

1 𝐴 X 0 

 
 Binary „1‟ is plotted in the map wherever 𝑨 𝑩 𝑎𝑛𝑑 𝑨 𝑩 represented. Don‟t care 𝐴𝐵  is plotted using 

„X‟. Others are represented by binary „0‟. 

 

 (c) Plotting from Maxterms (POS) with don‟t care: 
 
 For another function, 𝑭 (𝑨,𝑩) =  𝑴  𝟑 +  𝒅(𝟐) 
 
  𝑀  3  represents products of sum (POS) or Maxterms represented by binary „1‟. 𝑑(2) 

represents that Maxterm 2 is a DON‟T CARE plotted in the table by using „X‟. Others are plotted by using 

binary „0‟. 

 This is shown in the two variable K-map below. They are all complements  of minterms. 

3 = 11 𝑚𝑖𝑛𝑡𝑒𝑟𝑚 == +0(𝑀𝑎𝑥𝑡𝑒𝑟𝑚) = 𝐴 + 𝐵  and 

2 = 10(𝑚𝑖𝑛𝑡𝑒𝑟𝑚) = 0 + 1(𝑀𝑎𝑥𝑡𝑒𝑟𝑚) = 𝐴 + 𝐵. (DON‟T CARE) 

  

F B 1 0 
A  𝐵 𝐵  

1 𝐴 1 1 

0 𝐴  X 0 

 

 Binary „0‟ is plotted in the map wherever 𝑨 + 𝑩  represented. Don‟t care 𝐴 + 𝐵 is plotted using „X‟. 

Others are represented by binary „1‟. 
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 (d) Plotting from truth table: 
 

 INPUT OUTPUT 

 A B Y 

0 0 0 1 

1 0 1 1 

2 1 0 X 

3 1 1 0 
 

 minterm – in BOLD,  Maxterm -in italics, Don‟t Care - X 

 

 FROM THE TRUTH TABLE ABOVE, the function using SOP or minterm is written as  

𝑭 (𝑨,𝑩) =  𝒎  𝟎, 𝟏 + 𝒅(𝟐) 

 In the above function, 

  𝑚  0,1  represents sum of products (SOP) or minterms represented by binary „1‟. 𝑑(2) 

represents that minterm 2 is a DON‟T CARE plotted in the table by using „X‟. Others are plotted by using 

binary „0‟. 

 This is shown in the two-variable K-map below. 

0 = 00 = 𝐴 𝐵 , 

 1 = 01 = 𝐴 𝐵 and 

2 = 10 = 𝐴𝐵 . (DON‟T CARE) 

 SOP 2-variable K-Map 

F B 0 1 
A  𝐵  𝐵 

0 𝐴  𝟏 𝟏 

1 𝐴 X 0 
 

 Binary „1‟ is plotted in the map wherever 𝑨 𝑩 𝑎𝑛𝑑 𝑨 𝑩 represented. Don‟t care 𝐴𝐵  is plotted using 

„X‟. Others are represented by binary „0‟. 

 

 FROM THE TRUTH TABLE ABOVE, the function using POS or maxterm is written as  

𝑭 (𝑨, 𝑩) =  𝑴 𝟑 +  𝒅(𝟐) 

 In the above function, 

  𝑀  3  represents sum of products (POS) or maxterms represented by binary „1‟. 𝑑(2) 

represents that maxterm 2 is a DON‟T CARE plotted in the table by using „X‟. Others are plotted by using 

binary „0‟. 

 This is shown in the two variable K-map below. 

2 = 0 + 1 = 𝐴 + 𝐵 (DON‟T CARE) 

3 = 0 + 0 = 𝐴 + 𝐵 , 
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POS 2-variable K-Map 
 

F B 1 0 
A  𝐵 𝐵  

1 𝐴 1 1 

0 𝐴  X 0 

 

 Binary „0‟ is plotted in the map wherever 𝑨 + 𝑩  represented. Don‟t care 𝑨 + 𝑩 is plotted using 

„X‟. Others are represented by binary „1‟. 

 

Step 3: Grouping variables for minimization: 

 Grouping similar Boolean terms is the first step for minimizing the function. 

 

Figure 1.5.1.1 Methods of plotting for two-variables K-Map 

 

The above figure 1.5.1.1, grouping of two adjacent similar variables horizontally and vertically and also 

grouping all four squares .  
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Figure 1.5.1.2 K-Map plot for two-variables 

 In the above figures, various grouping techniques for two-variable K-map are shown.  

 Rule 1: A group can be formed by joining adjacent similar terms, whose total is in the order of 

2n where n is any whole number. That is a group can consist of 1 term= 20, 2 terms=21, 4 terms=22, 8 

terms=23 or 16 terms=24 and so on which are the powers of two. 

 A group with 2 similar is called Pair or Dual (as shown in the above figure 1.5.1.2) 

 A group with 4 terms is called Pair or Quad (as shown in the above figure 1.5.1.2) 
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 A group with 8 terms is called Pair or Octet (shall be discussed in next session) 
 

 Rule 2: Only similar terms are to be grouped. Like binary „1‟ or „0‟ which are adjacent can be 

grouped. The group cannot contain both „1‟ and „0‟. The group can contain don‟t-care terms but at 

least one term should be „1‟ or „0‟. (as shown in the above figure 1.5.1.2) 
 

 Rule 3: The groups are formed by joining adjacent squares either in horizontal or vertical 

directions. (Diagonal direction of grouping is not to be done to use basic gates) as shown in next 

figure 1.5.1.3 below. 

 

Figure 1.5.1.3 Methods of Grouping in Two-variable K-map. 

 

Step 4: Prime implicants : 

 In the next below figure 1.5.1.4, a two-variable function is being reduced or minimized 

by using K-map.  
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 Both the function and truth table show the same expressions. (both are given to make 

both system understandable). 

 „0‟ is a minterm expression but „2‟ is a don‟t care expression. 

 Minterm „0‟ is  𝑨 𝑩    and don‟t-care „2‟ is  𝑨𝑩  and marked in the K-map.  

 

Figure 1.5.1.4 Example of Two-variable K-map (SOP). 

Then the vertical group is formed between 𝐀 𝐁  and 𝑨𝑩 . They both have common term as 𝐁  and 

uncommon terms 𝐀  𝐚𝐧𝐝 𝐀. Uncommon terms shall be discarded (neglected) and 

common term is only to be taken. Thus 𝐁  is the only reduced term termed as Prime 

implicant. 

Prime implicant is 𝑭 𝑨,𝑩 = B  

 Thus K-map has reduced two minterms with 2-variables into a single variable. This shows how 

easy and efficient this method is, than minimizing using Boolean theorems. 

 

 In The below Figure 1.5.1.5, K-map of two-variables A and B using POS terms is shown. Same 

method but grouping is done using „0‟. 
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Figure 1.5.1.5 Example of Two-variable K-map (POS). 

 Output is same for POS and SOP as 𝑩  and thus in two-variable K-map, grouping using „1‟ by 

SOP or grouping using „0‟ in POS is the same. 

Prime implicant is 𝑭 𝑨,𝑩 = B  

 

1.5.1.3. Three-variable K-map  

 A „3‟-variable K-map is represented by 23 squares=8 squares. Each minterm or maxterm is 

allotted a square. 

 Here K-Map plotting for 3-variables is shown in step-by-step. 

 Step 1: since 3-variables are available 23 squares are needed. 

3 variables, so 23 = 8 Squares [Number of squares in K-Map= 2number of variables] 

 Map can be drawn as shown in the below four figures from 1.5.1.2.a to d.  

 Figure 1.5.1.2.a shows mapping with 2 rows and 4 columns plotted with binary 

number equivalent to variable. 
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BINARY PLOTTING DECIMAL EQUIVALENT 
 

F BC 00 01 11 10 
A  𝐵 𝐶  𝐵 𝐶 𝐵𝐶 𝐵𝐶  

0 𝐴  000 001 011 010 

1 𝐴 100 101 111 110 

 
Rows =2 

Columns =4 
Rows x columns = 8 squares 

 

Row 1: 𝐴  0 Column 1: 𝐵 𝐶  00 

Row 2: 𝐴 1 Column 2: 𝐵 𝐶 01 

   Column 3: 𝐵𝐶 11 

   Column 4: 𝐵𝐶  10 
 

 
F BC 00 01 11 10 
A  𝐵 𝐶  𝐵 𝐶 𝑩𝑪 𝑩𝑪  

0 𝐴  0 1 3 2 

1 𝐴 4 5 7 6 

 
Rows =2 

Columns =4 
Rows x columns = 8 squares 

 
Columns 3 & 4 (shown in Bold) are 

written in GRAY code. Even 
numbers 2,3 and 6,7 are written in 

reverse. (Discussed below) 

Fig.1.5.1.2.a. Binary Plot- method 1 Fig.1.5.1.2.b. Decimal Plot- method 1 
 
 

F C 0 1 
AB  𝐶  𝐶 

00 𝐴  𝐵  000 001 

01 𝐴  𝐵 010 011 

11 𝐴 𝐵 111 110 

10 𝐴 𝐵  100 101 

 
Rows =4 

Columns =2 
Rows x columns = 8 squares 

 

Column 1: 𝐴 𝐵  00 Row 1: 𝐶  0 

Column 2: 𝐴 𝐵 01 Row 2: 𝐶 1 

Column 3: 𝐴𝐵 11    

Column 4: 𝐴𝐵  10    
 

 

 
F C 0 1 

AB  𝐶  𝐶 

00 𝐴  𝐵  0 1 

01 𝐴  𝐵 2 3 

11 𝑨 𝑩 7 6 

10 𝑨 𝑩  4 5 

 
Rows =4 

Columns =2 
Rows x columns = 8 squares 

 
Rows 3 & 4 (shown in Bold) are 

written in GRAY code. Even 
numbers 4,5 and 6,7 are written in 

reverse. (Discussed below) 

Fig.1.5.1.2.c. Binary Plot- method 2 Fig.1.5.1.2.d. Decimal Plot- method 2 
 

 Here as shown in the above figure 1.5.1.2, different plotting is shown. When 4-rows or 4-

columns are marked with GRAY code. 00(0), 01(1), 11(3) and 10(2) NOT binary order 00(0), 01(1), 

10(2), and 11(3).  

Why GRAY CODE is considered? 

Gray code has only one transition 0001, 0111, 1110, 1000  (shown in bold) [refer gray 

code section] 

But binary code has multi-transition 0001, 0110, 1011, 1100  (shown in bold-italics). 

Since only one transition is there in the order of Gray code, 00 01, 11 and 10, it is used while writing for 

four rows or columns. 

So the columns 3 & 4 in figure 1.5.1.2.b. and rows 3 & 4 in figure.1.5.1.2.d are reversed. 
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NOTE: Either (4 rows and 2 columns) OR  (2 rows and 4 columns) map is considered. Both methods 

yield the same minimized output function. We shall discuss  2 rows and 4 column map.  

VARIABLE PLOTTING 
 

F BC 00 01 11 10 
A  𝐵 𝐶  𝐵 𝐶 𝐵𝐶 𝐵𝐶  

0 𝐴  𝐴 𝐵 𝐶  𝐴 𝐵 𝐶 𝐴 𝐵𝐶 𝐴 𝐵𝐶  
1 𝐴 𝐴𝐵 𝐶  𝐴𝐵 𝐶 𝐴𝐵𝐶 𝐴𝐵𝐶  

 
SOP PLOTTING 

2 Rows and 4 Columns 
 

 
F BC 1+1 1+0 0+0 0+1 
A  𝐵 + 𝐶 𝐵 + 𝐶  𝐵 + 𝐶  𝐵 + 𝐶 

1 𝐴 𝐴 + 𝐵 + 𝐶 𝐴 + 𝐵 + 𝐶  𝐴 + 𝐵 + 𝐶  𝐴 + 𝐵 + 𝐶 

0 𝐴  𝐴 + 𝐵 + 𝐶 𝐴 + 𝐵 + 𝐶  𝐴 + 𝐵 + 𝐶  𝐴 + 𝐵 + 𝐶 

 
POS PLOTTING 

2 Rows and 4 Columns 
 

 
F C 0 1 

AB  𝐶  𝐶 

00 𝐴  𝐵  𝐴 𝐵 𝐶  𝐴 𝐵 𝐶 

01 𝐴  𝐵 𝐴 𝐵𝐶  𝐴 𝐵𝐶 

11 𝐴 𝐵 𝐴𝐵𝐶  𝐴𝐵𝐶 

10 𝐴 𝐵  𝐴𝐵 𝐶  𝐴𝐵 𝐶 

 
SOP PLOTTING 

4 Rows and 2 Columns 
 

 
F C 1 0 

AB  𝐶 𝐶  

1+1 𝐴 + 𝐵 𝐴 + 𝐵 + 𝐶 𝐴 + 𝐵 + 𝐶  
1+0 𝐴 + 𝐵  𝐴 + 𝐵 + 𝐶 𝐴 + 𝐵 + 𝐶  

0+0 𝐴 + 𝐵  𝐴 + 𝐵 + 𝐶 𝐴 + 𝐵 + 𝐶  

0+1 𝐴 + 𝐵 𝐴 + 𝐵 + 𝐶 𝐴 + 𝐵 + 𝐶  

 
POS PLOTTING 

4 Rows and 2 Columns 
 

Fig.1.5.1.3. Variable Plotting – SOP & POS 

 The above figure 1.5.1.3 shows different plotting using SOP or POS forms. 

 The figure BELOW SHOW different GROUPING in 3-variable K-map. 
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 The technique called folding is shown in the above FIGURES for grouping quads and pairs in 3-

variable K-map. This shall be explained while using it in a sample 3-variable K-map. 

 The figure below 1.5.1.4 shows how a 3- VARIABLE truth table is plotted in K-map (SOP)  

 

Fig.1.5.1.4. Plotting 3–variable K-Map from Truth table (SOP) 
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Example: Plot the Boolean FUNCTION 𝐹 𝐴, 𝐵 𝐶 =  𝑚( 1, 6, 7)or EXPRESSION  𝐹 𝐴, 𝐵 𝐶 = 𝐴 𝐵 𝐶 +

𝐴𝐵𝐶 + 𝐴𝐵𝐶 

 Solution: 

 The above is plotted in the figure.1.5.1.5 (SOP) 

 

Fig.1.5.1.5. Plotting 3–variable K-Map from function (SOP) 

 

Example: Plot the Boolean FUNCTION 𝐹 𝐴, 𝐵 𝐶 =  𝑀( 1, 2 3, 6) or EXPRESSION  𝐹 𝐴, 𝐵 𝐶 =

 𝐴 + 𝐵 + 𝐶   𝐴 + 𝐵 + 𝐶  𝐴 + 𝐵 + 𝐶  (𝐴 + 𝐵 + 𝐶) 

 Solution: 

 The above is plotted in the figure.1.5.1.6 (POS) 

 

Fig.1.5.1.6. Plotting 3–variable K-Map from function (POS) 
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Example: Group and reduce the Boolean FUNCTION 𝑭 𝑨,𝑩 𝑪 =  𝒎( 𝟎, 𝟏, 𝟑, 𝟕) + 𝒅(𝟐, 𝟓) 

 Solution: 

 The above is plotted, grouped and reduced in the figure.1.5.1.7 (SOP WITH DON‟T CARE) 

 

Fig.1.5.1.7. Grouping 3–variable K-Map from function (SOP with Don‟t care) 

Figure 1.5.1.7.a shows, don‟t care conditions X mark in the squares representing minterms 2 and 5. 

Since the don‟t care falls inside the grouping of Quads shown in figure 1.5.1.7.b it is considered as 

binary 1. 

The reduced SOP function is 𝑭 𝑨,𝑩 𝑪 = 𝑨 + 𝑪 

 

Example: Using K-map minimize the Boolean FUNCTION 𝑭 𝑨, 𝑩 𝑪 =  𝒎( 𝟎, 𝟏, 𝟑, 𝟒,𝟓) 

 Solution: 

 The above is plotted, grouped and reduced in the table.1.5.1.1 (SOP) 

Table 1.5.1.1. Minimizing 3–variable K-Map from function (SOP) 

Step 1 
Plot the minterms as shown in the beside figure (a) 
 
0, 1, 3, 4, and 5 with „1‟ and other squares with 
binary „0‟ 
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Step 2 
Isolated 1‟s are not available. 
 
Squares or Cells 1 & 3 are grouped together as 
DUAL as shown in the figure (b) beside. Here 
variable 𝑨  is common. Then between 2nd and 3rd 

column, variable C is common but 𝑩  & 𝐵 is 

uncommon. Thus 𝑨 𝑪  is taken and variable B is 
omitted. 

 
Step 3 

Squares or Cells 0, 1, 4 and 5 are grouped together 
as QUAD as shown in the figure (c) beside. Here 
variable A is uncommon, C is uncommon but 𝑩  is 

common. Thus 𝑩   is only taken. 
Thus the reduced minterm is shown in the figure as 

𝑭 𝑨,𝑩 𝑪 = 𝑨 𝑪 + 𝑩 . This is done by omitting the 
uncommon variables. 

 
 

Thus the minimized function is 𝑭 𝑨,𝑩 𝑪 = 𝑨 𝑪 + 𝑩 . 

 

Example: Using K-map minimize the Boolean FUNCTION 𝑭 𝑨, 𝑩 𝑪 =  𝑴( 𝟎, 𝟏, 𝟑, 𝟒, 𝟕) 

 Solution: 

 The above is plotted, grouped and reduced in the table.1.5.1.2 (POS) 

Table 1.5.1.2. Minimizing 3–variable K-Map from function (POS) 

Step 1 
Plot the maxterms as shown in the 
beside figure (a) 
 
0, 1, 3, 4, and 7 with „0‟ . 
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Step 2 
Isolated 1‟s are not available. 
 
Squares or Cells 0 & 4 and also 3 & 7 
are grouped together as DUALS as 
shown in the figure (b) beside. Here 

variable 𝑩 + 𝑪 (1 & 4) and 𝑩 + 𝑪  (3 & 

7)  are common. Thus 𝑩 + 𝑪 and 

𝑩 + 𝑪  are prime implicants. 

 
Step 3 

Squares or Cells 1 & 3 are grouped 
together as DUAL as shown in the 
figure (c) beside. Here variable A and 

𝐶  is common. Thus 𝑨 + 𝑪  is common 
term.  
Thus the reduced maxterm is shown 
in the figure as 𝑭 𝑨,𝑩 𝑪 =
 𝑩 + 𝑪  𝑩 + 𝑪  (𝑨 + 𝑪  ). This is done 

by omitting the uncommon variables. 

 
 

Thus the minimized function is 𝑭 𝑨,𝑩 𝑪 =  𝑩 + 𝑪  𝑩 + 𝑪  (𝑨 + 𝑪  ) 

 

1.5.1.4. Four variable K-map  

 A „4‟ variable K-map is represented by 24 squares=16 squares. Each minterm or maxterm is 

allotted a square. 

SOP 4-variable mapping is shown below. 

Y CD 00 01 11 10 
AB  𝐶 𝐷  𝐶 𝐷 𝐶𝐷 𝐶𝐷  

00 𝐴 𝐵  𝐴 𝐵 𝐶 𝐷  𝐴 𝐵 𝐶 𝐷 𝐴 𝐵 𝐶𝐷 𝐴 𝐵 𝐶𝐷  

01 𝐴 𝐵 𝐴 𝐵𝐶 𝐷  𝐴 𝐵𝐶 𝐷 𝐴 𝐵𝐶𝐷 𝐴 𝐵𝐶𝐷  

11 𝐴𝐵 𝐴𝐵𝐶 𝐷  𝐴𝐵𝐶 𝐷 𝐴𝐵𝐶𝐷 𝐴𝐵𝐶𝐷  

10 𝐴𝐵  𝐴𝐵 𝐶 𝐷  𝐴𝐵 𝐶 𝐷 𝐴𝐵 𝐶𝐷 𝐴𝐵 𝐶𝐷  

 

Y CD 00 01 11 10 
AB  𝐶 𝐷  𝐶 𝐷 𝐶𝐷 𝐶𝐷  

00 𝐴 𝐵  0 1 3 2 

01 𝐴 𝐵 4 5 7 6 

11 𝐴𝐵 12 13 15 14 

10 𝐴𝐵  8 9 11 10 
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POS 4-variable mapping is shown below. 

Y CD 1+1 1+0 0+0 0+1 
AB  𝐶 + 𝐷 𝐶 + 𝐷  𝐶 + 𝐷  𝐶 + 𝐷 

1+1 𝐴 + 𝐵 𝐴 + 𝐵 + 𝐶 + 𝐷 𝐴 + 𝐵 + 𝐶 + 𝐷  𝐴 + 𝐵 + 𝐶 + 𝐷  𝐴 + 𝐵 + 𝐶 + 𝐷 
1+0 𝐴 + 𝐵  𝐴 + 𝐵 + 𝐶 + 𝐷 𝐴 + 𝐵 + 𝐶 + 𝐷  𝐴 + 𝐵 + 𝐶 + 𝐷  𝐴 + 𝐵 + 𝐶 + 𝐷 

0+0 𝐴 + 𝐵  𝐴 + 𝐵 + 𝐶 + 𝐷 𝐴 + 𝐵 + 𝐶 + 𝐷  𝐴 + 𝐵 + 𝐶 + 𝐷  𝐴 + 𝐵 + 𝐶 + 𝐷 

0+1 𝐴 + 𝐵 𝐴 + 𝐵 + 𝐶 + 𝐷 𝐴 + 𝐵 + 𝐶 + 𝐷  𝐴 + 𝐵 + 𝐶 + 𝐷  𝐴 + 𝐵 + 𝐶 + 𝐷 

 

Y CD 1+1 1+0 0+0 0+1 
AB  𝐶 + 𝐷 𝐶 + 𝐷  𝐶 + 𝐷  𝐶 + 𝐷 

1+1 𝐴 + 𝐵 0 1 3 2 

1+0 𝐴 + 𝐵  4 5 7 6 

0+0 𝐴 + 𝐵  12 13 15 14 

0+1 𝐴 + 𝐵 8 9 11 10 
 

Same way as 3-variable mapping, 4-variable mapping is also done. 

 

Plotting of 4-variable K-map: 

SOP form: 

 

Figure 1.5.1.4.1. plotting 4-variable K-map.(SOP) 

 

An example SOP: 

Minimize the function using K-map. 

𝑭 𝑨, 𝑩 𝑪,𝑫 =  𝒎(𝟐, 𝟒, 𝟓, 𝟗,𝟏𝟐, 𝟏𝟑 ) 

Solution: 

Below in figure 1.5.1.4.2.a, the minterms 2, 4, 5, 9, 12 and 13 are marked as „1‟ in their respective cells. 

Others are marked „0‟ 
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Below in figure 1.5.1.4.2.b, the minterms 2 is found isolated and so it is encircled. The term is not 

minimized and is 𝑨 𝑩 𝑪𝑫  

 

Figure 1.5.1.4.2. Minimizing a 4-variable K-map. (SOP) 

 

Above in figure 1.5.1.4.2.c, the minterms 9 & 13 are grouped as DUAL (PAIR). The term is minimized as  

𝑨𝑪 𝑫. 

Above in figure 1.5.1.4.2.d, the minterms 4, 5, 12 and 13 are grouped as QUAD. The term is minimized 

as  𝑩𝑪 . 

Thus the final minimized PRIME IMPLICANTS are 𝑭 = 𝑨 𝑩 𝑪𝑫 + 𝑨𝑪 𝑫 + 𝑩𝑪  
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An example SOP: 

Minimize the function using K-map. 

𝑭 𝑨,𝑩 𝑪,𝑫 =  𝒎(𝟎, 𝟏, 𝟐, 𝟒, 𝟓, 𝟔, 𝟖, 𝟗,𝟏𝟎, 𝟏𝟐, 𝟏𝟑 ) 

Solution: 

Below in figure 1.5.1.4.3, the minterms are marked as „1‟ in their respective cells. 

Then they are grouped as shown in the same figure. 

The minimized function is 

𝑭 𝑨, 𝑩 𝑪,𝑫 = 𝑨𝑩 𝑫 + 𝑨 𝑫 + 𝑪  

 

It can also be 

𝑭 𝑨,𝑩 𝑪,𝑫 = 𝑩 𝑫 + 𝑨 𝑫 + 𝑪  

 

Figure 2.5.1.4.3. Grouping & Minimizing a 4-variable K-map. (SOP) 

 

Limitations of K-map: 

1. As the number of variables increases the method becomes complex. 

2. Simplification depends upon human abilities. 

 

1.5.2.2 SIMPLIFICATION OF BOOLEAN FUNCTIONS USING TABULATION METHOD 

 This method of minimization is else called Quine-Mclusky method.  

 Example: Solve the function F (A, B, C, D) = m (0, 1, 3, 5, 7, 9, 11, 13, 15) + d (2, 6) using 

tabulation method 

 Step 1: Since the function has four variables A, B C and D, each minterm is to be written with 

its equivalent binary number. As shown in the table below, three columns are shown. First column is 
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about the given minterms, second columns their equivalent binary of given variables and third column is 

of the number of 1‟s in the binary equivalent. 

 Note: Second column refers to the binary equivalent with word length equal to number of 

variables. 

 Here it is a four variable function, so 4-bit equivalent is written. 

 

Minterm 
Four bit  

equivalent 

Number 
of 
1‟s 

m0 0000 0 

m1 0001 1 

m3 0011 2 

m5 0101 2 

m7 0111 3 

m9 1001 2 

m11 1011 3 

m13 1101 3 

m15 1111 4 

m2 0010 1 

m6 0110 2 

 

 Step 2: Sort the table in ascending order according to number of 1‟s in it. 

Minterm 
Four bit  

equivalent 

Number 
of 
1‟s 

m0 0000 0 

m1 0001 1 

m2 0010 1 

m3 0011 2 

m5 0101 2 

M6 0110 2 

M9 1001 2 

m7 0111 3 

m11 1011 3 

m13 1101 3 

m15 1111 4 

 

 Step 3: After sorting group it accordingly to the number of „1‟s given in it.  

Group 0 represents no „1‟s (minterm m0),  

Group 1 represents variables with one „1‟ (minterms m1, m2), 

Group 2 represents variables with two „1‟(minterms m3, m5, m6, m9), 

Group 3 represents variables with three „1‟ (minterms m7, m11, m13) and 

Group 4 represents variables with four „1‟ (minterms m15). 
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Reduction 1 

Group Minterm 

4-bit Binary 
Equivalent Minimized 

A B C D 

0 m0 0 0 0 0  

1 
m1 0 0 0 1  

m2 0 0 1 0  

2 

m3 0 0 1 1  

m5 0 1 0 1  

m6 0 1 1 0  

m9 1 0 0 1  

3 

m7 0 1 1 1  

m11 1 0 1 1  

m13 1 1 0 1  

4 m15 1 1 1 1  

    

 Step 4: Compare adjacent groups only for minimization.  

 That is considering groups 0 and 1.  

 Check between elements of group 0 and 1, whether one transition (change) is there in the 

binary equivalent of the variables. If so mark the change as dash(-). 

o Example: As we can consider, reduction 1 table above, the elements m0(0000) and 

m1(0001) have one transition. 

Group Minterm 
Variables 

A B C D 

Group 0 m0 0 0 0 0 

Group 1 m1 0 0 0 1 

Reduced Group m(0,1) 0 0 0 - 

 

As shown in the table column representing variable D, (highlighted) has uncommon 

binary numbers. It is supposed to have transition. Other variables A, B, and C are 

common. Thus in reduced group (5) represented in below table becomes 

minimized and represented by – (dash) 

o Note: only adjacent groups 0 &1, 1 & 2, 2 & 3 and 3 &4 can be reduced. Never 

attempt to reduce using group 2 & 4, because they may more than one change or 

transition. 

o The reduced group is marked as minimized in the above table. Suppose m0 and m1 

are reduce in next table, they are marked as reduced by using  in the column 

minimized. 

Reduction 2 

Group Minterm 

4-bit Binary 
Equivalent Minimized 

A B C D 
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0 & 1 
(5) 

m(0, 1) 0 0 0 -  

m(0, 2) 0 0 - 0  

1 & 2 
(6) 

m(1, 3) 0 0 - 1  

m(1, 5) 0 - 0 1  

m(1, 9) - 0 0 1  

m(2, 3) 0 0 1 -  

m(2, 6) 0 - 1 0  

2 & 3 
(7) 

m(3, 7) 0 - 1 1  

m(3, 11) - 0 1 1  

m(5, 7) 0 1 - 1  

m(5, 13) - 1 0 1  

m(6, 7) 0 1 1 -  

m(9, 11) 1 0 - 1  

m(9, 13) 1 - 0 1  

3 & 4 
(8) 

m(7, 15) - 1 1 1  

m(11, 15) 1 - 1 1  

m(13, 15) 1 1 - 1  

 

Reduction 3 

Group Minterm 

4-bit Binary 
Equivalent Minimized 

A B C D 

5 &6 
(9) 

m(0, 2, 1, 3)  0 0 - - 
same 

m(0, 1, 2, 3) 0 0 - - 

6 & 7 
(10) 

m(1, 3, 5, 7)  0 - - 1 
Same  

m(1, 5, 3, 7) 0 - - 1 

m(1, 3, 9, 11) - 0 - 1 
Same  

m(1, 9, 3, 11) - 0 - 1 

m(1, 5, 9, 13) - - 0 1 
Same  

m(1, 9, 5, 13) - - 0 1 

m(2, 3, 6, 7) 0 - 1 - 
same 

m(2, 6, 3, 7) 0 - 1 - 

m(2, 6, 9, 13) - - 1 0  

7 & 8 
(11) 

m(3, 7, 11, 15) - - 1 1 
Same  

m(3, 11, 7, 15) - - 1 1 

m(5, 7, 13, 15) - 1 - 1 
Same  

m(5, 13, 7, 15) - 1 - 1 

m(9, 11, 13, 15) 1 - - 1 
Same  

m(9, 13, 11, 15) 1 - - 1 

 

Reduction 4 

Group Minterm 

4-bit Binary 
Equivalent Minimized 

A B C D 

10 & 11 

m(1, 3, 5, 7, 9, 13, 11, 15) - - - 1 

Same m(1, 3, 9, 11, 5, 7, 13, 15) - - - 1 

m(1, 9, 5, 13, 3, 11, 7, 15) - - - 1 

m(2, 6, 9, 13, 3, 7, 11, 15) - - 1 -  
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 Thus this process of reduction table goes on till reduction cannot be done.  

 

 Step 5: Now prime implicants are selected from all the reduction tables. The minterms which 

are not minimized (unmarked) are written in the below table of prime impicants. 

The prime implicants are the bold ones in the above tables. There are four (4) prime implicants. 

Row 1 0, 2, 1, 3 00-- =A‟B‟ 

Row 2 2, 6, 3, 7 0-1- = A‟C 

Row 3 1, 3, 9, 11, 5, 7, 13, 15 ---1 = D 

Row 4 2, 6, 9, 13, 3, 7, 11, 15 --1- = C 
 

 How to convert binary representation to Boolean variables? 

 Consider the Row 2 for an example: 

o Row 2 : 

  if binary is „0‟ corresponding variable is represented in its complement form 

A‟ or B‟ or C‟ or D‟ etc.  

 if binary is „1‟ corresponding variable is represented in un-complemented form 

A‟ or B‟ or C‟ or D‟ etc. 

 if binary is not available „-“ then it is not represented as shown in below table. 

 In the table A is represented in complement form A‟ because binary equivalent 

of A is „0‟. 

 And C is represented in true form C because binary equivalent of C is „1‟. 

 Others B and D are not represented because they are minimized (-) 

 Ths expression is A‟C 

Variables A B C D 

Binary 0 - 1 - 

Variable Expression 
A‟ - C - 

A‟C 

o Like this all rows were done and the below stated function is derived 

F(A, B, C, D) = A‟B‟ + A‟C + D + C 

 
 Step 6: Then essential prime implicants should be chosen. 

 List the minterms in rows and their respective Boolean variable expressions. 

 In columns write all the minterm numbers given in the function (the function was                

F (A, B, C, D) = m (0, 1, 3, 5, 7, 9, 11, 13, 15) + d (2, 6), except the don‟t cares. Only 

highlighted ones shall be written. 

 Now mark the respective columns in which the corresponding minterms are found. For 

example in the below table in first row the minterm is 0,1,2,3. The columns with the 



SATHYABAMA UNIVERSITY 
SCHOOL OF ELECTRONICS AND ELECTRICAL ENGG. 

COURSE MATERIAL – SEC1207 – DIGITAL LOGIC CIRCUITS – UNIT 1 

 
Regulation 2015 72 SEC1207 – DIGITAL LOGIC CIRCUITS-UNIT 1 
Prepared by Dayanandhan K /ETCE   

 

numbers 0, 1, 3 are marked as shown (but 2 is not marked because it is a DON‟T care 

variable) 

 Whichever column is having single mark is encircled or highlighted as shown in the figure. 

Here column representing number 0 and 5 are encircled or highlighted. 

 The corresponding row is highlighted as essential as shown in essential column in the below 

table. 

 Check for that the essential prime implicants cover all the columns. If covered, the other 

minterms are not to be considered as essential prime implicants. Here both the rows 

cover all the columns. Thus essential prime implicants are marked with . 

 Essential Prime implicants: 

Essential Minterm 0 1 3 5 7 9 11 13 15 
 0, 2, 1, 3 (A‟B‟)  x x       

 2, 6, 3, 7 (A‟C)   x  x     
 1, 3, 9, 11, 5, 7, 13, 15 (D)  x x  x x x x x 

 2, 6, 9, 13, 3, 7, 11, 15 (C)   x  x x x x x 

D – Don‟t care 

 Now the essential prime implicant‟s variable expression is written in SOP form because 

the function was given in SOP form.  

Thus the essential prime implicants = A‟B‟ + D 

 

 Note: For POS form: If the function is given in POS form, then the same steps of SOP to 

be followed. But at the end the function to be written in POS form. 

Just complement the SOP term and use De-Morgan‟s theorem to write it in POS form. 

 

Advantages of Tabulation method: 

1. Any number of variables can be used for minimization. 

2. It can run on a computer using algorithm for running any number of variables. 

Disadvantages of Tabulation method: 

As variable number increases it becomes tedious to complete minimization manually.  
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Other Examples for Tabulation method: 

 Example 1: SOP 
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Example 2: POS 
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1.6 LOGIC GATES 

 Gates are devices that implements basic Boolean logical operations. So they are termed as 

Logical Gates. 

 In digital electronics, the gates can be classified into the following types: 

1. Basic Logic gates 

2. Complemented Logic gates 

3. Derived Logic Gates 

4. Special Gates 

 

 1. The basic logic gates implements the basic logical operations like NOT, OR, and AND.  

The symbol, truth table, the logical statement, and the sample IC Pin diagram are shown below for each 

gate. (NOT, OR and AND gates) 

GATE NUMBER 1- INVERTER OR NOT GATE 

INVERTER (OR) NOT GATE- 
SYMBOL 

 

 
INVERTER (OR) NOT GATE 

STATEMENT 
 

Y=𝐀  
 

 
 

INVERTER (OR) NOT GATE - TRUTH TABLE 
 

INPUT OUTPUT 

A Y 

0 (False) 1 (True) 

1 (True) 0 (False) 

 
Case 1: If the input A is false (0), the output Y is True (1). 
Case 2: If the input A is True (1), the output Y is False (0). 

 

 
NOT gate is a basic logical gate for 
inverting operation. So it shall be 
termed as Inverter. 
 
This gate is simple single-input and 
single output gate as shown in the 
above symbol. 
 
When a Boolean A is given as input, 
the output Y is the complement of 
the input. (Y = A‟) 

INVERTER (OR) NOT GATE 
IC 7404 PIN DIAGRAM 
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GATE NUMBER 2- OR GATE 

OR GATE- SYMBOL 
 

 
OR GATE 

STATEMENT 
 

Y=A+B 

 
OR GATE 

TRUTH TABLE 
 

INP
UT
S 

OUTPUT 

A B Y 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

0 – False, 1 - True 
Case 1: If the inputs A & B are false (0), the output Y is 
false (0). 
Case 2: If any or all of the inputs are true (1), then 
output Y is True (1) 

 
OR gate is a basic logical gate for 
ORing operation. 
 
This gate is multi-input and single 
output gate as shown in the above 
symbol. 
 
When a Boolean A & B are inputs, 
the output Y is the OR of the input. 
(Y = A+B) 

OR GATE 
IC 7432 PIN DIAGRAM

 
 

GATE NUMBER 3- AND GATE 

AND GATE- SYMBOL 
 

 
AND GATE 

STATEMENT 
 

Y=A.B or AB 

AND GATE 
TRUTH TABLE 

 

INPUTS OUTPUT 

A B Y 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

0 – False, 1 - True 
Case 1: If any (or) both the input A & B are false (0), 
then output Y is false (0). 
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Case 2: If both (or) all the inputs are true (1), then 
output Y is True (1) 

 
AND gate is a basic logical gate for 
ANDing operation. 
 
This gate is multi-input and single 
output gate as shown in the above 
symbol. 
 
When a Boolean A & B are inputs, 
the output Y is the AND of the 
input. (Y = A.B) 

AND GATE 
IC 7408 PIN DIAGRAM 

 
 

 2. The complemented logic gates implements the complements of some basic logical 

operations like OR, and AND. The complements are NOR and NAND for OR and AND respectively. 

The symbol, truth table, the logical statement, and the sample IC Pin diagram are shown below for each 

gate. (NAND and NOR gates) 

GATE NUMBER 4- NOR GATE 

NOR GATE- SYMBOL 
 

 
NOR GATE 

STATEMENT 
 

Y=𝐀 + 𝐁         

 
NOR GATE 

TRUTH TABLE 
 

INPUTS OUTPUT 

A B Y 

0 0 1 

0 1 0 

1 0 0 

1 1 0 

0 – False, 1 - True 
Case 1: If all (or) both the input A & B are false (0), then 
output Y is True (1). 
Case 2: If any (or) all of the inputs are true (1), then 
output Y is False (0) 

 
NOR gate is a complemented logical 
gate for ORing & NOT operation. 
 
This gate is multi-input and single 
output gate as shown in the above 
symbol. 
 
When a Boolean A & B are inputs, 

NOR GATE 
IC 7402 PIN DIAGRAM 

(THE GATE DIRECTION IS OPPOSITE OF 
OTHER GATES) 
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the output Y is the OR with NOT of 

the input. (Y = (𝐴 + 𝐵        )) 
 
 

 
 

GATE NUMBER 5- NAND GATE 

NAND GATE- SYMBOL 
 

 
NAND GATE 
STATEMENT 

 

Y=𝑨.𝑩      

 
NAND GATE 

TRUTH TABLE 
 

INPUTS OUTPUT 

A B Y 

0 0 1 

0 1 1 

1 0 1 

1 1 0 

0 – False, 1 - True 
Case 1: If any (or) all the input A & B are false (0), then 
output Y is True (1). 
Case 2: If all of the inputs are true (1), then output Y is 
False (0) 

 
NAND gate is a complemented 
logical gate for ANDing & NOT 
operation. 
 
This gate is multi-input and single 
output gate as shown in the above 
symbol. 
 
When a Boolean A & B are inputs, 
the output Y is the AND with NOT 
of the input. (Y = (𝑨. 𝑩     )) 
 
 

NAND GATE 
IC 7400 PIN DIAGRAM 

 
 

 3. The Derived logic gates implements the derivation of some basic logical operations like 

EXCLUSIVE-OR and EXCLUSIVE NOR. 
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The symbol, truth table, the logical statement, and the sample IC Pin diagram are shown below for each 

gate. (XOR and XNOR gates) 

GATE NUMBER 6- EXCLUSIVE OR GATE 

XOR GATE- SYMBOL 
 

 
XOR GATE 

STATEMENT 
 

Y= AB 
𝒀 = 𝑨 𝑩 + 𝑨𝑩  

 
𝑏𝑜𝑡ℎ 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 

XOR GATE 
TRUTH TABLE 

 

INPUTS OUTPUT 

A B Y 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

0 – False, 1 - True 
Case 1: If the inputs are of ODD parity, that is, have 
odd number of ones (1), and then output Y is True 
(1). 
Case 2: If the inputs are of EVEN parity, that is, have 
EVEN number of ones (1), and then output Y is False 
(0). 
 

 
Exclusive OR gate or XOR gate is a 
derived logical gate that uses XOR 
operation. 
 
This gate is multi-input and single 
output gate as shown in the above 
symbol. 
 
When a Boolean A & B are inputs, the 
output Y is the XOR of the input. (Y = 

AB) 
 
This gate is otherwise called as ODD 
PARITY CHECKER, because when 
inputs are of ODD parity, it gives 
output True (1). 
 

XOR GATE 
IC 7486 PIN DIAGRAM 
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GATE NUMBER 7- EXCLUSIVE NOR GATE 

XNOR GATE- SYMBOL 
 

 
 

XNOR GATE 
STATEMENT 

 
Y= AB 

𝒀 = 𝑨𝑩 + 𝑨 𝑩  
𝑏𝑜𝑡ℎ 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 

XNOR GATE 
TRUTH TABLE 

 

INPUTS OUTPUT 

A B Y 

0 0 1 

0 1 0 

1 0 0 

1 1 1 

0 – False, 1 - True 
Case 1: If the inputs are of EVEN parity, that is, have 
EVEN number of ones (1), and then output Y is True 
(1). 
Case 2: If the inputs are of ODD parity, that is, have 
ODD number of ones (1), and then output Y is False 
(0). 

 
Exclusive NOR gate or XNOR gate is a 
derived logical gate that uses XNOR 
operation. 
 
This gate is multi-input and single 
output gate as shown in the above 
symbol. 
 
When a Boolean A & B are inputs, the 
output Y is the XNOR of the input. (Y = 

AB) 
 
This gate is otherwise called as EVEN 
PARITY CHECKER, because when 
inputs are of EVEN parity, it gives 
output True (1). 
 

XNOR GATE 
IC 74266 PIN DIAGRAM 

 

 

 

 4. The Special logic gates as the name states, used in special situations and for special 

purpose. They are Buffer Gate, Tristate Logic gates (Discussed in Unit 4) and so on. 

The symbol, truth table, the logical statement, and the sample IC Pin diagram are shown below for each 

gate. (BUFFER gates) 
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GATE NUMBER 8- BUFFER GATE 

BUFFER GATE- SYMBOL 
 

 
 

BUFFER GATE 
STATEMENT 

 
Y= A  

 

BUFFER GATE 
TRUTH TABLE 

 

INPUT OUTPUT 

A Y 

0 (False) 0 (False) 

1 (True) 1 (true) 

0 – False, 1 - True 
Case 1: If the input A is False(0), then output Y is 
False (0). 
Case 2: If the input A is True(1), then output Y is 
True(1). 
 

 
Buffer gate is a special logical gate for 
the purpose of isolation. Isolation stops 
input being loaded by output.   
 
This gate is simple single-input and 
single output gate as shown in the 
above symbol. 
 
When a Boolean A is given as input, 
the output Y is the same as the input. 
(Y = A) 

BUFFER GATE 
IC 7407 PIN DIAGRAM 

 

 
 

 NOTE: HOW TO IMPLEMENT BOOLEAN EXPRESSION USING GATES? 

 Let us consider a switching function 𝐹 = 𝐴𝐵 + 𝐶𝐷 + 𝐸 

 The function has three expressions AB, CD and E ORed together.  

 Each expression can be realized into gate. 

 AB is realized by using a AND gate with two inputs A & B. The Output of the first AND gate is 

AB. CD is realized by using a AND gate with two inputs C & D. The Output of the second AND 

gate is CD. Third expression E is a single expression and doesn‟t need any gate to realize. This 

part of circuit is termed LEVEL 1. 

 Since as said earlier all expressions are ORed together, thus an OR gate is used to receive the 

outputs of Level 1 and propagate it to next level. This level OR gate is in LEVEL 2. 
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 Thus the circuit is two level AND-OR logic circuit for the function 𝐹 = 𝐴𝐵 + 𝐶𝐷 + 𝐸 

 

 

Figure 3.5.1.a TWO LEVEL AND-OR CIRCUIT 
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1.6.1 UNIVERSAL GATES 

 Universal gates are the gates which can be used to implement any gate.  

NAND and NOR gates are to be UNIVERSAL gates. They both can be used to implement any of the basic 

gates such as NOT, OR and AND gates. In this section, the implementation using NAND and NOR shall 

be individually discussed. 

NAND gate as Universal gate: 

NAND gate as NOT gate: 
Consider the truth table of NAND gate 

INPUTS OUTPUT 

A B Y 

0 0 1 

0 1 1 

1 0 1 

1 1 0 

 
When the above truth table of NAND is checked, 
when both inputs are the same, the output is 
complement of the input. 
1. when both inputs are „0‟, output is „1‟ and 
when both inputs are „1‟, output is „0‟ acting like 
NOT gate as shown in fig a beside. 
 

 

NAND gate as AND gate: 
This becomes simple because when output of 
NAND gate is inverted, it becomes the output of 
AND gate. Thus an inverter or NOT gate is added 
to the NAND gate output. (Figure c) 

 
NAND gate as OR gate: 

1. NAND Gate statement: 𝑌 = 𝐴. 𝐵      
2. Using Demorgan‟s Theorem 

𝑌 = (𝐴. 𝐵)       = 𝐴 + 𝐵  

3. The above statement is ORing 𝐴  𝑎𝑛𝑑𝐵  
4. So an inverter (NOT gate) for converting 
𝐴 𝑡𝑜 𝐴  and 𝐵 𝑡𝑜 𝐵  is added before another NAND 
gate inputs as shown in the figure d beside. 

 
Figure 1.6.1.1. (a, b) NOT, (c) OR & (d) AND gates implemented using NAND Gate  

 

 The above figure 1.6.1.1, shows the details of NAND gate being used as NOT gate, AND gate 

and OR gate.  
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NOR gate as Universal gate: 

NOR gate as NOT gate: 
Consider the truth table of NOR gate 

INPUTS OUTPUT 

A B Y 

0 0 1 

0 1 0 

1 0 0 

1 1 0 

 
When the above truth table of NOR is 
checked, when both inputs are the same, 
the output is complement of the input. 
1. when both inputs are „0‟, output is „1‟ 
and when both inputs are „1‟, output is „0‟ 
acting like NOT gate as shown in fig a 
beside. 
 

 

NOR gate as OR gate: 
This becomes simple because when 
output of NOR gate is inverted, it 
becomes the output of OR gate. Thus an 
inverter or NOT gate is added to the NOR 
gate output. (Figure c) 

 
NOR gate as AND gate: 

1. NOR Gate statement: 𝑌 = 𝐴 + 𝐵         
2. Using Demorgan‟s Theorem 

𝑌 = (𝐴 + 𝐵)         = 𝐴 . 𝐵  

3. The above statement is ORing 𝐴  𝑎𝑛𝑑𝐵  
4. So an inverter (NOT gate) for 

converting 𝐴 𝑡𝑜 𝐴  and 𝐵 𝑡𝑜 𝐵  is added 
before another NOR gate inputs as shown 
in the figure d beside. 

 
Figure 1.6.1.2. (a, b) NOT, (c) OR & (d) AND gates implemented using NOR Gate  

 

 The above figure 1.6.1.2, shows the details of NOR gate being used as NOT gate, AND gate and 

OR gate.  
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1.6.2 NAND IMPLEMENTATION & NOR IMPLEMENTATION 

SOP expression to be implemented using NAND gates: 

 When SOP is implemented using Gates, the final circuit has AND gates at first level (connected 

to the input) and then an OR gate at next level as shown in the below figure.  

The switching function 𝐹 = 𝐴𝐵 + 𝐶𝐷  has been implemented using AND-OR gates as shown in figure 

1.6.2.1(a) below.  

 

AND-OR IMPLEMENTATION 
SOP 

𝐹 = 𝐴𝐵 + 𝐶𝐷   

 
Two input AND gates for 𝐴𝐵 and 𝐶𝐷 

as LEVEL 1 gates. 

An OR gate for ORing 𝐴𝐵 + 𝐶𝐷  as 
LEVEL 2 gate. 

 
 

 
1. Add bubbles, to the outputs of 
FIRST LEVEL AND gates. 
 
2. Add bubbles in the inputs of OR 
gates of SECOND LEVEL. 
 
 

 
NAND-NAND IMPLEMENTATION 

 
1. As shown in the figure, BUBBLED 
OR gate is replaced by NAND gate. 
 
2. Thus circuit is converted to NAND-
NAND logic circuit. 
 

 
Figure 1.6.2.1.a. Two level NAND-NAND implementation from AND-OR circuit 

 



SATHYABAMA UNIVERSITY 
SCHOOL OF ELECTRONICS AND ELECTRICAL ENGG. 

COURSE MATERIAL – SEC1207 – DIGITAL LOGIC CIRCUITS – UNIT 1 

 
Regulation 2015 86 SEC1207 – DIGITAL LOGIC CIRCUITS-UNIT 1 
Prepared by Dayanandhan K /ETCE   

 

POS Expression to be implemented using NOR gates: 

OR-AND IMPLEMENTATION 
POS 

𝐹 =  𝐴 + 𝐵 . (𝐶 + 𝐷)   
 

Two input OR gates for 𝐴 + 𝐵 and 

𝐶 + 𝐷 as LEVEL 1 gates. 

An AND gate for ANDing  𝐴 +
𝐵.(𝐶+𝐷)  as LEVEL 2 gate. 

 

 
 

1. Add bubbles, to the outputs of 
FIRST LEVEL OR gates. 
 
2. Add bubbles in the inputs of 
AND gates of SECOND LEVEL. 
 
 

 
NOR-NOR IMPLEMENTATION 

 
1. As shown in the figure, 
BUBBLED AND gate is replaced by 
NOR gate. 
 
2. Thus circuit is converted to 
NOR-NOR logic circuit. 
 

 
Figure 1.6.2.1.b Two level NOR-NOR implementation from OR-AND circuit 
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SOP expression to be implemented using NAND gates: 

AND-OR 
IMPLEMENTATION 

SOP 
𝐹 = 𝐴𝐵 + 𝐶𝐷   

 
Two input AND gates for 𝐴𝐵 

and 𝐶𝐷 as LEVEL 1 gates. 
An OR gate for ORing 

𝐴𝐵 + 𝐶𝐷  as LEVEL 2 gate. 
  

 
Step 1: Add bubbles, to the 
outputs of FIRST LEVEL AND 
gates and an inverter (NOT) 
gate to the input as shown in 
the figure beside. 
 
 

 
 

Step 2: Output OR gate is 
added with a bubble and a 
NOT gate  (INVERTER) 
following it. 
 
Thus as shown in the figure 
beside, the OR-AND gate logic 
is converted into NAND-NAND 
logic. 
Thus the above are the steps 
to convert POS to NAND-
NAND gate logic. 

 
Figure 1.6.2.1.c Two level NOR-NOR implementation from AND-OR circuit 
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POS expression to be implemented using NAND gates: 

OR-AND IMPLEMENTATION 
POS: 

𝐹 =  𝐴 + 𝐵 . (𝐶 + 𝐷)   
 

Two input OR gates for 𝐴 + 𝐵 

and 𝐶 + 𝐷 as LEVEL 1 gates. 
An AND gate for ANDing 

 𝐴 + 𝐵 . (𝐶 + 𝐷)  as LEVEL 2 

gate. 
  

 
Step 1: Add bubbles, to the 
outputs of FIRST LEVEL OR 
gates and an inverter (NOT) 
gate to the input as shown in 
the figure beside. 
 
 

 
 

Step 2: Output AND gate is 
added with a bubble and a NOT 
gate (INVERTER) following it. 
 
Thus as shown in the figure 
beside, the OR-AND gate logic 
is converted into NAND-NAND 
logic. 
Thus the above are the steps to 
convert POS to NAND-NAND 
gate logic.  

Figure 1.6.2.1.d Two level NAND-NAND implementation from OR-AND circuit 
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Examples: 

 

AND-OR IMPLEMENTATION 
SOP 

𝑌 = 𝐴𝐶 + 𝐴𝐵𝐶 + 𝐴 𝐵𝐶 + 𝐴𝐵 + 𝐷   

 
𝑌 = 𝐴𝐶 + 𝐴𝐵𝐶(𝐴 + 𝐴 ) + 𝐴𝐵

+ 𝐷 
𝑌 = 𝐴𝐶 + 𝐴𝐵𝐶 + 𝐴𝐵 + 𝐷 

 
Step 1: The above reduced 
function is implemented using 
AND-OR Logic as shown in the 
figure (a) beside. 

 

 
NAND-NAND 

IMPLEMENTATION 
 

Step 2: Add bubbles, to the 
outputs of FIRST LEVEL AND 
gates and an inverter (NOT) 
gate to the input of SECOND 
level OR gate that becomes 
NAND gate (Bubbled OR) as 
shown in the figure beside. 
 
 

 
Figure 1.6.3.1 Two level NAND-NAND implementation from AND-OR circuit 
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AND-OR IMPLEMENTATION 
SOP 

𝑌 = 𝐴 𝐵 + 𝐴 𝐶 + 𝐵 𝐶   

 
 

Step 1: The above function is 
implemented using AND-OR 
Logic as shown in the figure (a) 
beside. 

 

 
NAND-NAND 

IMPLEMENTATION 
 

Step 2: Add bubbles, to the 
outputs of FIRST LEVEL AND 
gates and an inverter (NOT) 
gate to the input of SECOND 
level OR gate that becomes 
NAND gate (Bubbled OR) as 
shown in the figure beside. 
 
 

 
Figure 1.6.3.2 Two level NAND-NAND implementation from AND-OR circuit 
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OR-AND IMPLEMENTATION 
POS 

𝑌 =  𝐴 + 𝐶  . (𝐴   + 𝐵 ).  𝐵 + 𝐶  . 𝐷    

 
 

Step 1: The above function is 
implemented using OR-AND Logic 
as shown in the figure (a) beside. 

 

 
NOR-NOR IMPLEMENTATION 

 
Step 2: Add bubbles, to the outputs 
of FIRST LEVEL OR gates and an 
inverter (NOT) gate to the input of 
SECOND level AND gate that 
becomes NOR gate (Bubbled AND) 
as shown in the figure beside. 
 
 

 
Figure 1.6.3.3 Two level NOR-NOR implementation from OR-AND circuit 
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OR-AND 
IMPLEMENTATION 

POS 
𝑌 =  𝐴 + 𝐵 . 𝐶   

 
 

Step 1: The above function is 
implemented using OR-AND 
Logic as shown in the figure 
(a) beside. 

  

NOR-NOR 
IMPLEMENTATION 

 
Step 2: Add bubbles, to the 
outputs of FIRST LEVEL OR 
gates and an inverter (NOT) 
gate to the input of SECOND 
level AND gate that becomes 
NOR gate (Bubbled AND) as 
shown in the figure beside. 
 
 

 
Figure 1.6.3.4 Two level NOR-NOR implementation from OR-AND circuit 

 

 


