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5.1 Distributed File System

Modern Internet applications have created a need to manage immense amounts of data  quickly.
In  many  of  these applications,  the  data  is  extremely  regular, and there is ample opportunity
to exploit parallelism.  Important examples are:

1.  The ranking  of  Web  pages  by  importance,  which  involves  an  iterated matrix- vector
multiplication where the dimension is in the tens of billions, and

2.  Searches in “friends”  networks  at  social-networking  sites,  which  involve graphs with
hundreds of millions of nodes and many billions of edges.

To deal with applications such as these, a new software stack has developed.   It begins with a
new  form  of  file  system,  which  features  much  larger units  than the disk blocks in a
conventional operating system and also provides replication of  data to protect against the
frequent media failures that occur when data is distributed over thousands of disks.

On  top  of  these  file  systems,  we  find  higher-level  programming  systems  developing.
Central to many of these is a programming system called map-reduce. Implementations of map-
reduce enable many of the most common calculations on large-scale data to be performed on
large collections of computers, efficiently and in a way that is tolerant of hardware failures
during the computation.

Map-reduce  systems  are  evolving  and  extending  rapidly.   We  include  in  this chapter a 
discussion of generalizations of map-reduce, first to acyclic workflows and then  to  recursive  
algorithms.   We conclude with  a  discussion  of  commu- nication  cost  and  what  it  tells  us  about
the  most  efficient  algorithms  in  this modern computing environment.
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Most computing is done on a single processor, with its main memory, cache, and local disk  (a
compute  node).   In the  past,  applications  that  called  for  parallel processing,  such  as  large
scientific  calculations,  were  done  on  special-purpose  parallel computers   with   many
processors and specialized   hardware.   However, the prevalence of large-scale Web services has
caused more and more computing to be  done  on  installations  with  thousands  of  compute  nodes
operating  more or less  independently.    In  these  installations,  the  compute  nodes  are
commodity  hardware, which greatly reduces the cost compared with special-purpose parallel
machines.

These  new  computing  facilities  have  given  rise  to  a  new  generation  of  pro- gramming
systems.  These systems take advantage of the power of parallelism and at  the  same  time  avoid
the  reliability  problems  that  arise  when  the  computing hardware consists  of  thousands  of
independent  components,  any  of  which could fail  at  any  time.   In this  section,  we  discuss
both  the  characteristics  of these computing   installations   and   the   specialized   file   systems
that   have   been developed to take advantage of them.

5.2 Physical Organization of Computer nodes

The new parallel-computing architecture, sometimes called cluster   computing, is organized  as
follows.    Compute  nodes  are  stored  on  racks,  perhaps  8–64 on a  rack.  The  nodes  on  a
single  rack  are  connected  by  a  network,  typically gigabit  Ethernet.   There  can  be  many
racks  of  compute  nodes,  and  racks  are connected by another level of network or a switch.   The
bandwidth of inter-rack communication  is  somewhat  greater  than  the  intrarack  Ethernet,  but
given  the number  of  pairs  of  nodes  that  might  need  to  communicate  between  racks,  this
bandwidth  may  be  essential.   Figure  2.1  suggests  the  architecture  of  a  large-  scale
computing  system.  However,  there  may  be  many  more  racks and  many more compute nodes
per rack.

It is a fact of life that components fail, and the more components, such as compute nodes and
interconnection networks, a system has, the more frequently something in  the  system  will  not  be
working  at  any  given  time.   For  systems such as Fig. 2.1, the principal failure modes are the
loss of a single node (e.g., the disk at that node crashes) and the loss of an entire rack (e.g., the
network connecting its nodes to each other and to the outside world fails).

Some  important  calculations  take  minutes  or  even  hours  on  thousands  of compute  nodes.
If  we  had  to  abort  and  restart  the  computation  every  time one component failed, then the
computation might never complete successfully. The solution to this problem takes two forms:
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1.  Files must be stored redundantly.  If we did not duplicate the file at several compute nodes, then
if one node failed, all its files would be unavailable until the node is replaced.  If we did not back
up the files at all, and the disk crashes, the files would be lost forever.

2. Computations must be divided into tasks, such that if any one task fails to execute  to
completion,  it  can  be  restarted  without  affecting  other  tasks.  This  strategy  is followed by
the map-reduce programming system 

                                                             Switch
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5.3 Large Scale File System Organization
To exploit cluster computing, files must look and behave somewhat differently from  the
conventional  file  systems  found  on  single  computers.  This new  file system, often   called   a
distributed   file   system   or   DFS   (although   this   term   has had other meanings in the past),
is typically used as follows.

•   Files can be enormous, possibly a terabyte in size.   If you have only small files, there is no
point using a DFS for them.

•   Files are rarely updated.   Rather, they are read as data for some calculation, and possibly
additional data is appended to files from  time to time. For example, an airline  reservation
system  would  not  be  suitable  for  a DFS,  even  if  the  data were  very  large,  because  the
data  is  changed  so frequently.

Files are divided   into   chunks,  which   are   typically   64   megabytes   in   size. Chunks
are  replicated,  perhaps  three  times,  at  three  different  compute  nodes. Moreover, the nodes
holding copies of one chunk should be located on different

School of Computing



SATHYABAMA 
INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF INFORMATION TECHNOLOGY
COURSE MATERIAL

Subject Name : DATA ANALYTICS                                  UNIT V                    Subject Code : SIT1303

DFS Implementations
There  are  several  distributed  file  systems  of  the  type  we  have  described that are used in
practice.  Among these:

1.  The Google File System (GFS), the original of the class.

    2.  Hadoop Distributed File System (HDFS), an open-source DFS  used with  Hadoop, an
implementation   of   map-reduce   and  distributed  by  the Apache Software Foundation.

3.  CloudStore, an open-source DFS originally developed by Kosmix.racks, so
we don’t lose all copies due to a rack failure.  Normally, both the chunk size and
the degree of replication can be decided by the user.

To find the chunks of a file, there is another small file called the master node or name node
for that file.  The master node is itself replicated, and a directory for the file system as a whole
knows where to find its copies.  The directory itself can be replicated, and all participants using
the DFS know where the directory copies are.

5.4 The Map Reduce

Map-reduce  is  a  style  of  computing  that  has  been  implemented  several times. You  can
use  an  implementation  of  map-reduce  to  manage  many  large-scale computations  in  a  way
that  is  tolerant  of  hardware  faults.   All  you  need  to write  are  two  functions,  called  Map
and  Reduce,  while  the  system  manages  the parallel execution, coordination of tasks that
execute Map or Reduce, and also deals with the possibility that one of these tasks will fail to
execute.   In brief, a map- reduce computation executes as follows:

1.  Some  number  of  Map  tasks  each  are  given  one  or  more  chunks  from  a distributed file
system.   These Map tasks turn the chunk into a sequence of key- value pairs.  The way key-
value pairs are produced from the input data is determined by the code written by the user for the
Map function.

2.  The  key-value  pairs  from  each  Map  task  are collected  by  a  master  con- troller  and
sorted  by  key.   The  keys  are  divided  among  all  the  Reduce tasks, so all key-value pairs
with the same key wind up at the same Re- duce task.

3.  The  Reduce  tasks  work  on  one  key  at  a  time,  and  combine  all  the  val- ues
associated  with  that  key  in  some  way.   The  manner  of  combinationof  values  is
determined  by  the  code  written  by  the  user  for  the  Reduce function.
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                Figure : Schematic of a map-reduce computation

We view  input  files  for  a  Map  task  as  consisting  of  elements,  which  can  be any  type:   a
tuple  or  a  document,  for  example.    A  chunk  is  a  collection  of elements,  and  no  element  is
stored across  two  chunks.  Technically,  all  inputs to  Map  tasks  and  outputs  from  Reduce
tasks  are  of  the  key-value-pair  form, but normally the keys of input elements are not relevant
and we shall tend to ignore them.   Insisting on this form for inputs and outputs is motivated by the
desire to allow composition of several map-reduce processes.

A Map function is written to convert input elements to key-value pairs.  The types of keys and
values  are  each  arbitrary.   Further, keys are  not “keys”  in  the usual sense;  they  do  not  have
to  be  unique.  Rather  a  Map  task  can  produce several key-value pairs with the same key, even
from the same element.

5.5 Map Task

The  Map task reads  a  document and breaks it  into  its  sequence of words w
1

, w
2

, . . . ,

w
n
.  It then emits a sequence of key-value pairs where the value is always 1.  That is, the output of

the Map task for this document is the sequence of key-value pairs:

(w
1
, 1),  (w

2
, 1), . . . , (w

n
, 1)

Note  that  a  single  Map  task  will  typically  process  many  documents  –  all the  documents
in  one  or  more  chunks.   Thus,  its  output  will  be  more  than  the sequence  for  the  one
document  suggested  above.   Note  also  that  if  a  word w appears m times among all the
documents assigned to that process, then there will be  m  key-value  pairs  (w,  1)  among  its
output.   An  option,  which  we  discuss  in Section 2.2.4, is   to combine these m   pairs into a
single pair (w, m),  but we can only do that because, as we shall see, the Reduce tasks apply an
associative and commutative operation, addition, to the values.    ✷

5.6 Grouping and Aggregation

Grouping  and  aggregation  is   done  the  same  way,  regardless  of  what  Map  and Reduce
tasks do.   The master controller process knows how  many Reduce tasks there will be, say r  such
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tasks.  The user typically tells the map-reduce system what r  should be.  Then the master controller
normally picks a hash function that applies to keys and produces a bucket number from 0 to r − 1.
Each key that is output by a Map task is hashed and its key-value pair is put in one of r  local files.

Each file is destined for one of the Reduce tasks.
1

After   all   the Map   tasks have completed successfully,   the   master   controller merges  the
file from  each Map task  that  are destined  for  a  particular Reduce task  and  feeds  the  merged
file  to  that process  as  a  sequence  of  key-list-of-value pairs.  That is,  for each key k,  the  input
to  the Reduce  task that handles  key k  is a pair of the form (k, [v

1
, v

2
, . . . , v

n
]), where (k, v

1
),

(k, v
2
), . . . , (k, v

n
) are all the key-value pairs with key k  coming from all the Map tasks.

5.7 The  Reduce  Tasks

The  Reduce  function  is  written  to  take  pairs  consisting  of  a  key  and  its  list of  associated
values  and  combine  those  values  in  some  way.  The  output  of a Reduce task is a sequence of
key-value pairs consisting of each input key k  that the Reduce task received, paired with the
combined value constructed from the list of values that the Reduce task received along with key k.
The outputs from all the Reduce tasks are merged into a single file.

Example 2.2 :  Let us continue with the word-count example of Example 2.1. The
Reduce  function  simply  adds  up  all  the  values.   Thus,  the  output  of  the
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Reduce  tasks  is  a  sequence  of  (w, m)  pairs,  where  w  is  a  word  that appears at  least
once  among  all  the  input  documents  and  m  is  the  total number  of occurrences of w
among all those documents.
Implementations  of Map-Reduce
The  original  implementation  of  map-reduce  was  as  an  internal  and  propri-  etary system at
Google.   It was called simply “Map-Reduce.”   There is an open-source implementation  called
Hadoop.    It  can  be  downloaded,  along  with  the  HDFS distributed file system, from the
Apache Foundation.

5.8 Combiners

It is common for the Reduce function to be associative and commutative.  That is, the  values  to  be
combined  can  be  combined  in  any  order,  with  the  same result.  The addition performed in
Example 2.2 is an example of an associative and commutative operation.  It doesn’t matter how we
group a list of numbers v

1
, v

2
, .

. . , v
n
; the sum will be the same.When the Reduce function is associative and commutative,  it is possible to

push some of what Reduce does to the Map tasks.  For example, instead of the Map
tasks  in  Example  2.1  producing  many  pairs  (w, 1),   (w, 1), . . .,  we  could apply the  Reduce
function  within  the  Map  task,  before  the  output  of  the  Map  tasks  is subject to grouping and
aggregation.  These key-value pairs would thus be replaced by one pair with key w  and value equal
to the sum of all the 1’s in all those pairs. That is, the  pairs with key w  generated by a  single Map
task would be combined into  a  pair  (w,  m),  where  m   is  the  number  of  times  that  w
appears  among  the documents  handled by  this Map task.  Note that it is  still necessary to do
grouping and aggregation and to pass the result to the Reduce tasks, since there will typically be
one key-value pair with key w  coming from each of the Map tasks.

5.9 Details of  Map-Reduce  Execution

Let us now consider in more detail how a program using map-reduce is executed. Figure  2.3
offers  an  outline  of  how  processes,  tasks,  and  files  interact.   Taking advantage of a library
provided by  a map-reduce system such as Hadoop, the user program   forks   a   Master   controller
process   and   some   number   of   Worker processes at different compute nodes.  Normally, a
Worker handles either Map tasks (a Map worker)  or Reduce tasks (a Reduce worker), but not both.

The  Master  has  many  responsibilities.   One  is  to  create  some  number  of Map  tasks  and
some  number  of  Reduce  tasks,  these  numbers  being  selected by  the  user  program.   These
tasks  will  be  assigned  to  Worker  processes  by  the Master.  It  is  reasonable to  create one
Map  task  for  every chunk  of  the  input
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Figure:  Overview of the execution of a map-reduce program

file(s), but we may wish to create fewer Reduce tasks.  The reason for limiting the number  of
Reduce  tasks  is  that  it  is  necessary  for  each  Map  task  to  create  an intermediate  file  for
each  Reduce  task,  and  if  there  are  too  many  Reduce tasks the number of intermediate files
explodes.

The  Master  keeps  track  of  the  status  of  each  Map  and  Reduce  task  (idle, executing at a
particular Worker, or completed).  A Worker process reports to the Master when it finishes a task,
and a new task is scheduled by the Master for that Worker process.

Each  Map  task  is  assigned  one  or  more  chunks  of  the  input  file(s)  and executes  on  it
the  code  written  by  the  user.   The  Map  task  creates  a  file  for each Reduce task on the local
disk of the Worker that executes the Map task. The Master is informed of the location and sizes of
each of these files, and the Reduce task for which each is destined.  When a Reduce task is assigned
by the Master to a Worker process, that task is given all the files that form its input. The Reduce
task executes code written by the user and writes its output to a file that is part of the surrounding
distributed file system.

5.10 Coping  With Node Failures

The worst thing that can happen is that the compute node at which the Master is executing  fails.
In  this  case,  the  entire  map-reduce  job  must  be  restarted. But only this one node can bring the
entire process down; other failures will be managed by the Master, and the map-reduce job will
complete eventually.

Suppose the  compute node at which a Map worker resides fails.  This fail- ure will   be
detected   by   the   Master,   because   it   periodically   pings   the   Worker processes.   All  the
Map  tasks  that  were  assigned  to  this  Worker  will  have to be redone, even if they had
completed.  The reason for redoing completed Map tasks is that their output destined for the Reduce
tasks resides at that compute node, and is now unavailable to the Reduce tasks.  The Master sets the
status of  each of these   Map   tasks   to   idle   and   will   schedule   them   on   a   Worker   when
one becomes available.  The Master must also inform each Reduce task that the location of its input
from that Map task has changed.
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Dealing with a failure at the node of a Reduce worker is simpler.   The Master simply  sets  the
status  of  its  currently  executing  Reduce  tasks  to  idle.   These will be rescheduled on another
reduce worker later.
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