
UNIT I MATLAB ENVIRONMENT 10 hrs
Defining Variables – functions – Matrices and Vectors –Strings – Input and Output statements -Script files –
Arrays in Mat lab – Addressing Arrays – Dynamic Array – Cell Array – Structure Array – File input and
output – Opening & Closing – Writing & Reading data from files.

UNIT I

MATLAB® is a very powerful software package that has many built-in tools for solving problems

and for graphical illustrations. The simplest method for using the MATLAB product is interactively; an
expression is entered by the user and MATLAB immediately responds with a result. It is also possible to
write programs in MATLAB, which are essentially groups of commands that are executed sequentially. This
chapter will focus on the basics, including many operators and built-in functions that can be used in
interactive expressions. Means of storing values, including vectors and matrices, will also be introduced.

Getting into MAT LAB
MATLAB is a mathematical and graphical software package; it has numerical, graphical, and programming
capabilities. It has built-in functions to do many operations, and there are toolboxes that can be added to
augment these functions (e.g., for signal processing). There are versions available for different hardware
platforms, and there are both professional and student editions. When the MATLAB software is started, a
window is opened: the main part is the Command Window (see Figure 1.1). In the Command Window,
there is a statement that says:
In the Command Window, you should see:
>>
The >> is called the prompt. In the Student Edition, the prompt appears as:
EDU>>

Figure 1.1 MATLAB Window

In the Command Window, MATLAB can be used interactively. At the prompt, any MATLAB command or
expression can be entered, and MATLAB will immediately respond with the result. It is also possible to
write programs in MATLAB, which are contained in script files or M-files. There are several commands
that can serve as an introduction to MATLAB and allow you to get help:

 info will display contact information for the product

 demo has demos of several options in MATLAB

 help will explain any command; help help will explain how help works

 help browser opens a Help Window

 lookfor searches through the help for a specific string (be aware that this can take a long time)

To get out of MATLAB, either type quit at the prompt, or chooses File, then Exit MATLAB from the menu.
In addition to the Command Window, there are several other windows that can be opened and may be
opened by default. What is described here is the default layout for these windows, although there are other
possible configurations. Directly above the Command Window, there is a pull-down menu for the Current
Directory. The folder that is set as the Current Directory is where files will be saved. By default, this is the
Work Directory, but that can be changed.

To the left of the Command Window, there are two tabs for Current Directory Window and Workspace
Window. If the Current Directory tab is chosen, the files stored in that directory are displayed. The
Command History Window shows commands that have been entered, not just in the current session (in the
current Command Window), but previously as well. This default configuration can be altered by clicking
Desktop, or using the icons at the top-right corner of each window: either an ―x,‖ which will close that
particular window; or a curled arrow, which in its initial state pointing to the upper right lets you undock that
window. Once undocked, clicking the curled arrow pointing to the lower right will dock the window again.

Variables and Assignment Statements
In order to store a value in a MATLAB session, or in a program, a variable is used. The Workspace
Window shows variables that have been created. One easy way to create a variable is to use an
assignment statement. The format of an assignment statement is

variablename = expression

The variable is always on the left, followed by the assignment operator, = (unlike in mathematics, the
single equal sign does not mean equality), followed by an expression. The expression is evaluated and
then that value is stored in the variable. For example, this is the way it would appear in the Command
Window:

>> mynum = 6
mynum =
6
>>

Here, the user (the person working in MATLAB) typed mynum = 6 at the prompt, and MATLAB stored the
integer 6 in the variable called mynum, and then displayed the result followed by the prompt again. Since
the equal sign is the assignment operator, and does not mean equality, the statement should be read as
―mynum gets the value of 6‖ (not ―mynum equals 6‖). Note that the variable name must always be on the
left, and the expression on the right. An error will occur if these are reversed.

>> 6 = mynum
??? 6 = mynum
 |
Error: The expression to the left of the equals sign is not a valid target for an assignment.
Putting a semicolon at the end of a statement suppresses the output. For example,
>> res = 9 – 2;
>>
This would assign the result of the expression on the right side, the value 7, to the variable res; it just
doesn‘t show that result. Instead, another prompt appears immediately. However, at this point in the
Workspace Window the variables mynum and res can be seen.
Note: In the remainder of the text, the prompt that appears after the result will not be shown. The spaces in
a statement or expression do not affect the result, but make it easier to read. The following statement that
has no spaces would accomplish exactly the same thing as the previous statement:

>> res = 9–2;

MATLAB uses a default variable named ans if an expression is typed at the prompt and it is not assigned to
a variable. For example, the result of the expression 6 3 is stored in the variable ans:
>> 6 + 3
ans =
9
This default variable is reused any time just an expression is typed at the prompt. A short-cut for retyping
commands is to press the up-arrow, which will go back to the previously typed command(s). For example, if
you decided to assign the result of the expression 6 3 to the variable res instead of using the default ans,
you could press the up-arrow and then the left-arrow to modify the command rather than retyping the whole
statement:

>> res = 6 + 3
res =
9
This is very useful, especially if a long expression is entered with an error, and you want to go back to
correct it. To change a variable, another assignment statement can be used that assigns the value of a
different expression to it. Consider, for example, the following sequence of statements:

>> mynum = 3
mynum =
3
>> mynum = 4 + 2
mynum =
6
>> mynum = mynum + 1
mynum =
7

In the first assignment statement, the value 3 is assigned to the variable mynum. In the next assignment
statement, mynum is changed to have the value of the expression 4 2, or 6. In the third assignment
statement, mynum is changed again, to the result of the expression mynum 1. Since at that time mynum
had the value 6, the value of the expression was 6 1, or 7. At that point, if the expression mynum 3 is
entered, the default variable ans is used since the result of this expression is not assigned to a variable.

Thus, the value of ans becomes 10 but mynum is unchanged (it is still 7). Note that just typing the name of
a variable will display its value.
>> mynum + 3

ans =
10
>> mynum
mynum =
7

Initializing, Incrementing, and Decrementing
Frequently, values of variables change. Putting the first or initial value in a variable is called initializing the
variable. Adding to a variable is called incrementing. For example, the statement

mynum = mynum + 1
increments the variable mynum by 1.

Variable Names
Variable names are an example of identifier names. We will see other examples of identifier names, such
as filenames, in future chapters. The rules for identifier names are:

 The name must begin with a letter of the alphabet. After that, the name can contain letters, digits,
and the underscore character (e.g., value_1), but it cannot have a space.

 There is a limit to the length of the name; the built-in function namelengthmax tells how many
characters this is.

 MATLAB is case-sensitive. That means that there is a difference between upper- and lowercase
letters. So, variables called mynum, MYNUM, and Mynum are all different.

 There are certain words called reserved words that cannot be used as variable names.

 Names of built-in functions can, but should not, be used as variable names.

Additionally, variable names should always be mnemonic, which means they should make some sense.
For example, if the variable is storing the radius of a circle, a name such as ―radius‖ would make sense; ―x‖
probably wouldn‘t. The Workspace Window shows the variables that have been created in the current
Command Window and their values.
The following commands relate to variables:

 who shows variables that have been defined in this Command Window (this just shows the names
of the variables)

 whos shows variables that have been defined in this Command Window (this shows more
information on the variables, similar to what is in the Workspace Window)

 clear clears out all variables so they no longer exist

 clear variablename clears out a particular variable

If nothing appears when who or whos is entered, that means there aren‘t any variables! For example, in
the beginning of a MATLAB session, variables could be created and then selectively cleared (remember
that the semicolon suppresses output):

>> who
>> mynum = 3;
>> mynum + 5;

>> who
Your variables are:
Ans mynum
>> clear mynum
>> who
Your variables are:
ans

Expressions
Expressions can be created using values, variables that have already been created, operators, built-in
functions, and parentheses. For numbers, these can include operators such as multiplication, and functions
such as trigonometric functions. An example of such an expression would be:
>> 2 * sin(1.4)
ans =
1.9709

The Format Function and Ellipsis
The default in MATLAB is to display numbers that have decimal places with four decimal places, as
already shown. The format command can be used to specify the output format of expressions. There are
many options, including making the format short (the default) or long. For example, changing the format to
long will result in 15 decimal places. This will remain in effect until the format is changed back to short, as
demonstrated with an expression and with the built-in value for pi.
>> format long
>> 2 * sin(1.4)
ans =
1.970899459976920
>> pi
ans =
3.141592653589793
>> format short
>> 2 * sin(1.4)
ans =
1.9709
>> pi
ans =
3.1416

The format command can also be used to control the spacing between the MATLAB command or
expression and the result; it can be either loose (the default) or compact

>> format loose
>> 2^7
ans =
128
>> format compact
>> 2^7

ans =
128
Especially long expressions can be continued on the next line by typing three (or more) periods, which is
the continuation operator, or the ellipsis. For example,
>> 3 + 55 – 62 + 4 – 5 .â•›.â•›.
+ 22 – 1
ans =
16

Operators
There are in general two kinds of operators: unary operators, which operate on a single value or operand;
and binary operators, which operate on two values or operands. The symbol ―–‖, for example, is both the
unary operator for negation and the binary operator for subtraction. Here are some of the common
operators that can be used with numeric expressions:
+ addition
– negation, subtraction
* multiplication
/ division (divided by e.g. 10/5 is 2)
\ division (divided into e.g. 5\10 is 2)
^ exponentiation (e.g., 5^2 is 25)

Operator Precedence Rules

Some operators have precedence over others. For example, in the expression 4 5 * 3, the multiplication
takes precedence over the addition, so first 5 is multiplied by 3, then 4 is added to the result. Using
parentheses can change the precedence in an expression:
>> 4 + 5 * 3
ans =
19
>> (4 + 5) * 3
ans =
27

Within a given precedence level, the expressions are evaluated from left to right (this is called the
associativity). Nested parentheses are parentheses inside of others; the expression in the inner
parentheses is evaluated first. For example, in the expression 5 –(6 *(4 + 2)), first the addition is
performed, then the multiplication, and finally the subtraction to result in -31. Parentheses can also be used
simply to make an expression clearer. For example, in the expression ((4 +(3 * 5))–1) the parentheses are
not necessary, but are used to show the order in which the expression will be evaluated. For the operators
that have been covered so far, the following is the precedence

(from the highest to the lowest):
() parentheses
^ exponentiation
– negation
*, /, \ all multiplication and division
+, – addition and subtraction

Built-In Functions and Help
There are many, many built-in functions in MATLAB. The help command can be used to find out what
functions MATLAB has, and also how to use them. For example, typing help at the prompt in the
Command Window will show a list of help topics, which are groups of related functions. This is a very long
list; the most elementary help topics are in the beginning.

For example, one of these is listed as matlab\elfun; it includes the elementary math functions. Another of
the first help topics is matlab\ops, which shows the operators that can be used in expressions. To see a
list of the functions contained within a particular help topic, type help followed by the name of the topic. For
example,
>> help elfun
will show a list of the elementary math functions. It is a very long list, and is broken into trigonometric (for
which the default is radians, but there are equivalent functions that instead use degrees), exponential,
complex, and rounding and remainder functions. To find out what a particular function does and how to call
it, type help and then the name of the function. For example,

>> help sin

will give a description of the sin function.
To call a function, the name of the function is given followed by the argument(s) that are passed to the
function in parentheses. Most functions then return value(s). For example, to find the absolute value of –4,
the following expression would be entered:

>> abs(–4)

which is a call to the function abs. The number in the parentheses, the –4, is the argument. The value 4
would then be returned as a result. In addition to the trigonometric functions, the elfun help topic also has
some rounding and remainder functions that are very useful. Some of these include fix, floor, ceil, round,
rem, and sign. The rem function returns the remainder from a division; for example 5 goes into 13 twice
with a remainder of 3, so the result of this expression is 3:

>> rem(13,5)

ans =
3
Another function in the elfun help topic is the sign function, which returns 1 if the argument is positive, 0 if it
is 0, and –1 if it is negative. For example,
>> sign(–5)
ans =
–1
>> sign(3)
ans =
1

Constants
Variables are used to store values that can change, or that are not known ahead of time. Most languages
also have the capacity to store constants, which are values that are known ahead of time, and cannot
possibly change. An example of a constant value would be pi, or , which is 3.14159…. In MATLAB, there
are functions that return some of these constant values. Some of these include:

pi 3.14159….
i square root of 1
j square root of 1
inf infinity
NaN stands for ―not a number‖; e.g., the result of 0/0

Types
Every expression, or variable, has a type associated with it. MATLAB supports many types of values,
which are called classes. A class is essentially a combination of a type and the operations that can be
performed on values of that type. For example, there are types to store different kinds of numbers. For float
or real numbers, or in other words numbers with a decimal place (e.g., 5.3), there are two basic types:
single and double. The name of the type double is short for double precision; it stores larger numbers
than single. MATLAB uses a floating point representation for these numbers. For integers, there are
many integer types (e.g., int8, int16, int32, and int64). The numbers in the names represent the number of
bits used to store values of that type. For example, the type int8 uses eight bits altogether to store the
integer and its sign. Since one bit is used for the sign, this means that seven bits are used to store the
actual number. Each bit stores the number in binary (0‘s or 1‘s), and 0 is also a possible value, which
means that 2 ^ 7 – 1 or 127 is the largest number that can be stored. The range of values that can be
stored in int8 is actually from –128 to 127. This range can be found for any type by passing the name of the
type as a string (which means in single quotes) to the functions intmin and intmax. For example,

>> intmin(‘int8’)

ans =
–128
>> intmax(‘int8’)
ans =
127
The larger the number in the type name, the larger the number that can be stored in it. We will for the most
part use the type int32 when an integer type is required. The type char is used to store either single
characters (e.g., ‗x‘) or strings, which are sequences of characters (e.g., ‗cat‘). Both characters and
strings are enclosed in single quotes. The type logical is used to store true/false values. If any variables
have been created in the Command Window, they can be seen in the Workspace Window. In that window,
for every variable, the variable name, value, and class (which is essentially its type) can be seen. Other
attributes of variables can also be seen in the Workspace Window. Which attributes are visible by default
depends on the version of MATLAB. However, when the Workspace Window is chosen, clicking View
allows the user to choose which attributes will be displayed. By default, numbers are stored as the type
double in MATLAB. There are, however, many functions that convert values from one type to another. The
names of these functions are the same as the names of the types just shown. They can be used as
functions to convert a value to that type. This is called casting the value to a different type, or type casting.
For example, to convert a value from the type double, which is the default, to the type int32, the function
int32 would be used. Typing the following assignment statement:

>> val = 6+3

would result in the number 9 being stored in the variable val, with the default type of double, which can be
seen in the Workspace Window. Subsequently, the assignment statement

>> val = int32(val);

would change the type of the variable to int32, but would not change its value. If we instead stored the
result in another variable, we could see the difference in the types by using whos.

>> val = 6 + 3;
>> vali = int32(val);
>> whos
Name Size Bytes Class Attributes
val 1x1 8 double
vali 1x1 4 int32

One reason for using an integer type for a variable is to save space.

Random Numbers
When a program is being written to work with data, and the data is not yet available, it is often useful to test
the program first by initializing the data variables to random numbers. There are several built-in functions
in MATLAB that generate random numbers, some of which will be illustrated in this section. Random
number generators or functions are not truly random. Basically, the way it works is that the process. starts
with one number, called a seed. Frequently, the initial seed is either a predetermined value or it is obtained
from the built-in clock in the computer. Then, based on this seed, a process determines the next random
number. Using that number as the seed the next time, another random number is generated, and so forth.
These are actually called pseudo-random; they are not truly random because there is a process that
determines the next value each time. The function rand can be used to generate random real numbers;
calling it generates one random real number in the range from 0 to 1. There are no arguments passed to
the rand function. Here are two examples of calling the rand function:
>> rand
ans =
0.9501
>> rand
ans =
0.2311
The seed for the rand function will always be the same each time MATLAB is started, unless the state is
changed, for example, by the following:

rand(‘state’,sum(100*clock))

This uses the current date and time that are returned from the built-in clock function to set the seed. Note:
this is done only once in any given MATLAB session to set the seed; the rand function can then be used as
shown earlier any number of times to generate random numbers. Since rand returns a real number in the
range from 0 to 1, multiplying the result by an integer N would return a random real number in the range
from 0 to N. For example, multiplying by 10 returns a real in the range from 0 to 10, so this expression
rand*10
would return a result in the range from 0 to 10. To generate a random real number in the range from low to
high, first create the variables low and high. Then, use the expression rand*(high–low) low. For example,
the sequence
>> low = 3;
>> high = 5;
>> rand*(high–low)+low

would generate a random real number in the range from 3 to 5.
However, in MATLAB, there is another built-in function that specifically generates random integers,
randint. Calling the function with randint(1,1,N) generates one random integer in the range from 0 to N –
1. The first two arguments essentially specify that one random integer will be returned; the third argument
gives the range of that random integer. For example,

>> randint(1,1,4)

generates a random integer in the range from 0 to 3. Note: Even though this creates random integers, the
type is actually the default type double. A range can also be passed to the randint function. For example,
the following specifies a random integer in the range from 1 to 20:

>> randint(1,1,[1,20])

Vectors and Matrices
Vectors and matrices are used to store sets of values, all of which are the same type. A vector can be
either a row vector or a column vector. A matrix can be visualized as a table of values. The dimensions
of a matrix are r × c, where r is the number of rows and c is the number of columns. This is pronounced ―r
by c.‖ If a vector has n elements, a row vector would have the dimensions 1 × n, and a column vector would
have the dimensions n × 1. A scalar (one value) has the dimensions 1 × 1. Therefore, vectors and scalars
are actually just subsets of matrices. Here are some diagrams showing, from left to right, a scalar, a column
vector, a row vector, and a matrix:

5

3

7

4

5 88 3 11

9 6 3

5 7 2

4 33 8

The scalar is 1 × 1, the column vector is 3 × 1 (3 rows by 1 column), the row vector is 1 × 4 (1 row by 4
columns), and the matrix is 3 × 3. All the values stored in these matrices are stored in what are called
elements. MATLAB is written to work with matrices; the name MATLAB is short for ―matrix laboratory.‖ For
this reason, it is very easy to create vector and matrix variables, and there are many operations and
functions that can be used on vectors and matrices. A vector in MATLAB is equivalent to what is called a
one-dimensional array in other languages. A matrix is equivalent to a two-dimensional array. Usually, even
in MATLAB, some operations that can be performed on either vectors or matrices are referred to as array
operations. The term array also frequently is used to mean generically either a vector or a matrix.

1.5.1 Creating Row Vectors
There are several ways to create row vector variables. The most direct way is to put the values that you
want in the vector in square brackets, separated by either spaces or commas. For example, both of these
assignment statements create the same vector v:
>> v = [1 2 3 4]
v =
1 2 3 4
>> v = [1,2,3,4]

v =
1 2 3 4
Both of these create a row vector variable that has four elements; each value is stored in a separate
element in the vector.

The Colon Operator and Linspace Function
If, as in the earlier examples, the values in the vector are regularly spaced, the colon operator can be
used to iterate through these values. For example, 1:5
results in all the integers from 1 to 5:
>> vec = 1:5
vec =
1 2 3 4 5
Note that in this case, the brackets [] are not necessary to define the vector.
With the colon operator, a step value can also be specified with another colon, in the form (first:step:last).
For example, to create a vector with all integers from 1 to 9 in steps of 2:
>> nv = 1:2:9
nv =
1 3 5 7 9
Similarly, the linspace function creates a linearly spaced vector; linspace(x,y,n) creates a vector with n
values in the inclusive range from x to y. For example, the following creates a vector with five values
linearly spaced between 3 and 15, including the 3 and 15:
>> ls = linspace(3,15,5)
ls =
3 6 9 12 15
Vector variables can also be created using existing variables. For example, a new vector is created here
consisting first of all the values from nv followed by all values from ls:
>> newvec = [nv ls]
newvec =
1 3 5 7 9 3 6 9 12 15
Putting two vectors together like this to create a new one is called concatenating the vectors.

1.5.1.2 Referring to and Modifying Elements
A particular element in a vector is accessed using the name of the vector variable and the element number
(or index, or subscript) in parentheses. In MATLAB, the indices start at 1. Normally, diagrams of vectors
and matrices show the indices; for example, for the variable newvec created earlier the indices 1–10 of the
elements are shown above the vector:

1 2 3 4 5 6 7 8 9 10

1 3 5 7 9 3 6 9 12 15

For example, the fifth element in the vector newvec is a 9.
>> newvec(5)
ans =
9

A subset of a vector, which would be a vector itself, can also be obtained using the colon operator. For
example, the following statement would get the fourth through sixth elements of the vector newvec, and
store the result in a vector variable b:

>> b = newvec(4:6)
b =
7 9 3

Any vector can be used for the indices in another vector, not just one created using the colon operator. For
example, the following would get the first, fifth, and tenth elements of the vector newvec:

>> newvec([1 5 10])
ans =
1 9 15
The vector [1 5 10] is called an index vector; it specifies the indices in the original vector that are being
referenced. The value stored in a vector element can be changed by specifying the index or subscript. For
example, to change the second element from the vector b to now store the value 11 instead of 9:

>> b(2) = 11
b =
7 11 3
By using an index, a vector can also be extended. For example, the following creates a vector that has
three elements. By then referring to the fourth element in an assignment statement, the vector is extended
to have four elements.

>> rv = [3 55 11]
rv =
3 55 11
>> rv(4) = 2
rv =
3 55 11 2

If there is a gap between the end of the vector and the specified element, 0‘s are filled in. For example, the
following extends the variable created earlier again:
>> rv(6) = 13
rv =
3 55 11 2 0 13

Creating Column Vectors
One way to create a column vector is by explicitly putting the values in square brackets, separated by
semicolons:
>> c = [1; 2; 3; 4]
c =
1
2
3
4

There is no direct way to use the colon operator described earlier to get a column vector. However, any row
vector created using any of these methods can be transposed to get a column vector. In general, the
transpose of a matrix is a new matrix in which the rows and columns are interchanged. For vectors,
transposing a row vector results in a column vector, and transposing a column vector results in a row
vector. MATLAB has a built-in operator, the apostrophe, to get a transpose.

>> r = 1:3;
>> c = r
c =
1
2
3

Creating Matrix Variables
Creating a matrix variable is really just a generalization of creating row and column vector variables. That
is, the values within a row are separated by either spaces or commas, and the different rows are separated
by semicolons. For example, the matrix variable mat is created by explicitly typing values:

>> mat = [4 3 1; 2 5 6]
mat =
4 3 1
2 5 6
There must always be the same number of values in each row. If you attempt to create a matrix in which
there are different numbers of values in the rows, the result will be an error message; for example:

>> mat = [3 5 7; 1 2]
??? Error using ==> vertcat

CAT arguments dimensions are not consistent. Iterators can also be used for the values on the rows using
the colon operator; for example:

>> mat = [2:4; 3:5]
mat =
2 3 4
3 4 5

Different rows in the matrix can also be specified by pressing the Enter key after each row instead of typing
a semicolon when entering the matrix values; for example:

>> newmat = [2 6 88
33 5 2]

newmat =
2 6 88
33 5 2

Matrices of random numbers can be created using the rand and randint functions. The first two arguments
to the randint function specify the size of the matrix of random integers. For example, the following will
create a 2 × 4 matrix of random integers, each in the range from 10 to 30:

>> randint(2,4,[10,30])
ans =
29 22 28 19
14 20 26 10

For the rand function, if a single value n is passed to it, an n × n matrix will be created, or passing two
arguments will specify the number of rows and columns:

>> rand(2)

ans =
0.2311 0.4860
0.6068 0.8913

>> rand(1,3)
ans =
0.7621 0.4565 0.0185

MATLAB also has several functions that create special matrices. For example, the zeros function creates a
matrix of all zeros. Like rand, either one argument can be passed (which will be both the number of rows
and columns), or two arguments (first the number of rows and then the number of columns).

>> zeros(3)
ans =
0 0 0
0 0 0
0 0 0

>> zeros(2,4)
ans =
0 0 0 0
0 0 0 0

Referring to and Modifying Matrix Elements
To refer to matrix elements, the row and then the column indices are given in parentheses (always the row
index first and then the column). For example, this creates a matrix variable mat, and then refers to the
value in the second row, third column of mat:

>> mat = [2:4; 3:5]
mat =
2 3 4
3 4 5

>> mat(2,3)
ans =
5

It is also possible to refer to a subset of a matrix. For example, this refers to the first and second rows,
second and third columns:

>> mat(1:2,2:3)
ans =
3 4
4 5

Using a colon for the row index means all rows, regardless of how many, and using a colon for the column
index means all columns. For example, this refers to the entire first row:
>> mat(1,:)
ans =
2 3 4
and this refers to the entire second column:
>> mat(:, 2)
ans =
3
4
If a single index is used with a matrix, MATLAB unwinds the matrix column by column. For example, for
the matrix intmat created here, the first two elements are from the first column, and the last two are from
the second column:

>> intmat = randint(2,2,[0 100])
intmat =
100 77
28 14

>> intmat(1)
ans =
100
>> intmat(2)
ans =
28
>> intmat(3)
ans =
77
>> intmat(4)
ans =
14

This is called linear indexing. It is usually much better style when working with matrices to refer to the row
and column indices, however. An individual element in a matrix can be modified by assigning a value.

>> mat = [2:4; 3:5];
>> mat(1,2) = 11
mat =
2 11 4
3 4 5

An entire row or column could also be changed. For example, the following replaces the entire second row
with values from a vector:
>> mat(2,:) = 5:7
mat =
2 11 4
5 6 7

Notice that since the entire row is being modified, a vector with the correct length must be assigned. To
extend a matrix, an individual element could not be added since that would mean there would no longer be
the same number of values in every row. However, an entire row or column could be added. For example,
the following would add a fourth column to the matrix:

>> mat(:,4) = [9 2]’
mat =
2 11 4 9
5 6 7 2

Just as we saw with vectors, if there is a gap between the current matrix and the row or column being
added, MATLAB will fill in with zeros.

>> mat(4,:) = 2:2:8
mat =
2 11 4 9
5 6 7 2
0 0 0 0
2 4 6 8

Dimensions
The length and size functions in MATLAB are used to find array dimensions. The length function returns
the number of elements in a vector. The size function returns the number of rows and columns in a matrix.
For a matrix, the length function will return either the number of rows or the number of columns, whichever
is largest. For example, the following vector, vec, has four elements so its length is 4. It is a row vector, so
the size is 1 × 4.

>> vec = -2:1
vec =
-2 -1 0 1
>> length(vec)
ans =
4
>> size(vec)

ans =
1 4
For the matrix mat shown next, it has three rows and two columns, so the size is 3 × 2. The length is the
larger dimension, 3.

>> mat = [1:3; 5:7]’
mat =
1 5
2 6
3 7
>> size(mat)
ans =
3 2
>> length(mat)
ans =
3
>> [r c] = size(mat)
r =
3
c =
2

Note: The last example demonstrates a very important and unique concept in MATLAB: the ability to have
a vector of variables on the left-hand side of an assignment. The size function returns two values, so in
order to capture these values in separate variables we put a vector of two variables on the left of the
assignment. The variable r stores the first value returned, which is the number of rows, and c stores the
number of columns.

MATLAB also has a function, numel, which returns the total number of elements in any array (vector or
matrix):

>> vec = 9:–2:1
vec =
9 7 5 3 1

>> numel(vec)
ans =
5

>> mat = randint(2,3,[1,10])
mat =
7 9 8
4 6 5

>> numel(mat)
ans =
6

For vectors, this is equivalent to the length of the vector. For matrices, it is the product of the number of
rows and columns. MATLAB also has a built-in expression end that can be used to refer to the last element
in a vector; for example, v(end) is equivalent to v(length(v)). For matrices, it can refer to the last row or
column. So, using end for the row index would refer to the last row. In this case, the element referred to is
in the first column of the last row:

>> mat = [1:3; 4:6]’
mat =
1 4
2 5
3 6

>> mat(end,1)
ans =
3
Using end for the column index would refer to the last column (e.g., the last column of the second row):

>> mat(2,end)
ans =
5
This can be used only as an index.

Changing Dimensions
In addition to the transpose operator, MATLAB has several built-in functions that change the dimensions or
configuration of matrices, including reshape, fliplr, flipud, and rot90. The reshape function changes the
dimensions of a matrix. The following matrix variable mat is 3 4, or in other words it has 12 elements.

>> mat = randint(3,4,[1 100])
mat =
14 61 2 94
21 28 75 47
20 20 45 42

These 12 values instead could be arranged as a 2 x 6 matrix, 6 x 2, 4 x3, 1x 12, or 12 x1. The reshape
function iterates through the matrix columnwise. For example, when reshaping mat into a 2 6 matrix, the
values from the first column in the original matrix (14, 21, and 20) are used first, then the values from the
second column (61, 28, 20), and so forth.

>> reshape(mat,2,6)
ans =
14 20 28 2 45 47
21 61 20 75 94 42

The fliplr function ―flips‖ the matrix from left to right (in other words the left-most column, the first column,
becomes the last column and so forth), and the flipud functions flips up to down. Note that in these
examples mat is unchanged; instead, the results are stored in the default variable ans each time.

>> mat = randint(3,4,[1 100])
mat =
14 61 2 94
21 28 75 47
20 20 45 42

>> fliplr(mat)
ans =
94 2 61 14
47 75 28 21
42 45 20 20

>> mat
mat =
14 61 2 94
21 28 75 47
20 20 45 42

>> flipud(mat)
ans =
20 20 45 42
21 28 75 47
14 61 2 94

The rot90 function rotates the matrix counterclockwise 90 degrees, so for example the value in the top-right
corner becomes instead the top-left corner and the last column becomes the first row:

>> mat
mat =
14 61 2 94
21 28 75 47
20 20 45 42

>> rot90(mat)
ans =
94 47 42
2 75 45
61 28 20
14 21 20

The function repmat can also be used to create a matrix; repmat(mat,m,n) creates a larger matrix, which
consists of an m × n matrix of copies of mat. For example, here is a 2 × 2 random matrix:
>> intmat = randint(2,2,[0 100])
intmat =
100 77
28 14

The function repmat can be used to replicate this matrix six times as a 3 × 2 matrix of the variable intmat.

>> repmat(intmat,3,2)
ans =
100 77 100 77
28 14 28 14
100 77 100 77
28 14 28 14
28 14 28 14

Empty Vectors
An empty vector, or, in other words, a vector that stores no values, can be created using empty square
brackets:
>> evec = []
evec =
[]
>> length(evec)
ans =
0

Then, values can be added to the vector by concatenating, or adding values to the existing vector. The
following statement takes what is currently in evec, which is nothing, and adds a 4 to it.
>> evec = [evec 4]
evec =
4
The following statement takes what is currently in evec, which is 4, and adds
an 11 to it.
>> evec = [evec 11]
evec =
4 11
This can be continued as many times as desired, in order to build a vector up from nothing. Empty vectors
can also be used to delete elements from arrays. For example, to remove the third element from an
array, the empty vector is assigned to it:

>> vec = 1:5
vec =
1 2 3 4 5
>> vec(3) = []
vec =
1 2 4 5
The elements in this vector are now numbered 1 through 4. Subsets of a vector could also be removed; for
example:

>> vec = 1:8
vec =
1 2 3 4 5 6 7 8
>> vec(2:4) = []

vec =
1 5 6 7 8
Individual elements cannot be removed from matrices, since matrices always have to have the same
number of elements in every row.

>> mat = [7 9 8; 4 6 5]
mat =
7 9 8
4 6 5

>> mat(1,2) = [];
??? Indexed empty matrix assignment is not allowed. However, entire rows or columns could be removed
from a matrix. For example, to remove the second column:
>> mat(:,2) = []
mat =
7 8
4 5

Creating String Variables
A string consists of any number of characters (including, possibly, none). These are examples of strings: ‗‘
‗x‘
‗cat‘
‗Hello there‘
‗123‘

A substring is a subset or part of a string. For example, ‗there‘ is a substring within the string ‗Hello there‘.
Characters include letters of the alphabet, digits, punctuation marks, white space, and control characters.
Control characters are characters that cannot be printed, but accomplish a task (such as a backspace or
tab). Whitespace characters include the space, tab, newline (which moves the cursor down to the next
line), and carriage return (which moves the cursor to the beginning of the current line). Leading blanks are
blank spaces at the beginning of a string, for example, ‗ hello‘, and trailing blanks are blank spaces at the
end of a string. There are several ways that string variables can be created. One is using assignment
statements:

>> word = ‘cat’;

Another method is to read into a string variable. Recall that to read into a string variable using the input
function, the second argument ‗s‘ must be included:

>> strvar = input(‘Enter a string: ’, ‘s’)
Enter a string: xyzabc
strvar =
xyzabc

If leading or trailing blanks are typed by the user, these will be stored in the string. For example, in the
following the user entered four blanks and then ‗xyz‘:

>> s = input(‘Enter a string: ’,‘s’)
Enter a string: xyz
s =
xyz

Strings as Vectors
Strings are treated as vectors of characters—or in other words, a vector in which every element is a
single character—so many vector operations can be performed. For example, the number of characters in
a string can be found using the length function:

>> length(‗cat‘)
ans =
3
>> length(‗ ‘)
ans =
1
>> length(‗‘)
ans =
0

Notice that there is a difference between an empty string, which has a length of zero, and a string
consisting of a blank space, which has a length of one. Expressions can refer to an individual element (a
character within the string), or a subset of a string or a transpose of a string:

>> mystr = ‘Hi’;
>> mystr(1)
ans =
H
>> mystr’
ans =
H
i
>> sent = ‘Hello there’;
>> length(sent)
ans =
11
>> sent(4:8)
ans =
lo th
Notice that the blank space in the string is a valid character within the string. A matrix can be created,
which consists of strings in each row. So, essentially it is created as a column vector of strings, but the end
result is that this would be treated as a matrix in which every element is a character:

>> wordmat = [‘Hello’;‘Howdy’]
wordmat =
Hello
Howdy

>> size(wordmat)
ans =
2 5

This created a 2 5 matrix of characters. With a character matrix, we can refer to an individual element,
which is a character, or an individual row, which is one of the strings:

>> wordmat(2,4)
ans =
d
>> wordmat(1,:)
ans =
Hello

Since rows within a matrix must always be the same length, the shorter strings must be padded with blanks
so that all strings have the same length, otherwise an error will occur.

>> greetmat = [‘Hello’; ‘Goodbye’]
??? Error using ==> vertcat

CAT arguments dimensions are not consistent.
>> greetmat = [‘Hello ’; ‘Goodbye’]
greetmat =
Hello
Goodbye

>> size(greetmat)
ans =
2 7

Operations on Strings
MATLAB has many built-in functions that work with strings. Some of the string manipulation functions that
perform the most common operations will be described here.

Concatenation
String concatenation means to join strings together. Of course, since strings are just vectors of
characters, the method of concatenating vectors works for strings, also. For example, to create one long
string from two strings, it is possible to join them by putting them in square brackets:

>> first = ‘Bird’;
>> last = ‘house’;
>> [first last]
ans =
Birdhouse
The function strcat does this also horizontally, meaning that it creates one longer string from the inputs.
>> first = ‘Bird’;

>> last = ‘house’;
>> strcat(first,last)
ans =
Birdhouse

There is a difference between these two methods of concatenating, however, if there are leading or trailing
blanks in the strings. The method of using the square brackets will concatenate the strings, including all
leading and trailing blanks.

>> str1 = ‘xxx ’;
>> str2 = ‘ yyy’;
>> [str1 str2]
ans =
xxx yyy
>> length(ans)
ans =
12

The strcat function, however, will remove trailing blanks (but not leading blanks) from strings before
concatenating. Notice that in these examples, the trailing blanks from str1 are removed, but the leading
blanks from str2 are not:

>> strcat(str1,str2)
ans =
xxx yyy
>> length(ans)
ans =
9
>> strcat(str2,str1)
ans =
yyyxxx
>> length(ans)
ans =
9
The function strvcat will concatenate vertically, meaning that it will create a
column vector of strings.
>> strvcat(first,last)
ans =
Bird
house
>> size(ans)
ans =
2 5
Note that strvcat will pad with extra blanks automatically, in this case to make both strings have a length of
5.

Creating Customized Strings
There are several built-in functions that create customized strings, including char, blanks, and sprintf. We
have seen already that the char function can be used to convert from an ASCII code to a character, for
example:

>> char(97)
ans =
a

The char function can also be used to create a matrix of characters. When using the char function to
create a matrix, it will automatically pad the strings within the rows with blanks as necessary so that they
are all the same length, just like strvcat.

>> clear greetmat
>> greetmat = char(‘Hello’,‘Goodbye’)
greetmat =
Hello
Goodbye
>> size(greetmat)
ans =
2 7
The blanks function will create a string consisting of n blank characters which are kind of hard to see here!
However, in MATLAB if the mouse is moved to highlight the result in ans, the blanks can be seen.

>> blanks(4)
ans =
>> length(ans)
ans =
4

Usually this function is most useful when concatenating strings, and you want a number of blank spaces in
between. For example, this will insert five blank spaces in between the words:

>> [first blanks(5) last]
ans =
Bird house

Displaying the transpose of the blanks function can also be used to move the cursor down. In the
Command Window, it would look like this:

>> disp(blanks(4)’)

This is useful in a script or function to create space in output, and is essentially equivalent to printing the
newline character four times. The sprintf function works exactly like the fprintf function, but instead of
printing it creates a string. Here are several examples in which the output is not suppressed so the value of
the string variable is shown:

>> sent1 = sprintf(‘The value of pi is %.2f’, pi)
sent1 =
The value of pi is 3.14
>> sent2 = sprintf(‘Some numbers: %5d, %2d’, 33, 6)
sent2 =
Some numbers: 33, 6
>> length(sent2)
ans =
23
In the following example, on the other hand, the output of the assignment is suppressed so the string is
created including a random integer and stored in the string variable. Then, some exclamation points are
concatenated to that string.
>> phrase = sprintf(‘A random integer is %d’, ›.
randint(1,1,[5,10]));
>> strcat(phrase, ‘!!!’)
ans =
A random integer is 7!!!

All the conversion specifiers that can be used in the fprintf function can also be used in the sprintf
function.

Removing Whitespace Characters

MATLAB has functions that will remove trailing blanks from the end of a string and/or leading blanks from
the beginning of a string. The deblank function will remove blank spaces from the end of a string. For
example, if some strings are padded in a string matrix so that all are the same length, it is frequently
preferred to then remove those extra blank spaces in order to actually use the string.

>> names = char(‘Sue’, ‘Cathy’,‘Xavier’)
names =
Sue
Cathy
Xavier
>> name1 = names(1,:)
name1 =
Sue
>> length(name1)
ans =
6
>> name1 = deblank(name1);
>> length(name1)
ans =
3

Note: The deblank function removes only trailing blanks from a string, not leading blanks. The strtrim
function will remove both leading and trailing blanks from a string, but not blanks in the middle of the string.
In the following example, the three blanks in the beginning and four blanks in the end are removed, but not

the two blanks in the middle. Selecting the result in MATLAB with the mouse would show the blank spaces.

>> strvar = [blanks(3) ‘xx’ blanks(2) ‘yy’ blanks(4)]
strvar =
xx yy
>> length(strvar)
ans =
13
>> strtrim(strvar)
ans =
xx yy
>> length(ans)
ans =
6

Changing Case

MATLAB has two functions that convert strings to all uppercase letters, or all lowercase, called upper and
lower.
>> mystring = ‘AbCDEfgh’;
>> lower(mystring)
ans =
abcdefgh

>> upper(ans)
ans =
ABCDEFGH

Comparing Strings

There are several functions that compare strings and return logical true if they are equivalent, or logical
false if not. The function strcmp compares strings, character by character. It returns logical true if the
strings are completely identical (which infers that they must be of the same length, also) or logical false if
the strings are not the same length or any corresponding characters are not identical. Here are some
examples of these comparisons:

>> word1 = ‘cat’;
>> word2 = ‘car’;
>> word3 = ‘cathedral’;
>> word4 = ‘CAR’;
>> strcmp(word1,word2)
ans =
0
>> strcmp(word1,word3)
ans =
0
>> strcmp(word1,word1)

ans =
1
>> strcmp(word2,word4)
ans =
0
The function strncmp compares only the first n characters in strings and ignores the rest. The first two
arguments are the strings to compare, and the third argument is the number of characters to compare (the
value of n).

>> strncmp(word1,word3,3)
ans =
1
>> strncmp(word1,word3,4)
ans =
0
There is also a function strncmpi that compares n characters, ignoring the case.

Finding, Replacing, and Separating Strings

There are several functions that find and replace strings, or parts of strings, within other strings and
functions that separate strings into substrings. The function findstr receives two strings as input
arguments. It finds all occurrences of the shorter string within the longer, and returns the subscripts of the
beginning of the occurrences. The order of the strings does not matter with findstr; it will always find the
shorter string within the longer, whichever that is. The shorter string can consist of one character, or any
number of characters. If there is more than one occurrence of the shorter string within the longer one,
findstr returns a vector with all indices. Note that what is returned is the index of the beginning of the
shorter string.

>> findstr(‘abcde’, ‘d’)
ans =
4
>> findstr(‘d’,‘abcde’)
ans =
4
>> findstr(‘abcde’, ‘bc’)
ans =
2
>> findstr(‘abcdeabcdedd’, ‘d’)
ans =
4 9 11 12
The function strfind does essentially the same thing, except that the order of the arguments does make a
difference. The general form is strfind(string, substring); it finds all occurrences of the substring within
the string, and returns the subscripts.

>> strfind(‘abcdeabcde’,‘e’)
ans =
5 10

For both strfind and findstr, if there are no occurrences, the empty vector is returned.
>> strfind(‘abcdeabcde’,‘ef’)
ans =
[]
The function strrep finds all occurrences of a substring within a string, and replaces them with a new
substring. The order of the arguments matters. The format is: strrep(string, oldsubstring, newsubstring) The
following example replaces all occurrences of the substring ‗e‘ with the substring ‗x‘:

>> strrep(‘abcdeabcde’,‘e’,‘x’)
ans =
abcdxabcdx

All strings can be any length, and the lengths of the old and new substrings do not have to be the same. In
addition to the string functions that find and replace, there is a function that separates a string into two
substrings. The strtok function breaks a string into pieces; it can be called several ways. The function
receives one string as an input argument. It looks for the first delimiter, which is a character or set of
characters that act as a separator within the string. By default, the delimiter is any whitespace character.
The function returns a token, which is the beginning of the string, up to (but not including) the first delimiter.
It also returns the rest of the string, which includes the delimiter. Assigning the returned values to a vector
of two variables will capture both of these. The format is

[token rest] = strtok(string)
where token and rest are variable names. For example,
>> sentence1 = ‘Hello there’
sentence1 =
Hello there
>> [word rest] = strtok(sentence1)
word =
Hello
rest =
there
>> length(word)
ans =
5
>> length(rest)
ans =
6
Notice that the rest of the string includes the blank space delimiter. By default, the delimiter for the token is
a whitespace character (meaning that the token is defined as everything up to the blank space), but
alternate delimiters can be defined. The format

[token rest] = strtok(string, delimeters)

returns a token that is the beginning of the string, up to the first character contained within the delimiters
string, and also the rest of the string. In the following example, the delimiter is the character ‗l‘.

>> [word rest] = strtok(sentence1,‘l’)

word =
He
rest =
llo there
Leading delimiter characters are ignored, whether it is the default whitespace or a specified delimiter. For
example, the leading blanks are ignored here:

>> [firstpart lastpart] = strtok(’ materials science’)
firstpart =
materials
lastpart =
science

Evaluating a String
The function eval is used to evaluate a string as a function.For example, in the following, the string ‗plot(x)‘
is interpreted to be a call to the plot function, and it produces the plot shown in Figure 6.2.

>> x = [2 6 8 3];
>> eval(‘plot(x)’)

This would be useful if the user entered the name of the type of plot to use. In this example, the string that
the user enters (in this case ‗bar‘) is concatenated with the string ‗(x)‘ to create the string ‗bar(x)‘; this is
then evaluated as a call to the bar function as seen in Figure 6.3. The name of the plot type is also used in
the title.

The is functions for strings
There are several is functions for strings, which return logical true or false. The function isletter returns
logical true if the character is a letter of the alphabet. The function isspace returns logical true if the
character is a whitespace character. If strings are passed to these functions, they will return logical true or
false for every element, or, in other words, every character.

>> isletter(‘a’)
ans =
1
>> isletter(‘EK127’)
ans =
1 1 0 0 0
>> isspace(‘a b’)
ans =
0 1 0
The ischar function will return logical true if an array is a character array, or logical false if not.
>> vec = ‘EK127’;
>> ischar(vec)
ans =
1
>> vec = 3:5;
>> ischar(vec)

ans =
0

Converting between string and number types
MATLAB has several functions that convert numbers to strings in which each character element is a
separate digit, and vice versa. (Note: these are different from the functions char, double, etc., that convert
characters to ASCII equivalents and vice versa.) To convert numbers to strings, MATLAB has the functions
int2str for integers and num2str for real numbers (which also works with integers). The function int2str
would convert, for example, the integer 4 to the string ‗4‘.

>> rani = randint(1,1,50)
rani =
38
>> s1 = int2str(rani)
s1 =
38
>> length(rani)
ans =
1
>> length(s1)
ans =
2
The variable rani is a scalar that stores one number, whereas s1 is a string that stores two characters, ‗3‘
and ‗8‘. Even though the result of the first two assignments is 38, notice that the indentation in the
Command Window is different for the number and the string. The num2str function, which converts real
numbers, can be called in several ways. If only the real number is passed to the num2str function, it will
create a string that has four decimal places, which is the default in MATLAB for displaying real numbers.
The precision can also be specified (which is the number of digits), and format strings can also be passed,
as shown:

>> str2 = num2str(3.456789)
str2 =
3.4568
>> length(str2)
ans =
6
>> str3 = num2str(3.456789,3)
str3 =
3.46
>> str = num2str(3.456789,‘%6.2f’)
str =
3.46
Note that in the last example, MATLAB removed the leading blanks from the string. The function str2num
does the reverse; it takes a string in which a number is stored and converts it to the type double:

>> num = str2num(‘123.456’)
num =

123.4560
If there is a string in which there are numbers separated by blanks, the str2num function will convert this to
a vector of numbers (of the default type double). For example,

>> mystr = ‘66 2 111’;
>> numvec = str2num(mystr)
numvec =
66 2 111
>> sum(numvec)
ans =
179

Input and Output
The previous script would be much more useful if it were more general; for example, if the value of the
radius could be read from an external source rather than being assigned in the script. Also, it would be
better to have the script print the output in a nice, informative way. Statements that accomplish these tasks
are called input/output statements, or I/O for short. Although for simplicity examples of input and output
statements will be shown here from the Command Window, these statements will make the most sense in
scripts.

Input Function
Input statements read in values from the default or standard input device. In most systems, the default
input device is the keyboard, so the input statement reads in values that have been entered by the user, or
the person who is running the script. In order to let the user know what he or she is supposed to enter, the
script must first prompt the user for the specified values. The simplest input function in MATLAB is called
input. The input function is used in an assignment statement. To call it, a string is passed, which is the
prompt that will appear on the screen, and whatever the user types will be stored in the variable named on
the left of the assignment statement. To make it easier to read the prompt, put a colon and then a space
after the prompt. For example,
>> rad = input(‘Enter the radius: ’)
Enter the radius: 5
rad =
5
If character or string input is desired, ‗s‘ must be added after the prompt:
>> letter = input(‘Enter a char: ’,‘s’)
Enter a char: g
letter =
g
Notice that although this is a string variable, the quotes are not shown. However, they are shown in the
Workspace Window. If the user enters only spaces or tabs before pressing the Enter key, they are ignored
and an empty string is stored in the variable:

>> mychar = input(‘Enter a character: ’, ‘s’)
Enter a character:
mychar =
‗‘

Notice that in this case the quotes are shown, to demonstrate that there is nothing inside of the string.
However, if blank spaces are entered before other characters, they are included in the string. In this
example, the user pressed the space bar four times before entering ―go‖:

>> mystr = input(‘Enter a string: ’, ‘s’)
Enter a string: go
mystr =
go
>> length(mystr)
ans =
6
It is also possible for the user to type quotation marks around the string rather than including the second
argument ‗s‘ in the call to the input function:

>> name = input(‘Enter your name: ’);
Enter your name: ‘Stormy’ However, it is better to signify that character input is desired in the input function
itself. Normally, the results from input statements are suppressed with a semicolon at the end of the
assignment statements, as shown here. Notice what happens if string input has not been specified, but the
user enters a letter rather than a number:

>> num = input(‘Enter a number: ’)
Enter a number: t
??? Error using ==> input
Undefined function or variable ‗t‘.
Enter a number: 3
num =
3
MATLAB gave an error message and repeated the prompt. However, if t is the name of a variable,
MATLAB will take its value as the input:

>> t = 11;
>> num = input(‘Enter a number: ’)
Enter a number: t
num =
11
Separate input statements are necessary if more than one input is desired. For example

>> x = input(‘Enter the x coordinate: ’);
>> y = input(‘Enter the y coordinate: ’);

Output Statements: disp and fprintf
Output statements display strings and the results of expressions, and can allow for formatting, or
customizing how they are displayed. The simplest output function in MATLAB is disp, which is used to
display the result of an expression or a string without assigning any value to the default variable ans.
However, disp does not allow formatting. For example,

>> disp(‘Hello’)

Hello
>> disp(4^3)
64

Formatted output can be printed to the screen using the fprintf function. For example,

>> fprintf(‘The value is %d, for sure!\n’,4^3)
The value is 64, for sure!

To the fprintf function, first a string (called the format string) is passed, which contains any text to be
printed as well as formatting information for the expressions to be printed. In this example, the %d is an
example of format information. The %d is sometimes called a placeholder; it specifies where the value of
the expression that is after the string is to be printed. The character in the placeholder is called the
conversion character, and it specifies the type of value that is being printed. There are others, but what
follows is a list of the simple placeholders:

%d integers (it actually stands for decimal integer)
%f floats
%c single characters
%s strings

Don‘t confuse the % in the placeholder with the symbol used to designate a comment. The character ‗\n‘ at
the end of the string is a special character called the newline character; when it is printed the output moves
down to the next line. A field width can also be included in the placeholder in fprintf, which specifies how
many characters total are to be used in printing. For example, %5d would indicate a field width of 5 for
printing an integer and %10â•›s would indicate a field width of 10 for a string. For floats, the number of
decimal places can also be specified; for example, %6.2f means a field width of 6 (including the decimal
point and the decimal places) with two decimal places. For floats, just the number of decimal places can
also be specified; for example, %.3f if indicates three decimal places.

>> fprintf(‘The int is %3â•›d and the float is %6.2f\n’,5,4.9)

The int is 5 and the float is 4.90 Note that if the field width is wider than necessary, leading blanks are
printed, and if more decimal places are specified than necessary, trailing zeros are printed. There are
many other options for the format string. For example, the value being printed can be left-justified within the
field width using a minus sign. The following example shows the difference between printing the integer 3
using %5d and using %–5d. The x‘s are just used to show the spacing.

>> fprintf(‘The integer is xx%5dxx and xx%-5dxx\n’,3,3)
The integer is xx 3xx and xx3 xx

Also, strings can be truncated by specifying decimal places:
>> fprintf(‘The string is %s or %.4s\n’, ‘truncate’,...
‘truncate’)
The string is truncate or trun. There are several special characters that can be printed in the format string in
addition to the newline character. To print a slash, two slashes in a row are used, and also to print a single
quote two single quotes in a row are used. Additionally, \t is the tab character.

>> fprintf(‘Try this out: tab\t quote ‘‘ slash \\ \n’)
Try this out: tab quote ‗ slash \

Scripts with Input and Output
Putting all this together, we can implement the algorithm from the beginning
of this chapter. The following script calculates and prints the area of a circle. It
first prompts the user for a radius, reads in the radius, and then calculates and
prints the area of the circle based on this radius.

script2.m
% This script calculates the area of a circle
% It prompts the user for the radius
% Prompt the user for the radius and calculate
% the area based on that radius
radius = input(‗Please enter the radius: ‘);
area = pi * (radius^2);
% Print all variables in a sentence format
fprintf(‗For a circle with a radius of %.2f,‘,radius)
fprintf(‗the area is %.2f\n‘,area)

Executing the script produces the following output:
>> script2
Please enter the radius: 3.9
For a circle with a radius of 3.90, the area is 47.78

Notice that the output from the first two assignment statements is suppressed by putting semicolons at the
end. That is frequently done in scripts, so that the exact format of what is displayed by the program is
controlled by the fprintf functions.

Introduction to File Input/Output (Load and Sav e)
In many cases, input to a script will come from a data file that has been created by another source. Also, it
is useful to be able to store output in an external file that can be manipulated and/or printed later. In this
section, we will demonstrate how to read from an external data file, and also how to write to an external
data file. There are basically three different operations, or modes, on files. Files can be:

 Read from

 Written to

 Appended to

Writing to a file means writing to a file, from the beginning. Appending to a file is also writing, but starting at
the end of the file rather than the beginning. In other words, appending to a file means adding to what was
already there. There are many different file types, which use different filename extensions. For now, we will
keep it simple and just work with .dat or .txt files when working with data or text files. There are several
methods for reading from files and writing to files; for now we will use the load function to read and the
save function to write to files.

Writing Data to a File

The save function can be used to write data from a matrix to a data file, or to append to a data file. The
format is:

save filename matrixvariablename –ascii.

The -ascii qualifier is used when creating a text or data file. The following creates a matrix and then saves
the values of the matrix variable to a data file called testfile.dat:

>> mymat = rand(2,3)
mymat =
0.4565 0.8214 0.6154
0.0185 0.4447 0.7919
>> save testfile.dat mymat –ascii
This creates a file called testfile.dat that stores the numbers
0.4565 0.8214 0.6154
0.0185 0.4447 0.7919
The type command can be used to display the contents of the file; notice that scientific notation is used:

>> type testfile.dat
4.5646767e–001 8.2140716e–001 6.1543235e–001
1.8503643e–002 4.4470336e–001 7.9193704e–001

Note: If the file already exists, the save function will overwrite it; save always begins writing from the
beginning of a file.

Appending Data to a Data File

Once a text file exists, data can be appended to it. The format is the same as previously, with the addition
of the qualifier -append. For example, the following creates a new random matrix and appends it to the file
just created:

>> mymat = rand(3,3)
mymat =
0.9218 0.4057 0.4103
0.7382 0.9355 0.8936
0.1763 0.9169 0.0579
>> save testfile.dat mymat –ascii –append
This results in the file testfile.dat containing
0.4565 0.8214 0.6154
0.0185 0.4447 0.7919
0.9218 0.4057 0.4103
0.7382 0.9355 0.8936
0.1763 0.9169 0.0579

Note: Although technically any size matrix could be appended to this data file, in order to be able to read it
back into a matrix later there would have to be the same number of values on every row.

Reading from a File
Once a file has been created (as previously), it can be read into a matrix variable. If the file is a data file,
the load function will read from the file filename.ext (e.g., the extension might be .dat) and create a matrix
with the same name as the file. For example, if the data file testfile.dat had been created as shown in the
previous section, this would read from it:
>> clear
>> load testfile.dat
>> who
Your variables are:
testfile
>> testfile
testfile =
0.4565 0.8214 0.6154
0.0185 0.4447 0.7919
0.9218 0.4057 0.4103
0.7382 0.9355 0.8936
0.1763 0.9169 0.0579
Note: The load command works only if there are the same number of values in each line, so that the
data can be stored in a matrix, and the save command only writes from a matrix to a file. If this is not
the case, lower-level file I/O functions must be used

Cell Arrays

One type of data structure that MATLAB has but is not found in many programming languages is a cell
array. A cell array in MATLAB is an array, but unlike the vectors and matrices we have used so far,
elements in cell arrays can store different types of values.

Creating Cell Arrays

There are several ways to create cell arrays. For example, we will create a cell array in which one element
will store an integer, one element will store a character, one element will store a vector, and one element
will store a string. Just as with the arrays we have seen so far, this could be a 1x 4 row vector, a 4x 1
column vector, or a 2 x2 matrix. The syntax for creating vectors and matrices is the same as before. Values
within rows are separated by spaces or commas, and rows are separated by semicolons. However, for cell
arrays, curly braces are used rather than square brackets. For example, the following creates a row vector
cell array with the four different types of values:

>> cellrowvec = {23, ‘a’, 1:2:9, ‘hello’}
cellrowvec =
[23] ‗a‘ [1x5 double] ‗hello‘

To create a column vector cell array, the values are instead separated by semicolons:
>> cellcolvec = {23; ‘a’; 1:2:9; ‘hello’}
cellcolvec =
[23]

‗a‘
[1x5 double]
‗hello‘

This method creates a 2 2 cell array matrix:
>> cellmat = {23 ‘a’; 1:2:9 ‘hello’}
cellmat =
[23] ‗a‘
[1x5 double] ‗hello‘
Another method of creating a cell array is simply to assign values to specific array elements and build it up
element by element. However, as explained before, extending an array element by element is a very
inefficient and time-consuming method. It is much more efficient, if the size is known ahead of time, to
preallocate the array. For cell arrays, this is done with the cell function. For example, to preallocate a
variable mycellmat to be a 2 2 cell array, the cell function would be called as follows:

>> mycellmat = cell(2,2)
mycellmat =
[] []
[] []
Note that this is a function call so the arguments to the function are in parentheses. This creates a matrix in
which all the elements are empty vectors. Then, each element can be replaced by the desired value. How
to refer to each element in order to accomplish this will be explained next.

Referring to and Displaying Cell Array Elements and Attributes
Just as with the other vectors we have seen so far, we can refer to individual elements of cell arrays. The
only difference is that curly braces are used for the subscripts. For example, this refers to the second
element of the cell array cellrowvec:

> cellrowvec{2}
ans =
a
Row and column indices are used to refer to an element in a matrix (again using curly braces), for example,
>> cellmat{1,1}
ans =
23

Values can be assigned to cell array elements. For example, after preallocating the variable mycellmat in
the previous section, the elements can be initialized:

>> mycellmat{1,1} = 23
mycellmat =
[23] []
[] []
When an element of a cell array is itself a data structure, only the type of the element is displayed when the
cell array contents are shown. For example, in the cell arrays just created, the vector is shown just as 1 5
double. Referring to that element specifically would display its contents, for example,

>> cellmat{2,1}
ans =
1 3 5 7 9
Since this element is a vector, parentheses are used to refer to its elements. For example, the fourth
element of the preceding vector is:

>> cellmat{2,1}(4)
ans =
7
Notice that the index into the cell array is given in curly braces, and then parentheses
are used to refer to an element of the vector.
We can also refer to subsets of cell arrays, for example,
>> cellcolvec{2:3}
ans =
a
ans =
1 3 5 7 9
Notice, however, that MATLAB stored cellcolvec{2} in the default variable ans, and then replaced that with
the value of cellcolvec{3}. This is because the two values are different types, and therefore cannot be
stored together in ans. However, they could be stored in two separate variables by having a vector of
variables on the left-hand side of an assignment.

>> [c1 c2] = cellcolvec{2:3}
c1 =
a
c2 =
1 3 5 7 9

There are several methods of displaying cell arrays. The celldisp function displays all elements of the cell
array:

>> celldisp(cellrowvec)
cellrowvec{1} =
23
cellrowvec{2} =
a
cellrowvec{3} =
1 3 5 7 9
cellrowvec{4} =
hello

The function cellplot puts a graphical display of the cell array in a Figure Window; however, it is a high-
level view and basically just displays the same information as typing the name of the variable (e.g., it
wouldn‘t show the contents of the vector in the previous example). Many of the functions and operations on
arrays that we have already seen also work with cell arrays. For example, here are some related to
dimensioning:

>> length(cellrowvec)
ans =
 4
>> size(cellcolvec)
ans =
4 1
>> cellrowvec{end}
ans =
hello

It is not possible to delete an individual element from a cell array. For example, assigning an empty vector
to a cell array element does not delete the element, it just replaces it with the empty vector:

>> cellrowvec
mycell =
[23] [1x5 double] ‗hello‘
>> length(cellrowvec)
ans =
4
>> cellrowvec{2} = []
mycell =
[23]â [] [1x5 double] ‗hello‘

>> length(cellrowvec)
ans =
4
However, it is possible to delete an entire row or column from a cell array by assigning the empty vector
(Note: use parentheses rather than curly braces to refer to the row or column):

>> cellmat
mycellmat =
[23] ‗a‘
[1x5 double] ‗hello‘
>> cellmat(1,:) = []
mycellmat =
[1x5 double] ‗hello‘

Storing Strings in Cell Arrays
One good application of a cell array is to store strings of different lengths. Since cell arrays can store
different types of values in the elements, that means strings of different lengths can be stored in the
elements.

>> names = {‘Sue’, ‘Cathy’, ‘Xavier’}
names =
 ‗Sue‘ ‗Cathy‘ ‗Xavier‘

This is extremely useful, because unlike vectors of strings created using char or strvcat, these strings do
not have extra trailing blanks. The length of each string can be displayed using a for loop to loop through
the elements of the cell array:

>> for i = 1:length(names)
disp(length(names{i}))
end
3
5
6

It is possible to convert from a cell array of strings to a character array, and vice versa. MATLAB has
several functions that facilitate this. For example, the function cellstr converts from a character array
padded with blanks to a cell array in which the trailing blanks have been removed.

>> greetmat = char(‘Hello’,‘Goodbye’);
>> cellgreets = cellstr(greetmat)
cellgreets =
‗Hello‘
‗Goodbye‘

The char function can convert from a cell array to a character matrix:
>> names = {‘Sue’, ‘Cathy’, ‘Xavier’};
>> cnames = char(names)
cnames =
Sue
Cathy
Xavier

>> size(cnames)
ans =
3 6

The function iscellstr will return logical true if a cell array is a cell array of all strings, or logical false if not.

>> iscellstr(names)
ans =
1

>> iscellstr(cellcolvec)
ans =
0
We will see several examples of cell arrays containing strings of varying lengths in the coming chapters,
including advanced file input functions and customizing plots.

Structures

Structures are data structures that group together values that are logically related in what are called fields
of the structure. An advantage of structures is that the fields are named, which helps to make it clear what
the values are that are stored in the structure. However, structure variables are not arrays. They do not
have elements, so it is not possible to loop through the values in a structure.

Creating and Modifying Structure Variables
Creating structure variables can be accomplished by simply storing values in fields using assignment
statements, or by using the struct function. The first example that will be used is that the local Computer
Super Mart wants to store information on the software packages that it sells. For every one, they will store:
■ The item number
■ The cost to the store
■ The price to the customer
■ A code indicating the type of software
An individual structure variable for one software package might look like this:

The name of the structure variable is package; it has four fields called item_no, cost, price, and code. One
way to initialize a structure variable is to use the struct function, which preallocates the structure. The field
names are passed to the struct in quotes, following each one with the value for that field:
>> package = struct(‘item_no’,123,‘cost’,19.99,…
‘price’,39.95,‘code’,‘g’)
package =

item_no: 123
cost: 19.9900
price: 39.9500
code: ‗g‘

Typing the name of the structure variable will display the names and contents of all fields:

>> package
package =

item_no: 123
cost: 19.9900
price: 39.9500
code: ‗g‘

Notice that in the Workspace Window, the variable package is listed as a 1 x1 struct. MATLAB, since it is
written to work with arrays, assumes the array format. Just as a single number is treated as a 1 x1 double,
a single structure is treated as a 1x1 struct. Later in this chapter we will see how to work more generally
with vectors of structs. An alternative method of creating this structure, which is not as efficient, involves
using the dot operator to refer to fields within the structure. The name of the structure variable is followed

by a dot, or period, and then the name of the field within that structure. Assignment statements can be used
to assign values to the fields.

>> package.item_no = 123;
>> package.cost = 19.99;
>> package.price = 39.95;
>> package.code = ‘g’;

By using the dot operator in the first assignment statement, a structure variable is created with the field
item_no. The next three assignment statements add more fields to the structure variable. Adding a field to a
structure later is accomplished as shown earlier, by using an assignment statement. An entire structure
variable can be assigned to another. This would make sense, for example, if the two structures had some
values in common. Here, for example, the values from one structure are copied into another and then two
fields are selectively changed.

>> newpack = package;
>> newpack.item_no = 111;
>> newpack.price = 34.95
newpack =

item_no: 111
cost: 19.9900
price: 34.9500
code: ‗g‘

To print from a structure, the disp function will display either the entire structure or a field.

>> disp(package)
item_no: 123
cost: 19.9900
price: 39.9500
code: ‗g‘

>> disp(package.cost)
19.9900

However, using fprintf, only individual fields can be printed; the entire structure cannot be printed.
>> fprintf(‘%d %c\n’, package.item_no, package.code)
123g

The function rmfield removes a field from a structure. It returns a new structure with the field removed, but
does not modify the original structure (unless the returned structure is assigned to that variable). For
example, the following would remove the code field from the newpack structure, but store the resulting
structure in the default variable ans. The value of newpack remains unchanged.

>> rmfield(newpack, ‘code’)
ans =

item_no: 111

cost: 19.9900
price: 34.9500

>> newpack
newpack =

item_no: 111
cost: 19.9000
price: 34.9500
code: ‗g‘

To change the value of newpack, the structure that results from calling rmfield must be assigned to
newpack.

>> newpack = rmfield(newpack, ‘code’)
newpack =

item_no: 111
cost: 19.9000
price: 34.9500

Passing Structures to Functions

An entire structure can be passed to a function, or individual fields can be passed. For example, here are
two different versions of a function that calculates the profit on a software package. The profit is defined as
the price minus the cost. In the first version, the entire structure variable is passed to the function, so the
function must use the dot operator to refer to the price and cost fields of the input argument.

calcprof.m
function profit = calcprof(packstruct)
% Calculates the profit for a software package
% The entire structure is passed to the function
profit = packstruct.price – packstruct.cost;

>> calcprof(package)
ans =
19.9600

In the second version, just the price and cost fields are passed to the function using the dot operator in the
function call. These are passed to two scalar input arguments in the function header, so there is no
reference to a structure variable in the function itself, and the dot operator is not needed in the function.

calcprof2.m
function profit = calcprof2(oneprice, onecost)
% Calculates the profit for a software package
% The individual fields are passed to the function
profit = oneprice – onecost;
>> calcprof2(package.price, package.cost)
ans =
19.9600

It is important, as always with functions, to make sure that the arguments in the function call correspond
one-to-one with the input arguments in the function header. In the case of calcprof, a structure variable is
passed to an input argument, which is a structure. For the second function calcprof2, two individual fields,
which are double values, are passed to two double arguments.

Related Structure Functions

There are several functions that can be used with structures in MATLAB. The function isstruct will return 1
for logical true if the variable argument is a structure variable, or 0 if not. The isfield function returns logical
true if a fieldname (as a string) is a field in the structure argument, or logical false if not

>> isstruct(package)
ans =
1
>> isfield(package,‘cost’)
ans =
1

The fieldnames function will return the names of the fields that are contained in a structure variable.
>> pack_fields = fieldnames(package)
pack_fields =
‗item_no‘
‗cost‘
‗price‘
‗code‘
Since the names of the fields are of varying lengths, the fieldnames function returns a cell array with the
names of the fields. Curly braces are used to refer to the elements, since pack_fields is a cell array. For
example, we can refer to the length of one of the strings:

>> length(pack_fields{2})
ans =
4
Quick
Vectors of Structures
In many applications, including database applications, information normally would be stored in a vector of
structures, rather than in individual structure variables. For example, if the Computer Super Mart is storing
information on all the software packages that it sells, it would likely be in a vector of structures, for example,

In this example, packages is a vector that has three elements. It is shown as a column vector. Each
element is a structure consisting of four fields, item_no, cost, price, and code. It may look like a matrix with
rows and columns, but it is instead a vector of structures. This can be created several ways. One method is
to create a structure variable, as shown earlier, to store information on one software package. This can
then be expanded to be a vector of structures.

>> packages = struct(‘item_no’,123,‘cost’,19.99,…
‘price’,39.95,‘code’,‘g’);
>> packages(2) = struct(‘item_no’,456,‘cost’, 5.99,…
‘price’,49.99,‘code’,‘l’);
>> packages(3) = struct(‘item_no’,587,‘cost’,11.11,…
‘price’,33.33,‘code’,‘w’);

The first assignment statement shown here creates the first structure in the structure vector, the next one
creates the second structure, and so on. This actually creates a 1x3 row vector. Alternatively, the first
structure could be treated as a vector to begin with, for example,

>> packages(1) = struct(‘item_no’,123,‘cost’,19.99,…
‘price’,39.95,‘code’,‘g’);
>> packages(2) = struct(‘item_no’,456,‘cost’, 5.99,…
‘price’,49.99,‘code’,‘l’);
>> packages(3) = struct(‘item_no’,587,‘cost’,11.11,…
‘price’,33.33,‘code’,‘w’);

Both of these methods, however, involve extending the vector. As we have already seen, preallocating any
vector in MATLAB is more efficient than extending it. There are several methods of preallocating the vector.
By starting with the last element, MATLAB would create a vector with that many elements. Then, the
elements from 1 through end-1 could be initialized. For example, for a vector of structures that has three
elements, start with the third element.

>> packages(3) = struct(‘item_no’,587,‘cost’,11.11,.â•›.â•›.
‘price’,33.33,‘code’,‘w’);
>> packages(1) = struct(‘item_no’,123,‘cost’,19.99,.â•›.â•›.
‘price’,39.95,‘code’,‘g’);
>> packages(2) = struct(‘item_no’,456,‘cost’, 5.99,.â•›.â•›.
‘price’,49.99,‘code’,‘l’);

Another method is to create one element with the values from one structure, and use repmat to replicate it
to the desired size. Then, the remaining elements can be modified. The following creates one structure and
then replicates this into a 1x3 matrix.

>> packages = repmat(struct(‘item_no’,587,‘cost’,…
11.11, ‘price’,33.33,‘code’,‘w’), 1,3);
>> packages(2) = struct(‘item_no’,456,‘cost’, 5.99,…
‘price’,49.99,‘code’,‘l’);
>> packages(3) = struct(‘item_no’,587,‘cost’,11.11,…
‘price’,33.33,‘code’,‘w’);

Typing the name of the variable will display only the size of the structure vector and the names of the fields:

>> packages
packages =
1x3 struct array with fields:
item_no
cost
price
code
The variable packages is now a vector of structures, so each element in the vector is a structure. To display
one element in the vector (one structure), an index into the vector would be specified. For example, to refer
to the second element:

>> packages(2)
ans =
item_no: 456
cost: 5.9900
price: 49.9900
code: ‗l‘
To refer to a field, it is necessary to refer to the particular structure, and then the field within it. This means
using an index into the vector to refer to the structure, and then the dot operator to refer to a field. For
example:

>> packages(1).code
ans =
g
So, there are essentially three levels to this data structure. The variable packages is the highest level,
which is a vector of structures. Each of its elements is an individual structure. The fields within these
individual structures are the lowest level. The following loop displays each element in the packages vector.

>> for i = 1:length(packages)
disp(packages(i))
end

item_no: 123
cost: 19.9900
price: 39.9500
code: ‗g‘

item_no: 456
cost: 5.9900
price: 49.9900
code: ‗l‘

item_no: 587
cost: 11.1100

price: 33.3300
code: ‗w‘

To refer to a particular field for all structures, in most programming languages it would be necessary to loop
through all elements in the vector and use the dot operator to refer to the field for each element. However,
this is not the case in MATLAB.

Nested Structures
A nested structure is a structure in which at least one member is itself a structure. For example, a
structure for a line segment might consist of fields representing the two points at the ends of the line
segment. Each of these points would be represented as a structure consisting of the x- and y-coordinates.

This shows a structure variable called lineseg that has two fields, endpoint1 and endpoint2. Each of these
is a structure consisting of two fields, x and y. One method of defining this is to nest calls to the struct
function:

>> lineseg = struct(‘endpoint1’,struct(‘x’,2,‘y’,4), …
‘endpoint2’,struct(‘x’,1,‘y’,6))

This method is the most efficient. However, another method is to build the nested structure one field at a
time. Since this is a nested structure with one structure inside of another, the dot operator must be used
twice here to get to the actual x- and y-coordinates.

>> lineseg.endpoint1.x = 2;
>> lineseg.endpoint1.y = 4;
>> lineseg.endpoint2.x = 1;
>> lineseg.endpoint2.y = 6;

Once the nested structure has been created, we can refer to different parts of the variable lineseg. Just
typing the name of the variable shows only that it is a structure consisting of two fields, endpoint1 and
endpoint2, each of which is a structure.

>> lineseg
lineseg =
endpoint1: [1x1 struct]
endpoint2: [1x1 struct]

Typing the name of one of the nested structures will display the field names and values within that
structure:

>> lineseg.endpoint1

ans =
x: 2
y: 4
Using the dot operator twice will refer to an individual coordinate, for example,
>> lineseg.endpoint1.x
ans =

2
Quick Question!
A nested structure variable for a line segment could also be created by creating structure variables for the
points first, and then storing these in the two fields of a line segment variable. For example:

>> pointone = struct(‘x’, 5, ‘y’, 11);
>> pointtwo = struct(‘x’, 7, ‘y’, 9);
>> myline = struct(‘endpoint1’, pointone,…
‘endpoint2’, pointtwo)

myline =
endpoint1: [1x1 struct]
endpoint2: [1x1 struct]

Then, referring to different parts of the variable would work the same:
>> myline.endpoint1
ans =
 x: 5
 y: 11

>> myline.endpoint2.x
ans =
7

UNIT II PROGRAMMING IN MATLAB 10 hrs.
Relational and logical operators – Control statements IF-END, IF-ELSE – END, ELSEIF, SWITCH CASE –
FOR loop – While loop – Debugging – Applications to Simulation – miscellaneous MAT lab functions &
Variables.

UNIT II

Relational Expressions
Conditions in if statements use expressions that are conceptually, or logically, either true or false. These
expressions are called relational expressions, or sometimes Boolean or logical expressions. These
expressions can use both relational operators, which relate two expressions of compatible types, and
logical operators, which operate on logical operands.

The relational operators in MATLAB are:
Operator Meaning
> greater than
< less than
>= greater than or equals
<= less than or equals
== equality
~= inequality

All concepts should be familiar, although the operators used may be different from those used in other
programming languages, or in mathematics classes. In particular, it is important to note that the operator for
equality is two consecutive equal signs, not a single equal sign (recall that the single equal sign is the
assignment operator). For numerical operands, the use of these operators is straightforward.
For example,
3 < 5 means ―3 less than 5,‖

which is conceptually a true expression. However, in MATLAB, as in many programming languages,
logical true is represented by the integer 1, and logical false is represented by the integer 0. So, the
expression

3 < 5 actually has the value 1 in MATLAB.

Displaying the result of expressions like this in the Command Window demonstrates the values of the
expressions.

>> 3 < 5
ans =
1
>> 9 < 2
ans =
0
However, in the Workspace Window, the value shown for the result of these expressions would be true or
false. The type of the result is logical.

Mathematical operations could be performed on the resulting 1 or 0.
>> 5 < 7
ans =
1
>> ans + 3
ans =
4
Comparing characters, for example ‗a‘ < ‗c‘, is also possible. Characters are compared using their ASCII
equivalent values. So, ‗a‘ < ‗câ•›‘ is conceptually a true expression, because the character ‗a‘ comes before
the character ‗c‘.

>> ‘a’ < ‘c’
ans =
1

The logical operators are:
Operator Meaning
|| or for scalars
&& and for scalars
~ not

All logical operators operate on logical or Boolean operands. The not operator is a unary operator; the
others are binary. The not operator will take a Boolean expression, which is conceptually true or false, and
give the opposite value. For example, (3 < 5) is conceptually false since (3 < 5) is true. The or operator has
two Boolean expressions as operands. The result is true if either or both of the operands are true, and false
only if both operands are false. The and operator also operates on two Boolean operands. The result of an
and expression is true only if both operands are true; it is false if either or both are false. In addition to
these logical operators, MATLAB also has a function xor, which is the exclusive or function. It returns
logical true if one (and only one) of the arguments is true. For example, in the following only the first
argument is true,

so the result is true:
>> xor(3 < 5, ‘a’ > ‘c’)
ans =
1

In this example, both arguments are true so the result is false:
>> xor(3 < 5, ‘a’ < ‘c’)
ans =
0
Given the logical values of true and false in variables x and y, the truth table shows how the logical
operators work for all combinations. Note that the logical operators are commutative (e.g., x || y is the same
as y || x).

As with the numerical operators, it is important to know the operator precedence rules. Table 3.2 shows the
rules for the operators that have been covered so far, in the order of precedence.

T he If Statement
The if statement chooses whether or not another statement, or group of statements, is executed. The
general form of the if statement is:
if condition

action
end

A condition is a relational expression that is conceptually, or logically, either true or false. The action is a
statement, or a group of statements, that will be executed if the condition is true. When the if statement is
executed, first the condition is evaluated. If the value of the condition is conceptually true, the action will be
executed, and if not, the action will not be executed. The action can be any number of statements until the
reserved word end; the action is naturally bracketed by the reserved words if and end. (Note: This is
different from the end that is used as an index into a vector or matrix.)

For example, the following if statement checks to see whether the value of a variable is negative. If it is, the
value is changed to a positive number by using the absolute value function; otherwise nothing is changed.

if num < 0

num = abs(num)
end

If statements can be entered in the Command Window, although they generally make more sense in scripts
or functions. In the Command Window, the if line would be entered, then the Enter key, then the action, the
Enter key, and finally end and Enter; the results will immediately follow. For example, the previous if

statement is shown twice here. Notice that the output from the assignment is not suppressed, so the result
of theÂ€action will be shown if the action is executed. The first time the value of the variable is negative so
the action is executed and the variable is modified, but in the second case the variable is positive so the
action is skipped.

>> num = −4;
>> if num < 0

num = abs(num)
end
num =
4

>> num = 5;
>> if num < 0

num = abs(num)
end
>>

This may be used, for example, to make sure that the square root function is not used on a negative
number. The following script prompts the user for a number, and prints the square root. If the user enters a
negative number, the if statement changes it to positive before taking the square root.

sqrtifexamp.m
% Prompt the user for a number and print its sqrt
num = input(‗Please enter a number: ‘);
% If the user entered a negative number, change it
if num < 0
num = abs(num);
end
fprintf(‗The sqrt of %.1f is %.1f\n‘,num,sqrt(num))

Here are two examples of running this script:
>> sqrtifexamp
Please enter a number: −4.2
The sqrt of 4.2 is 2.0
>> sqrtifexamp
Please enter a number: 1.44
The sqrt of 1.4 is 1.2

In this case, the action of the if statement was a single assignment statement. The action can be any
number of valid statements. For example, we may wish to print a note to the user to say that the number
entered was being changed.

sqrtifexampii.m
% Prompt the user for a number and print its sqrt
num = input(‗Please enter a number: ‘);

% If the user entered a negative number, tell
% the user and change it
if num < 0
disp(‗OK, we‘‘ll use the absolute value‘)
num = abs(num);
end
fprintf(‗The sqrt of %.1f is %.1f\n‘,num,sqrt(num))

>> sqrtifexampii
Please enter a number: −25
OK, we‘ll use the absolute value
The sqrt of 25.0 is 5.0
Notice the use of two single quotes in the disp statement in order to print one single quote

Representing Logical True and False
It has been stated that expressions that are conceptually true actually have the integer value of 1, and
expressions that are conceptually false actually have the integer value of 0. Representing the concepts of
logical true and false in MATLAB is slightly different: the concept of false is represented by the integer
value of 0, but the concept of true can be represented by any nonzero value (not just the integer 1). This
can lead to some strange Boolean expressions. For example, consider the following if statement:

>> if 5
disp(‘Yes, this is true!’)
end
Yes, this is true!

Since 5 is a nonzero value, it is a way of saying true. Therefore, when this Boolean expression is
evaluated, it will be true, so the disp function will be executed and ―Yes, this is true‖ is displayed. Of
course, this is a pretty bizarre if statement, one that hopefully would not ever be encountered! However, a
simple mistake in an expression can lead to this kind of result. For example, let‘s say that the user is
prompted for a choice of Y or N for a yes/no

question:
letter = input(‗Choice (Y/N): ‘,‗s‘);
In a script we might want to execute a particular action if the user responded with ‗Y‘. Most scripts would
allow the user to enter either lower- or uppercase (e.g., either ‗y‘ or ‗Y‘) to indicate yes. The proper
expression that would return true if the value of letter was ‗y‘ or ‗Y‘ would be
letter == ‗y‘ || letter == ‗Y‘
However, if by mistake this was written as:
letter == ‗y‘ || ‗Y‘
this expression would always be true, regardless of the value of the variable letter. This is because ‗Y‘ is a
nonzero value, so it is a true expression. The first part of the expression may be false, but since the second
expression is true the entire expression would be true.

The If-Else statement
The if statement chooses whether an action is executed or not. Choosing between two actions, or choosing
from several actions, is accomplished using if-else, nested if, and switch statements. The if-else
statement is used to choose between two statements, or sets of statements.

The general form is:
if condition
action1
else
action2
end

First, the condition is evaluated. If it is conceptually true, then the set of statements designated as action1
is executed, and that is it for the if-else statement. If instead the condition is conceptually false, the second
set of statements designated as action2 is executed, and that‘s it. The first set of statements is called the
action of the if clause; it is what will be executed if the expression is true. The second set of statements is
called the action of the else clause; it is what will be executed if the expression is false. One of these
actions, and only one, will be executed—which one depends on the value of the condition. For example, to
determine and print whether or not a random number in the range from 0 to 1 is less than 0.5, an if-else
statement could be used:

if rand < 0.5
disp(‗It was less than .5!‘)
else
disp(‗It was not less than .5!‘)
end

One application of an if-else statement is to check for errors in the inputs to a script. For example, an
earlier script prompted the user for a radius, and then used that to calculate the area of a circle. However, it
did not check to make sure that the radius was valid (e.g., a positive number). Here is a modified script that
checks the radius:

checkradius.m
% This script calculates the area of a circle
% It error-checks the user‘s radius
radius = input(‗Please enter the radius: ‘);
if radius <= 0

 fprintf(‗Sorry; %.2f is not a valid radius\n‘,radius)
else

 area = calcarea(radius);
 fprintf(‗For a circle with a radius of %.2f,‘,radius)
 fprintf(‗the area is %.2f\n‘,area)

end

Examples of running this script when the user enters invalid and then valid radii are shown here:
>> checkradius
Please enter the radius: −4

Sorry; −4.00 is not a valid radius

>> checkradius
Please enter the radius: 5.5
For a circle with a radius of 5.50, the area is 95.03

The if-else statement in this example chooses between two actions: printing an error message, or actually
using the radius to calculate the area, and then printing out the result. Notice that the action of the if clause
is a single statement, whereas the action of the else clause is a group of three statements.

Nested If-Else Statements
The if-else statement is used to choose between two statements. In order to choose from more than two
statements, the if-else statements can be nested, one inside of another. For example, consider
implementing the following continuous

mathematical function y = f(x):
y = 1 for x < −1
y = x2 for −1 ≤ x ≤ 2
y = 4 for x > 2

The value of y is based on the value of x, which could be in one of three possible ranges. Choosing which
range could be accomplished with three separate if statements, as follows:

if x < −1

y = 1;
end
if x > = −1 && x < = 2

 y = x^2;
end
if x > 2

 y = 4;
end

Since the three possibilities are mutually exclusive, the value of y can be determined by using three
separate if statements. However, this is not very efficient code: all three Boolean expressions must be
evaluated, regardless of the range in which x falls. For example, if x is less than –1, the first expression is
true and 1 would be assigned to y. However, the two expressions in the next two if statements are still
evaluated. Instead of writing it this way, the expressions can be nested so that the statement ends when
an expression is found to be true:

if x < −1

 y = 1;
else

 % If we are here, x must be > = −1
 % Use an if-else statement to choose
 % between the two remaining ranges
 if x > = −1 && x < = 2

 y = x^2;
 else
 % No need to check
 % If we are here, x must be > 2
 y = 4;
 end

end

By using a nested if-else to choose from among the three possibilities, not all conditions must be tested as
they were in the previous example. In this case, if x is less than –1, the statement to assign 1 to y is
executed, and the if-else statement is completed so no other conditions are tested. If, however, x is not
less than –1, then the else clause is executed. If the else clause is executed, then we already know that x is
greater than or equal to –1 so that part does not need to be tested. Instead, there are only two remaining
possibilities: either x is less than or equal to 2, or it is greater than 2. An if-else statement is used to choose
between those two possibilities. So, the action of the else clause was another if-else statement. Although it
is long, this is one if-else statement, a nested if-else statement. The actions are indented to show the
structure. Nesting if-else statements in this way can be used to choose from among three, four, five, six, or
more options—the possibilities are practically endless! This is actually an example of a particular kind of
nested if-else called a cascading if-else statement. In this type of nested if-else statement, the conditions
and actions cascade in a stair-like pattern.

For example, if there are n choices (where n > 3 in this example), the following general form would be used:

if condition1

 action1
elseif condition2

 action2
elseif condition3

 action3
% etc: there can be many of these
else

 actionn % the nth action
end

The actions of the if, elseif, and else clauses are naturally bracketed by the reserved words if, elseif, else,
and end. For example, the previous example could be written using the elseif clause rather than nesting if-
else statements:

if x < −1

y = 1;
elseif x > = −1 && x < = 2

 y = x^2;
else

 y = 4;
end

So, there are three ways of accomplishing this task: using three separate if statements, using nested if-
else statements, and using an if statement with elseif clauses, which is the simplest. This could be
implemented in a function that receives a value of x and returns the corresponding value of y:

calcy.m
function y = calcy(x)
% This function calculates y based on x:
% y = 1 for x < −1
% y = x2 for −1 ≤ x ≤ 2
% y = 4 for x > 2
if x < −1

 y = 1;
elseif x >= −1 && x <=2

 y = x^2;
else

 y = 4;
end
>> x = 1.1;
>> y = calcy(x)
y =

 1.2100
Another example demonstrates choosing from more than just a few options. The following function receives
an integer quiz grade, which should be in the range from 0 to 10. The program then returns a
corresponding letter grade, according to the following scheme: a 9 or 10 is an ‗A‘, an 8 is a ‗B‘, a 7 is a ‗C‘,
a 6 is a ‗D‘, and anything below that is an ‗F‘. Since the possibilities are mutually exclusive, we could
implement the grading scheme using separate if statements. However, it is more efficient to have one if-
else statement with multiple elseif clauses. Also, the function returns the value ‗X‘ if the quiz grade is not
valid. The function does assume that the input is an integer.

letgrade.m
function grade = letgrade(quiz)
% This function returns the letter grade corresponding
% to the integer quiz grade argument
% First, error-check
if quiz < 0 || quiz > 10

 grade = ‗X‘;
% If here, it is valid so figure out the
% corresponding letter grade
elseif quiz == 9 || quiz == 10
grade = ‗A‘;
elseif quiz == 8

 grade = ‗B‘;
elseif quiz == 7

 grade = ‗C‘;
elseif quiz == 6

 grade = ‗D‘;
else

 grade = ‗F‘;
end

Here are three examples of calling this function:
>> quiz = 8;
>> lettergrade = letgrade(quiz)
lettergrade =
B
>> quiz = 4;
>> letgrade(quiz)
ans =
F
>> quiz = 22;
>> lg = letgrade(quiz)
lg =
X

In the part of this if statement that chooses the appropriate letter grade to return, all the Boolean
expressions are testing the value of the variable quiz to see if it is equal to several possible values, in
sequence (first 9 or 10, then 8, then 7, etc.). This part can be replaced by a switch statement.

The Switch Statement
A switch statement can often be used in place of a nested if-else or an if statement with many elseif
clauses. Switch statements are used when an expression is tested to see whether it is equal to one of
several possible values. The general form of the switch statement is:

switch switch_expression
case caseexp1

 action1
case caseexp2

 action2
 case caseexp3

 action3
 % etc: there can be many of these
otherwise

 actionn
end

The switch statement starts with the reserved word switch, and ends with the reserved word end. The
switch_expression is compared, in sequence, to the case expressions (caseexp1, caseexp2, etc.). If the
value of the switch_expression matches caseexp1, for example, then action1 is executed and the switch
statement ends. If the value matches caseexp3, then action3 is executed, and in general if the value
matches caseexpi, where i can be any integer from 1 to n, then actioni is executed. If the value of the
switch_expression does not match any of the case expressions, the action after the word otherwise is
executed. For the previous example, the switch statement can be used as follows:

switchletgrade.m
function grade = switchletgrade(quiz)
% This function returns the letter grade corresponding
% to the integer quiz grade argument using switch
% First, error-check
if quiz < 0 || quiz > 10

 grade = ‗X‘;
else

 % If here, it is valid so figure out the
 % corresponding letter grade using a switch
 switch quiz
case 10

grade = ‗A‘;
case 9

grade = ‗A‘;
case 8

grade = ‗B‘;
case 7

grade = ‗C‘;
case 6

grade = ‗D‘;
otherwise

grade = ‗F‘;
end

end

Here are two examples of calling this function:
>> quiz = 22;
>> lg = switchletgrade(quiz)
lg =
X
>> quiz = 9;
>> switchletgrade(quiz)
ans =
A

Note that it is assumed that the user will enter an integer value. If the user does not, either an error
message will be printed or an incorrect result will be returned. Since the same action of printing ‗A‘ is
desired for more than one case, these can be combined as follows:
switch quiz

case {10,9}
grade = ‗A‘;

case 8
grade = ‗B‘;

% etc.

(The curly braces around the case expressions 10 and 9 are necessary.) In this example, we error-checked
first using an if-else statement, and then if the grade was in the valid range, used a switch statement to
find the corresponding letter grade.

Sometimes the otherwise clause is used instead for the error message. For example, if the user is
supposed to enter only a 1, 3, or 5, the script might be organized as follows:

switcherror.m
% Example of otherwise for error message
choice = input(‗Enter a 1, 3, or 5: ‘);
switch choice

case 1
disp(‗It‘‘s a one!!‘)

case 3
disp(‗It‘‘s a three!!‘)

case 5
disp(‗It‘‘s a five!!‘)

otherwise
disp(‗Follow directions next time!!‘)

end

In this case, actions are taken if the user correctly enters one of the valid options. If the user does not, the
otherwise clause handles printing an error message. Note the use of two single quotes within the string to
print one.

>> switcherror
Enter a 1, 3, or 5: 4
Follow directions next time!!

The for Loop
The for statement, or the for loop, is used when it is necessary to repeat statement(s) in a script or
function, and when it is known ahead of time how many times the statements will be repeated. The
statements that are repeated are called the action of the loop. For example, it may be known that the action
of the loop will be repeated five times. The terminology used is that we iterate through the action of the
loop five times. The variable that is used to iterate through values is called a loop variable, or an iterator
variable. For example, the variable might iterate through the integers 1 through 5 (e.g., 1, 2, 3, 4, and then
5). Although variable names in general should be mnemonic, it is common for an iterator variable to be
given the name i (and if more than one iterator variable is needed, i, j, k, l, etc.) This is historical, and is
because of the way integer variables were named in Fortran. However, in MATLAB both i and j are built-in
values for -1 , so using either as a loop variable will override that value. If that is not an issue, then it is
acceptable to use i as a loop variable. The general form of the for loop is:
for loopvar = range

action
end

where loopvar is the loop variable, range is the range of values through which the loop variable is to iterate,
and the action of the loop consists of all statements up to the end. The range can be specified using any

vector, but normally the easiest way to specify the range of values is to use the colon operator. As an
example, to print a column of numbers from 1 to 5:
for i = 1:5

fprintf(‗%d\n‘,i)
end

This loop could be entered in the Command Window, although like if and switch statements, loops will
make more sense in scripts and functions. In the Command Window, the results would appear after the for
loop:

>> for i = 1:5
fprintf(‘%d\n’,i)
end
1
2
3
4
5

What the for statement accomplished was to print the value of i and then the newline character for every
value of i, from 1 through 5 in steps of 1. The first thing that happens is that i is initialized to have the value
1. Then, the action of the loop is executed, which is the fprintf statement that prints the value of i (1), and
then the newline character to move the cursor down. Then, i is incremented to have the value of 2. Next,
the action of the loop is executed, which prints 2 and the newline. Then, i is incremented to 3 and that is
printed, then i is incremented to 4 and that is printed, and then finally i is incremented to 5 and that is
printed. The final value of i is 5; this value can be used once the loop has finished.

Finding Sums and Products
A very common application of a for loop is to calculate sums and products. For example, instead of just
printing the integers 1 through 5, we could calculate the sum of the integers 1 through 5 (or, in general, 1
through n, where n is any positive integer). Basically, we want to implement or calculate the sum 1 + 2 + 3
+ … + n. In order to do this, we need to add each value to a running sum. A running sum is a sum that will
keep changing; we keep adding to it. First the sum has to be initialized to 0, then in this case it will be 1 (0 +
1), then 3 (0 + 1 + 2), then 6 (0 + 1 + 2 + 3), and so forth. In a function to calculate the sum, we need a loop
or iterator variable i, as before, and also a variable to store the running sum. In this case we will use the
output argument runsum as the running sum. Every time through the loop, the next value of i is added to
the value of runsum. This function will return the end result, which is the sum of all integers from 1 to the
input argument n stored in the output argument runsum.

sum_1_to_n.m
function runsum = sum_1_to_n(n)
% This function returns the sum of
% integers from 1 to n
runsum = 0;
for i = 1:n

 runsum = runsum + i;
end

As an example, if 5 is passed to be the value of the input argument n, the function will calculate and return
1 + 2 + 3 + 4 + 5, or 15:
>> sum_1_to_n(5)

 ans =
15

Note that the output was suppressed when initializing the sum to 0 and when adding to it during the loop.
Another very common application of a for loop is to find a running product. For example, instead of
finding the sum of the integers 1 through n, we could find the product of the integers 1 through n. Basically,
we want to implement or calculate the product 1 * 2 * 3 * 4 *… * n, which is called the factorial of n, written
n!.

For Loops that Do Not Use the Iterator Variable in the Action
In all the examples that we have seen so far, the value of the loop variable has been used in some way in
the action of the for loop: we have printed the value of i, or added it to a sum, or multiplied it by a running
product, or used it as an index into a vector. It is not always necessary to actually use the value of the loop
variable, however. Sometimes the variable is simply used to iterate, or repeat, a statement a specified
number of times. For example,

for i = 1:3

 fprintf(‗I will not chew gum\n‘)
end

produces the output:
I will not chew gum
I will not chew gum
I will not chew gum

The variable i is necessary to repeat the action three times, even though the value of i is not used in the
action of the loop.

Nested for Loops
The action of a loop can be any valid statement(s). When the action of a loop is another loop, this is called
a nested loop. As an example, a nested for loop will be demonstrated in a script that will print a box of *‘s.
Variables in the script will specify how many rows and columns to print. For example, if rows has the value
3, and columns has the value 5, the

output would be:

Since lines of output are controlled by printing the newline character, the basic algorithm is:

 For every row of output,

 Print the required number of *‘s

 Move the cursor down to the next line (print the ‗\n‘)

printstars.m
% Prints a box of stars
% How many will be specified by 2 variables
% for the number of rows and columns
rows = 3;
columns = 5;
% loop over the rows
for i=1:rows

 % for every row loop to print *‘s and then one \n
 for j=1:columns

fprintf(‗*‘)
 end
 fprintf(‗\n‘)

end

Running the script displays the output:
>> printstars

The variable rows specifies the number of rows to print, and the variable columns specifies how many *‘s to
print in each row. There are two loop variables: i is the loop variable for the rows, and j is the loop variable
for the columns. Since the number of rows and columns are known (given by the variables rows and
columns), for loops are used. There is one for loop to loop over the rows, and another to print the required
number of *‘s. The values of the loop variables are not used within the loops, but are used simply to iterate
the correct number of times. The first for loop specifies that the action will be repeated rows times. The
action of this loop is to print *‘s and then the newline character. Specifically, the action is to loop to print
columns *‘s across on one line. Then, the newline character is printed after all five stars to move the cursor
down for the next line. The first for loop is called the outer loop; the second for loop is called the inner
loop. So, the outer loop is over the rows, and the inner loop is over the columns. The outer loop must be
over the rows because the program is printing a certain number of rows of output. For each row, a loop is
necessary to print the required number of *‘s; this is the inner for loop. When this script is executed, first
the outer loop variable i is initialized to 1. Then, the action is executed. The action consists of the inner
loop, and then printing the newline character. So, while the outer loop variable has the value 1, the inner
loop variable j iterates through all its values. Since the value of columns is 5, the inner loop will print a * five
times. Then, the newline character is printed and the outer loop variable i is incremented to 2. The action of
the outer loop is then executed again, meaning the inner loop will print five *‘s, and then the newline
character will be printed. This continues, and in all, the action of the outer loop will be executed rows times.
Notice the action of the outer loop consists of two statements (the for loop and an fprintf statement). The
action of the inner loop, however, is only a single statement. The fprintf statement to print the newline
character must be separate from the other fprintf statement that prints the *. If we simply had fprintf(‗*\n‘)
as the action of the inner loop, this would print a long column of 15 *‘s, not a box In these examples, the
loop variables were used just to specify the number of times the action is to be repeated. These same
loops could be used instead to produce a multiplication table by multiplying the values of the loop variables.
The following function multtable calculates and returns a matrix that is a multiplication table. Two
arguments are passed to the function, which are the number of rows and columns for this matrix

multtable.m
function outmat = multtable (rows, columns)
% Creates a matrix which is a multiplication table
% Preallocate the matrix
outmat = zeros(rows,columns);
for i = 1:rows

 for j = 1:columns
 outmat(i,j) = i * j;

 end
end

In the following example, the matrix has three rows and five columns:
>> multtable(3,5)
ans =
1 2 3 4 5
2 4 6 8 10
3 6 9 12 15

Notice that this is a function that returns a matrix; it does not print anything. It preallocates the matrix to
zeros, and then replaces each element. Since the number of rows and columns are known, for loops are
used. The outer loop loops over the rows, and the inner loop loops over the columns. The action of the
nested loop calculates i * j for all values of i and j. First, when i has the value 1, j iterates through the values
1 through 5, so first we are calculating 1 * 1, then 1 * 2, then 1 * 3, then 1 * 4, and finally 1 * 5. These are
the values in the first row (first in element (1,1), then (1,2), then (1,3), then (1,4), and finally (1,5)). Then,
when i has the value 2, the elements in the second row of the output matrix are calculated, as j again
iterates through the values from 1 through 5. Finally, when i has the value 3, the values in the third row are
calculated (3 * 1, 3 * 2, 3 * 3, 3 * 4, and 3 * 5). This function could be used in a script that prompts the user
for the number of rows and columns, calls this function to return a multiplication table, and writes the
resulting matrix to a file:

createmulttab.m
% Prompt the user for rows and columns and
% create a multiplication table to store in
% a file mymulttable.dat
num_rows = input(‗Enter the number of rows: ‘);
num_cols = input(‗Enter the number of columns: ‘);
multmatrix = multtable(num_rows, num_cols);
save mymulttable.dat multmatrix –ascii

Here is an example of running this script, and then loading from the file into a matrix in order to verify that
the file was created:

>> createmulttab
Enter the number of rows: 6
Enter the number of columns: 4
>> load mymulttable.dat

>> mymulttable
mymulttable =
1 2 3 4
2 4 6 8
3 6 9 12
4 8 12 16
5 10 15 20
6 12 18 24

Logical Vectors

The relational operators can also be used with vectors and matrices. For example, let‘s say that there is a
vector, and we want to compare every element in the vector to 5 to determine whether it is greater than 5
or not. The result would be a vector (with the same length as the original) with logical true or false values.
Assume a variable vec as shown here.

>> vec = [5 9 3 4 6 11];
In MATLAB, this can be accomplished automatically by simply using the relational operator >.
>> isg = vec > 5
isg =
0 1 0 0 1 1
Notice that this creates a vector consisting of all logical true or false values. Although this is a vector of
ones and zeros, and numerical operations can be done on the vector isg, its type is logical rather than
double.
>> doubres = isg + 5
ans =
5 6 5 5 6 6
>> whos
Name Size Bytes Class
doubres 1x6 4 8 double array
isg 1x6 6 logical array
vec 1x6 48 double array
To determine how many of the elements in the vector vec were greater than 5, the sum function could be
used on the resulting vector isg:

>> sum(isg)
ans =
3

The logical vector isg can also be used to index into the vector. For example, if only the elements from the
vector that are greater than 5 are desired:

>> vec(isg)
ans =
9 6 11
Because the values in the vector must be logical 1‘s and 0‘s, the following function that appears at first to
accomplish the same operation using the programming method, actually does not. The function receives

two input arguments: the vector, and an integer with which to compare (so it is somewhat more general). It
loops through every element in the input vector, and stores in the result vector either a 1 or 0 depending on
whether vec(i) > n is true or false.

testvecgtn.m
function outvec = testvecgtn(vec,n)
% Compare each element in vec to see whether it
% is greater than n or not
% Preallocate the vector
outvec = zeros(size(vec));
for i = 1:length(vec)

% Each element in the output vector stores 1 or 0
 if vec(i) > n
 outvec(i) = 1;
 else
 outvec(i) = 0;
 end

end
Calling the function appears to return the same vector as simply vec > 5, and summing the result still works
to determine how many elements were greater than 5.

>> notlog = testvecgtn(vec,5)
notlog =
0 1 0 0 1 1
>> sum(notlog)
ans =

 3
However, as before, it could not be used to index into a vector because the elements are double, not
logical:

>> vec(notlog)
??? Subscript indices must either be real positive integers or logicals.

While Loops
The while statement is used as the conditional loop in MATLAB; it is used to repeat an action when ahead
of time it is not known how many times the action will be repeated. The general form of the while statement
is:
while condition

action
end

The action, which consists of any number of statement(s), is executed as long as the condition is true. The
condition must eventually become false to avoid an infinite loop. (If this happens, Ctrl-C will exit the loop.)
The way it works is that first the condition is evaluated. If it is logically true, the action is executed. So, to
begin with it is just like an if statement. However, at that point the condition is evaluated again. If it is still
true, the action is executed again. Then, the action is evaluated again. If it is still true, the action is
executed again. Then, the action is… eventually, this has to stop! Eventually something in the action has to

change something in the condition so it becomes false. As an example of a conditional loop, we will write a
function that will find the first factorial that is greater than the input argument high. Previously, we wrote a
function to calculate a particular factorial. For example, to calculate 5! we found the product 1 * 2 * 3 * 4 * 5.
In that case a for loop was used, since it was known that the loop would be repeated five times. Now, we
do not know how many times the loop will be repeated. The basic algorithm is to have two variables, one
that iterates through the values 1, 2, 3, and so on, and one that stores the factorial of the iterator at each
step. We start with 1, and 1 factorial, which is 1. Then, we check the factorial. If it is not greater than high,
the iterator variable will then increment to 2, and find its factorial (2). If this is not greater than high, the
iterator will then increment to 3, and the function will find its factorial (6). This continues until we get to the
first factorial that is greater than high. So, the process of incrementing a variable and finding its factorial is
repeated until we get to the first value greater than high. This is implemented using a while loop:

factgthigh.m
function facgt = factgthigh(high)
% Finds the first factorial > high
i=0;
fac=1;
while fac <= high

 i=i+1;
 fac = fac * i;

end
facgt = fac;

Here is an example of calling the function, passing 5000 for the value of the input argument high.
>> factgthigh(5000)
ans =
5040
The iterator variable i is initialized to 0, and the running product variable fac, which will store the factorial of
each value of i, is initialized to 1. The first time the while loop is executed, the condition is conceptually
true: 1 is less than or equal to 5000. So, the action of the loop is executed, which is to increment i to 1 and
fac to 1 (1 * 1). After the execution of the action of the loop, the condition is evaluated again. Since it will
still be true, the action is executed: i is incremented to 2, and fac will get the value 2 (1 * 2). The value 2 is
still <= 5000, so the action will be executed again: i will be incremented to 3, and fac will get the value 6 (2 *
3). This continues until the first value of fac is found that is greater than 5000. As soon as fac gets to this
value, the condition will be false and the while loop will end. At that point the factorial is assigned to the
output argument, which returns the value. The reason that i is initialized to 0 rather than 1 is that the first
time the loop action is executed, i becomes 1 and fac becomes 1 so we have 1 and 1!, which is 1. Notice
that the output of all assignment statements is suppressed in the function.

Multiple Conditions in a While Loop

In the previous section, we wrote a function myany that imitated the built-in any function by returning logical
true if any value in the input vector was logical true, and logical false otherwise. The function was inefficient
because it looped through all the elements in the input vector, even though once one logical true value is
found it is no longer necessary to examine any other elements. A while loop will improve on this. Instead of
looping through all the elements, what we really want to do is to loop until either a logical true value is
found, or until we‘ve gone through the entire vector. Thus, we have two parts to the condition in the while

loop. In the following function, we initialize the output argument to logical false, and an iterator variable i to
1. The action of the loop is to examine an element from the input vector: if it is logical true, we change the
output argument to be logical true. Also in the action the iterator variable is incremented. The action of the
loop is continued as long as the index has not yet reached the end of the vector, and as long as the output
argument is still logical false.
myanywhile.m
function logresult = myanywhile(vec)
% Simulates the built-in function any
% Uses a while loop so that the action halts
% as soon as any true value is found
logresult = logical(0);
i = 1;
while i <= length(vec) && logresult == 0

 if vec(i) = 0
 logresult = logical(1);
 end
 i = i + 1;

end
The output produced by this function is the same as the myany function, but it is more efficient because
now as soon as the output argument is set to logical true, the loop ends.

Debugging Techniques
Any error in a computer program is called a bug. This term is thought to date back to the 1940s, when a
problem with an early computer was found to have been caused by a moth in the computer‘s circuitry! The
process of finding errors in a program, and correcting them, is still called debugging.

Types of Errors
There are several different kinds of errors that can occur in a program, which fall into the categories of
syntax errors, run-time errors, and logical errors. Syntax errors are mistakes in using the language.
Examples of syntax errors are missing a comma or a quotation mark, or misspelling a word. MATLAB itself
will flag syntax errors and give an error message. For example, the following string is missing the end
quote:
>> mystr = ‘how are you;
??? mystr = ‗how are you;
 |
Error: A MATLAB string constant is not terminated properly.
Another common mistake is to spell a variable name incorrectly, which MATLAB will also catch.

>> value = 5;
>> newvalue = valu + 3;
??? Undefined function or variable ‘valu’.

Run-time, or execution-time, errors are found when a script or function is executing. With most languages,
an example of a run-time error would be attempting to divide by zero. However, in MATLAB, this will
generate a warning message. Another example would be attempting to refer to an element in an array that
does not exist.
runtime_ex.m

% This script shows an execution-time error
vec = 3:5;
for i = 1:4

disp(vec(i))
end
This script initializes a vector with three elements, but then attempts to refer to
a fourth. Running it prints the three elements in the vector, and then an error
message is generated when it attempts to refer to the fourth element. Notice
that it gives an explanation of the error, and it gives the line number in the
script in which the error occurred.
>> runtime_ex
3
4
5
??? Attempted to access vec(4); index out of bounds because
numel(vec)=3.
Error in ==> runtime_ex at 6

disp(vec(i))

Logical errors are more difficult to locate, because they do not result in any error message. A logical error is
a mistake in reasoning by the programmer, but it is not a mistake in the programming language. An
example of a logical error would be dividing by 2.54 instead of multiplying in order to convert inches to
centimeters. The results printed or returned would be incorrect, but this might not be obvious. All programs
should be robust and should wherever possible anticipate potential errors, and guard against them. For
example, whenever there is input into a program, the program should error-check and make sure that the
input is in the correct range of values. Also, before dividing, the denominator should be checked to make
sure that it is not zero. Despite the best precautions, there are bound to be errors in programs.

Tracing
Many times, when a program has loops and/or selection statements and is not running properly, it is useful
in the debugging process to know exactly which statements have been executed. For example, here is a
function that attempts to display In Middle Of Range if the argument passed to it is in the range from 3 to 6,
and Out Of Range otherwise.

testifelse.m
function testifelse(x)
% This function will test the debugger
if 3 < x < 6

disp(‗In middle of range‘)
else

disp(‗Out of range‘)
end

However, it seems to print In Middle Of Range for all values of x:
>> testifelse(4)
In middle of range
>> testifelse(7)

In middle of range
>> testifelse(–2)
In middle of range

One way of following the flow of the function, or tracing it, is to use the echo function. The echo function,
which is a toggle, will display every statement as it is executed as well as results from the code. For scripts,
just echo can be typed, but for functions, the name of the function must be specified, for example, echo
function name on/off
>> echo testifelse on

Editor/Debugger
MATLAB has many useful functions for debugging, and debugging can also be done through its editor,
called the Editor/Debugger. Typing help debug at the prompt in the Command Window will show some of
the debugging functions. Also, in the Help Browser, clicking the Search tab and then typing debugging will
display basic information about the debugging processes. It can be seen in the previous example that the
action of the if clause was executed and it printed In Middle Of Range, but just from that it cannot be
determined why this happened. There are several ways to set breakpoints in a file (script or function) so
that the variables or expressions can be examined. These can be done from the Editor/Debugger, or
commands can be typed from the Command Window. For example, the following dbstop command will set
a breakpoint in the fifth line of this function (which is the action of the if clause), which allows us to type
variable names and/or expressions to examine their values at that point in the execution. The function
dbcont can be used to continue the execution, and dbquit can be used to quit the debug mode. Notice
that the prompt becomes K>> in debug mode.

>> dbstop testifelse 5
>> testifelse(–2)
5 disp(‗In middle of range‘)
K>> x
x =

 –2
K>> 3 < x
ans =

0
K>> 3 < x < 6
ans =

1
K>> dbcont
In middle of range
end
>>
By typing the expressions 3 < x and then 3 < x < 6, we can determine that the expression 3 < x will return
either 0 or 1. Both 0 and 1 are less than 6, so the expression will always be true, regardless of the value of
x!
Function Stubs
Another common debugging technique, which is used when there is a script main program that calls many
functions, is to use function stubs. A function stub is a placeholder, used so that the script will work even

though that particular function hasn‘t been written yet. For example, a programmer might start with a script
main program that consists of calls to three function that accomplish all the tasks.

mainmfile.m
% This program gets values for x and y, and
% calculates and prints z
[x, y] = getvals;
z = calcz(x,y);
printall(x,y,z)

The three functions have not yet been written, however, so function stubs are put in place so that the script
can be executed and tested. The function stubs consist of the proper function headers, followed by a
simulation of what the function will eventually do (e.g., it puts arbitrary values in for the output arguments).

getvals.m
function [x, y] = getvals
x = 33;
y = 11;
calcz.m
function z = calcz(x,y)
z = 2.2;

printall.m
function printall(x,y,z)
disp(‗Something‘)

Then, the functions can be written and debugged one at a time. It is much easier to write a working
program using this method than to attempt to write everything at once—then, when errors occur, it is not
always easy to determine where the problem is!

UNIT III PLOTTING IN MATLAB 10 hrs.
Basic 2D plots – modifying line styles – markers and colors – grids – placing text on a plot – Various /
Special Mat Lab 2D plot types – SEMILOGX – SEMILOGY – LOG- LOG – POLAR – COMET – Example
frequency response of filter circuits.

UNIT III

Plot Functions

So far, we have used plot to create two-dimensional plots and bar to create bar charts. We have seen how
to clear the Figure Window using clf, and how to create and number Figure Windows using figure.
Labeling plots has been accomplished using xlabel, ylabel, title, and legend, and we also have seen how
to customize the strings passed to these functions using sprintf. The axis function changes the axes from
the defaults that would be taken from the data in the x and y vectors to the values specified. Finally, the
grid and hold toggle functions print grids or not, or lock the current graph in the Figure Window so
that the next plot will be superimposed.

Matrix of Plots

Another function that is very useful with any type of plot is subplot, which creates a matrix of plots in the
current Figure Window. Three arguments are passed to it in the form subplot(r,c,n); where r and c are the
dimensions of the matrix and n is the number of the particular plot within this matrix. The plots are
numbered rowwise starting in the upper left corner. In many cases, it is useful to create a subplot in a for
loop so the loop variable can iterate through the integers 1 through n. When the subplot function is called
in a loop, the first two arguments will always be the same since they give the dimensions of the matrix. The
third argument will iterate through the numbers assigned to the elements of the matrix. When the subplot
function is called, it makes that element the active plot; then, any plot function can be used complete with
axis labeling, titles, and such within that element. For example, the following subplot shows the difference,
in one Figure Window, between using 10 points and 20 points to plot sin(x) between 0 and 2 * . The
subplot function creates a 1 × 2 row vector of plots in the Figure Window, so that the two plots are shown
side-by-side. The loop variable i iterates through the values 1 and then 2. The first time through the loop,
when i has the value 1, 10*1 or 10 points are used, and the value of the third argument to the subplot
function is 1. The second time through the loop, 20 points are used and the third argument to subplot is 2.
Note that sprintf is used to print how many points were used in the plot titles. The resulting Figure Window
with both plots is shown in Figure 10.1.

subplotex.m

%demonstrates subplot using a for loop
for i = 1:2
x = linspace(0,2*pi,10*i);
y = sin(x);
subplot(1,2,i)
plot(x,y,‗ko‘)

ylabel(‗sin(x)‘)
title(sprintf(‗%d Points‘,10*i))
end

Plot Types

Besides plot and bar, there are other plot types such as histograms, stem plots, area plots and pie
charts, as well as other functions that customize graphs. Described in this section are some of the other
plotting functions. The functions bar, barh, area, and stem essentially display the same data as the plot
function, but in different forms. The bar function draws a bar chart (as we have seen before), barh draws a
horizontal bar chart, area draws the plot as a continuous curve and fills in under the curve that is created,
and stem draws a stem plot. For example, the following script creates a Figure Window that uses a 2 × 2
subplot to demonstrate these four plot types using the same x and y points (see Figure 10.2).

subplottypes.m

% Subplot to show plot types

x = 1:6;
y = [33 11 5 9 22 30];
subplot(2,2,1)
bar(x,y)
title(‗bar‘)
subplot(2,2,2)
barh(x,y)
title(‗barh‘)
subplot(2,2,3)
area(x,y)
title(‗area‘)
subplot(2,2,4)
stem(x,y)
title(‗stem‘)

Notice that the third argument in the call to the subplot function is a single index into the matrix created in
the Figure Window; the numbering is rowwise (in contrast to the normal columnwise unwinding that
MATLAB uses for matrices).

Animation

In this section we will examine a couple of ways to animate a plot. These are visuals, so the results can‘t
really be shown here; it is necessary to type these into MATLAB to see the results. We‘ll start by animating
a plot of sin(x) with the vectors:

>> x = -2*pi : 1/100 : 2*pi;
>> y = sin(x);

This results in enough points that we‘ll be able to see the result using the built-in comet function, which
shows the plot by first showing the point (x(1),y(1)), and then moving on to the point (x(2),y(2)), and so on,
leaving a trail (like a comet!) of all the previous points.

>> comet(x,y)

The end result looks the same as plot(x,y). Another way of animating is to use the built-in function movie,
which displays recorded movie frames. The frames are captured in a loop using the built-in function
getframe, and are stored in a matrix. For example, the following script again animates the sin function. The
axis function is used so that MATLAB will use the same set of axes for all frames, and using the min and
max functions on the data vectors x and y will allow us to see all points. It displays the movie once in the
for loop, and then again when the movie function is called.

sinmovie.m

% Shows a movie of the sin function
Clear

x = -2*pi: 1/5 : 2*pi;
y = sin(x);
n = length(x);
for i = 1:n
plot(x(i),y(i),‗r*‘)
axis([min(x)-1 max(x)+1 min(y)-1 max(y)+1])
M(i) = getframe;
end
movie(M)

The Plot Function For now, we‘ll start with a very simple graph of one point using the plot function. The
following script, plotonepoint, plots one point. To do this, first values are given for the x and y coordinates of
the point in separate variables. The point is then plotted using a red*. The plot is then customized by
specifying the minimum and maximum values on first the x- and then y-axis. Labels are then put on the x-
axis, the y-axis, and the graph itself using the function xlabel, ylabel, and title. All this can be done from the
Command Window, but it is much easier to use a script. The following shows the contents of the script
plotonepoint that accomplishes this. The x-coordinate represents the time of day (e.g., 11am) and the y-
coordinate represents the temperature in degrees Fahrenheit at that time: plotonepoint.m

% This is a really simple plot of just one point!
% Create coordinate variables and plot a red ‗*‘
 x = 11;
y = 48;
plot(x,y,‗r*‘)

% Change the axes and label them
axis([9 12 35 55])
xlabel(‗Time‘)
ylabel(‗Temperature‘)

% Put a title on the plot title(‗Time and Temp‘)

In the call to the axis function, one vector is passed. The first two values are the minimum and maximum for
the x-axis, and the last two are the minimum and maximum for the y-axis. Executing this script brings up a

Figure Window with the plot (see Figure 2.1). To be more general, the script could prompt the user for the
time and temperature, rather than just assigning values. Then, the axis function could be used based on
whatever the values of x and y are, for example,

axis([x–2 x+2 y–10 y+10])

 In order to plot more than one point, x and y vectors are created to store the values of the (x,y) points. For
example, to plot the points

(1,1)
(2,5)
(3,3)
(4,9)
(5,11)
(6,8)

first an x vector is created that has the x values (since they range from 1 to 6 in steps of 1, the colon
operator can be used) and then a y vector is created with the y values. This will create (in the Command
Window) x and y vectors and then plot them (see Figure 2.2).

>> x = 1:6;
>> y = [1 5 3 9 11 8];
 >> plot(x,y)

Notice that the points are plotted with straight lines drawn in between. Also, the axes are set up according
to the data; for example, the x values range from 1 to 6 and the y values from 1 to 11, so that is how the
axes are set up. Also, notice that in this case the x values are the indices of the y vector (the y vector has

six values in it, so the indices iterate from 1 to 6). When this is the case, it is not necessary to create the x
vector. For example,

 >> plot(y)

will plot exactly the same figure without using an x vector.

Customizing a Plot: Color, Line Types, Marker Types
Plots can be done in the Command Window, as shown here, if they are really simple. However, many times
it is desirable to customize the plot with labels, titles, and such, so it makes more sense to do this in a
script. Using the help function for plot will show the many options for the line types, colors, and so on. In the
script plotonepoint, earlier, the string ‗r*‘ specified a red star for the point type.

The possible colors are:

b blue
c cyan
g green
k black
m magenta
r red
y yellow

The plot symbols, or markers, that can be used are:

o circle
d diamond
h hexagram
p pentagram
+ plus
. point
s square
* star
v down triangle
< left triangle
> right triangle
^ up triangle
x x-mark

Line types can also be specified by the following:

-- dashed

-. dash dot

: dotted

- solid

If no line type is specified, a solid line is drawn between the points, as seen in the last example.

Simple Related Plot Functions

Other functions that are useful in customizing plots are clf, figure, hold, legend, and grid. Brief descriptions
of these functions are given here; use help to find out more about them:

clf clears the Figure Window by removing everything from it.

figure creates a new, empty Figure Window when called without any arguments. Calling it as figure(n)
where n is an integer is a way of creating and maintaining multiple Figure Windows, and of referring to each
individually.

hold is a toggle that freezes the current graph in the Figure Window, so that new plots will be superimposed
on the current one. Just hold by itself is a toggle, so calling this function once turns the hold on, and then
the next time turns it off. Alternatively, the commands hold on and hold off can be used.

legend displays strings passed to it in a legend box in the Figure Window, in order of the plots in the Figure
Window.

grid displays grid lines on a graph. Called by itself, it is a toggle that turns the grid lines on and off.
Alternatively, the commands grid on and grid off can be used.

Also, there are many plot types. Another simple plot type is a bar chart.

For example, the following script creates two separate Figure Windows. First, it clears the Figure Window.
Then, it creates an x vector and two different y vectors (y1 and y2). In the first Figure Window, it plots the
y1 values using a bar chart. In the second Figure Window, it plots the y1 values as black lines, puts hold on
so that the next graph will be superimposed, and plots the y2 values as black o‘s. It also puts a legend on
this graph and uses a grid. Labels and titles are omitted in this case since it is generic data.

plot2figs.m

% This creates 2 different plots, in 2 different
% Figure Windows, to demonstrate some plot features
clf x = 1:5; % Not necessary
y1 = [2 11 6 9 3];
y2 = [4 5 8 6 2];
% Put a bar chart in Figure 1

figure(1)
 bar(x,y1)
% Put plots using different y values on one plot
% with a legend

figure(2)
plot(x,y1,‗k‘)
hold on
plot(x,y2,‗ko‘)
grid on
legend(‗y1‘,‗y2‘)

Running this script will produce two separate Figure Windows. If there aren‘t any other active Figure
Windows, the first, which is the bar chart, will be in the one titled in MATLAB Figure 1. The second will be in
Figure 2. See Figure 2.3 for both plots.

Notice that the first and last points are on the axes, which makes them difficult to see. That is why the axis
function is frequently used—to create space around the points so that they are all visible.

The ability to pass a vector to a function and have the function evaluate every element of the vector can be
very useful in creating plots. For example, the following script graphically

Âdisplays the difference between the sin and cos functions:

sinncos.m
% This script plots sin(x) and cos(x) in the same Figure
% Window for values of x ranging from 0 to 2*pi

clf
x = 0: 2*pi/40: 2*pi;
y = sin(x);
plot(x,y,‗ro‘)
hold on
y = cos(x);
plot(x,y,‗b+‘)
legend(‗sin‘, ‗cos‘)
title(‗sin and cos on one graph‘)

The script creates an x vector; iterating through all the values from 0 to 2* in steps of 2* /40 gives enough
points to get a good graph. It then finds the sine of each x value, and plots these points using red o‘s. The
command hold on freezes this in the Figure Window so the next plot will be superimposed. Next, it finds
the cosine of each x value and plots these points using blue +‘s. The legend function creates a legend; the
first string is paired with the first plot, and the second string with the second plot. Running this script
produces the plot seen in Figure 2.4.

Text

 text(x,y,str)

 text(x,y,z,str)

 text(___,Name,Value)

 t = text(___)

Description

text(x,y,str) adds a text description to one or more data points in the current axes using the text specified
by str. To add text to one point, specify x and y as scalars in data units. To add text to multiple points,
specify x and y as vectors with equal length.

text(x,y,z,str) positions the text in 3-D coordinates.

text(___,Name,Value) specifies text object properties using one or more name-value pairs. For
example, 'FontSize',14 sets the font size to 14 points. You can specify text properties with any of the input
argument combinations in the previous syntaxes. If you specify the Position and String properties as name-
value pairs, then you do not need to specify the x, y, z, and str inputs.

t = text(___) returns one or more text objects. Use t to modify properties of the text objects after they are
created. For a list of properties and descriptions, see Text Properties. You can specify an output with any of
the previous syntaxes.

http://in.mathworks.com/help/matlab/ref/text.html#inputarg_x
http://in.mathworks.com/help/matlab/ref/text.html#inputarg_y
http://in.mathworks.com/help/matlab/ref/text.html#inputarg_str
http://in.mathworks.com/help/matlab/ref/text.html#inputarg_x
http://in.mathworks.com/help/matlab/ref/text.html#inputarg_y
http://in.mathworks.com/help/matlab/ref/text.html#inputarg_z
http://in.mathworks.com/help/matlab/ref/text.html#inputarg_str
http://in.mathworks.com/help/matlab/ref/text.html#namevaluepairarguments
http://in.mathworks.com/help/matlab/ref/text.html#outputarg_t
http://in.mathworks.com/help/matlab/ref/text-properties.html

Add Text Description to Data Point

Plot a sine curve. At the point , add the text description . Use the TeX markup \pi for the Greek
letter . Use \leftarrow to display a left-pointing arrow.

x = 0:pi/20:2*pi;
y = sin(x);
plot(x,y)
text(pi,0,'\leftarrow sin(\pi)')

For a list of Greek characters and other TeX markup, see the Interpreter property description.

gtext

Add text to figure using mouse

 gtext(str)

 gtext(str,Name,Value)

 t = gtext(___)

Description

gtext(str) inserts the text, str, at the location you select with the mouse. When you hover over the figure
window, the pointer becomes a crosshair. gtext is waiting for you to select a location. Move the pointer to
the location you want and either click the figure or press any key, except Enter.

gtext(str,Name,Value) specifies text properties using one or more name-value pair arguments. For
example, 'FontSize',14 specifies a 14-point font.

javascript:void(0);
http://in.mathworks.com/help/matlab/ref/gtext.html#inputarg_str
http://in.mathworks.com/help/matlab/ref/gtext.html#inputarg_str
http://in.mathworks.com/help/matlab/ref/gtext.html#namevaluepairarguments

t = gtext(___) returns an array of text objects created by gtext. Use t to modify properties of the text objects
after they are created. For a list of properties and descriptions, see Text Properties. You can return an
output argument using any of the arguments from the previous syntaxes.

Example

Add Text to Figure Using Mouse

Create a simple line plot and use gtext to add text to the figure using the mouse.

plot(1:10)
gtext('My Plot')

Click the figure to place the text at the selected location.

http://in.mathworks.com/help/matlab/ref/text-properties.html
javascript:void(0);

SEMILOG X

Syntax

semilogx(Y)
semilogx(X1,Y1,...)
semilogx(X1,Y1,LineSpec,...)
semilogx(...,'PropertyName',PropertyValue,...)
h = semilogx(...)

Description

semilogx plot data as logarithmic scales for the x-axis.

semilogx(Y) creates a plot using a base 10 logarithmic scale for the x-axis and a linear scale for the y-axis.
It plots the columns of Y versus their index if Y contains real numbers.semilogx(Y) is equivalent
to semilogx(real(Y),imag(Y)) if Y contains complex numbers. semilogx ignores the imaginary component in
all other uses of this function.

semilogx(X1,Y1,...) plots all Yn versus Xn pairs. If only one of Xn or Yn is a matrix, semilogx plots the
vector argument versus the rows or columns of the matrix, along the dimension of the matrix whose length

matches the length of the vector. If the matrix is square, its columns plot against the vector if their lengths
match.

semilogx(X1,Y1,LineSpec,...) plots all lines defined by the Xn,Yn,LineSpec triples. LineSpec determines
line style, marker symbol, and color of the plotted lines.

semilogx(...,'PropertyName',PropertyValue,...) sets property values for all charting lines created
by semilogx. For a list of properties, see Chart Line Properties.

h = semilogx(...) return a vector of chart line handles, one handle per line.

Examples

Logarithmic Scale for x-Axis

Create a plot with a logarithmic scale for the x-axis and a linear scale for the y-axis.

x = 0:1000;
y = log(x);

figure
semilogx(x,y)

http://in.mathworks.com/help/matlab/ref/chartline-properties.html
javascript:void(0);

SEMILOGY

syntax

semilogy(Y)
semilogy(X1,Y1,...)
semilogy(X1,Y1,LineSpec,...)
semilogy(...,'PropertyName',PropertyValue,...)
h = semilogy(...)

Description

semilogy plots data with logarithmic scale for the y-axis.

semilogy(Y) creates a plot using a base 10 logarithmic scale for the y-axis and a linear scale for the x-axis.
It plots the columns of Y versus their index if Y contains real numbers.semilogy(Y) is equivalent
to semilogy(real(Y),imag(Y)) if Y contains complex numbers. semilogy ignores the imaginary component in
all other uses of this function.

semilogy(X1,Y1,...) plots all Yn versus Xn pairs. If only one of Xn or Yn is a matrix, semilogy plots the
vector argument versus the rows or columns of the matrix, along the dimension of the matrix whose length
matches the length of the vector. If the matrix is square, its columns plot against the vector if their lengths
match.

semilogy(X1,Y1,LineSpec,...) plots all lines defined by the Xn,Yn,LineSpec triples. LineSpec determines
line style, marker symbol, and color of the plotted lines.

semilogy(...,'PropertyName',PropertyValue,...) sets property values for all the charting lines created
by semilogy. For a list of properties, see Chart Line Properties.

h = semilogy(...) returns a vector of chart line handles, one handle per line.

Examples

Logarithmic Scale for y-Axis

Create a plot with a logarithmic scale for the y-axis and a linear scale for the x-axis.

x = 0:0.1:10;
y = exp(x);

figure
semilogy(x,y)

http://in.mathworks.com/help/matlab/ref/chartline-properties.html
javascript:void(0);

LOG LOG

Syntax

loglog(Y)
loglog(X1,Y1,...)
loglog(X1,Y1,LineSpec,...)
loglog(...,'PropertyName',PropertyValue,...)
h = loglog(...)

Description

loglog(Y) plots the columns of Y versus their index if Y contains real numbers. If Y contains complex
numbers, loglog(Y) and loglog(real(Y),imag(Y)) are equivalent. loglog ignores the imaginary component in
all other uses of this function.

loglog(X1,Y1,...) plots all Yn versus Xn pairs. If only one of Xn or Yn is a matrix, loglog plots the vector
argument versus the rows or columns of the matrix, along the dimension of the matrix whose length
matches the length of the vector. If the matrix is square, its columns plot against the vector if their lengths
match.

loglog(X1,Y1,LineSpec,...) plots all lines defined by the Xn,Yn,LineSpec triples, where LineSpec determines
line type, marker symbol, and color of the plotted lines. You can mixXn,Yn,LineSpec triples
with Xn,Yn pairs, for example,

http://in.mathworks.com/help/matlab/ref/linespec.html

loglog(X1,Y1,X2,Y2,LineSpec,X3,Y3)

loglog(...,'PropertyName',PropertyValue,...) sets line property values for all the charting lines created. h =
loglog(...) returns a column vector of chart line handles, one handle per line.

If you do not specify a color when plotting more than one line, loglog automatically cycles through the
colors and line styles in the order specified by the current axes.

If you attempt to add a loglog, semilogx, or semilogy plot to a linear axis mode graph with hold on, the axis
mode remains as it is and the new data plots as linear.

Examples

Logarithmic Scale for Both Axes

Create a plot using a logarithmic scale for both the x-axis and the y-axis. Set the LineSpec string so
that loglog plots using a line with square markers. Display the grid.

x = logspace(-1,2);
y = exp(x);

figure
loglog(x,y,'-s')
grid on

http://in.mathworks.com/help/matlab/ref/semilogx.html
http://in.mathworks.com/help/matlab/ref/semilogy.html
http://in.mathworks.com/help/matlab/ref/hold.html
javascript:void(0);

POLAR

Syntax

polar(theta,rho)
polar(theta,rho,LineSpec)
polar(axes_handle,...)
h = polar(...)

DESCRIPTION

The polar function accepts polar coordinates, plots them in a Cartesian plane, and draws the polar grid on
the plane.

polar(theta,rho) creates a polar coordinate plot of the angle theta versus the radius rho. theta is the angle
from the x-axis to the radius vector specified in radians; rho is the length of the radius vector specified in
dataspace units.

polar(theta,rho,LineSpec) LineSpec specifies the line type, plot symbol, and color for the lines drawn in the
polar plot.

polar(axes_handle,...) plots into the axes with the handle axes_handle instead of into the current axes
(gca).

h = polar(...) returns the handle of a line object in h.

EXAMPLES

Simple Polar Plot

Create a simple polar plot using a dashed red line.

theta = 0:0.01:2*pi;
rho = sin(2*theta).*cos(2*theta);

figure
polar(theta,rho,'--r')

http://in.mathworks.com/help/matlab/ref/gca.html
javascript:void(0);

COMET

SYNTAX

comet(y)
comet(x,y)
comet(x,y,p)
comet(axes_handle,...)

DESCRIPTION

comet(y) displays a comet graph of the vector y. A comet graph is an animated graph in which a circle (the
comet head) traces the data points on the screen. The comet body is a trailing segment that follows the
head. The tail is a solid line that traces the entire function.

comet(x,y) displays a comet graph of vector y versus vector x.

comet(x,y,p) specifies a comet body of length p*length(y). p defaults to 0.1.

comet(axes_handle,...) plots into the axes with the handle axes_handle instead of into the current axes

CREATE COMET GRAPH
t = 0:.01:2*pi;
x = cos(2*t).*(cos(t).^2);
y = sin(2*t).*(sin(t).^2);
comet(x,y);

Derive and Plot a Low Pass Transfer Function on MATLAB

Introduction to Filters

A filter is a circuit that removes unwanted frequencies from a waveform. Filters can be used to remove

noise from a system to make it cleaner. It consists of two main bands: the pass band and the stop band.

To understand the pass band and stop band in a filter, we need to understand Bode plots. A Bode plot is

a graph that tracks the response of frequencies. It shows the magnitude of a signal with respect to the

frequency. The magnitude or the amplitude is measured in decibels and plotted on the Y-axis of the

Bode plot. The X-axis of the bode plot is the frequency of the filter.

Figure 1. Example of a Low Pass Bode Plot

http://www.allaboutcircuits.com/uploads/articles/Picture1.png

The above image is a bode plot for a low pass filter. The frequencies in the pass band are the

frequencies with an amplitude of 0 decibels or above. The frequencies after the cutoff frequencies fc are

in the stop band. The frequencies that we want to remove would be in the stop band when the magnitude

is less than zero.

Depending on which frequencies we want to remove, the location of the pass band will vary to create the

main 4 filters types. The main four filter response types are:

 High pass filters

 Low pass filters

 Band pass filters

 Band stop filters

The order of a filter indicates how steep the slope is. For every raise in order of a filter, there is a
6db/octave increase in the filter‘s slope. An ideal perfect filter would have a slope of infinity. It would look
like a square wave. Unfortunately, these ideal filters cannot be made in real life, and we can only make
filters that have a roll-off or slope as close to this as we can.

Figure 2. Frequency response of an Ideal Filter

Deriving a Low Pass Transfer Function
The transfer function for a low pass Akerberg-Mossberg filter is seen below in equation 2.

Now we have to find the correct values for a,b,c, and d in equation 1 to end up with the transfer function
of the low pass filter. We see that the numerator that we want only has w0

2 so we have to get rid of the
other monomials to only leave w0

2 by itself. The first variable we want to get rid of is the first term, as2. So
we set a=0 in this case. The second terms in the transfer function of equation 1 has the variables ―a‖ and
―b‖. We want to equal it to zero since we only want the w0

2 to be left in the numerator.

http://www.allaboutcircuits.com/uploads/articles/Picture1d.png
http://www.allaboutcircuits.com/uploads/articles/hello.png

In this case, our "a" had already been set to 0 by the first term and to make this one zero we also have to
set ―b‖ to 0. Doing this now gets rid of this second term by making it equal to zero.

Now to make the last term equal to w0
2 we need to find our remaining values, ―d‖ and ―k‖. Notice we had

not found k previously because it was being multiplied by ―b‖ which was zero.

Our ―a‖ and ―c‖ have already been set, so we are missing ―d‖ and ―k‖. To make this configuration
possible, we would have to make ―d‖ and ―k‖ both equal to 1. Once those variables are inserted, in the
numerator we have the remaining transfer function.

Now that we have all of our values, we can insert them into MATLAB to plot the frequency response for
this filter.

 Graphing in MATLAB

To start off, we will do a new script in MATLAB. Since the frequency response or Bode plot is logarithmic,
the first thing we will declare is a logarithmic spaced vector. We will use: w = logspace(0,9,200);

% THE FIRST TWO POINTS ARE THE BOUNDARIES OF THE GRAPH. THE 200 IS THE NUMBER OF POINTS THAT WILL

BE GENERATED

s=j.*w;

a=0;

b=0;

c=0;

d=1;

k=1;

Q=1;

w0=1000; % Chosen Cutoff Frequency

tn = -((a*(s.^2))+(s.*(w0/Q))*(a-(b*k*Q))+(w0^2*(a-(c-d)*k))); %numerator of transfer function

td = (s.^2)+(s.*(w0/Q))+(w0^2); % the denominator of the transfer function

t1 = tn./td; %numerator over the denominator

plot(log10(w), 20*log10(abs(t1)));grid on;title('Lowpass') % matlab will now plot our transfer function with
respect to the graph we declared

http://www.allaboutcircuits.com/uploads/articles/lowpass.png
http://www.allaboutcircuits.com/uploads/articles/lowpassss.png

