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Definitions 

Scalars 

The quantities which have only magnitude and are not related to any direction in space are 

called scalars. Examples of scalars are (i) mass of a particle (ii) pressure in the atmosphere (iii) 

temperature of a heated body (iv) speed of a train. 

Vectors 

The quantities which have both magnitude and direction are called vectors. 

Examples of vectors are (i) the gravitational force on a particle in space (ii) the velocity at any 

point in a moving fluid. 

Scalar point function 

If to each point p(x,y,z) of a region R in space there corresponds a unique scalar f(p) then f is 

called a scalar point function. 

Example 

The temperature distribution in a heated body, density of a body and potential due to a gravity. 

Vector point function 

If to each point p(x,y,z) of a region R in space there corresponds a unique vector )( pf


then f


is 

called a vector point function.  

Example 

The velocity of a moving fluid, gravitational force. 

Scalar and vector fields 

When a point function is defined at every point of space or a portion of space, then we say that 

a field is defined. The field is termed as a scalar field or vector field as the point function is a 

scalar point function or a vector point function respectively. 



Vector Differential Operator )(  

The vector differential operator Del, denoted by   is defined as 
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Gradient of a scalar point function 

Let ),,( zyx be a scalar point function defined in a region R of space. Then the vector point 

function given by  )(
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 is defined as the gradient of  and denoted by 

 grad  

Directional Derivative (D.D) 

The directional derivative of a scalar point function   at point (x,y,z) in the direction of a vector 

a


is given by D.D = 
a

a




.  (or) D.D =  . â  

The unit normal vector  

The unit vector normal to the surface ),,( zyx = c is given by
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Angle between two surfaces  

Angle between the surfaces 11 ),,( czyx   and 22 ),,( czyx  is given by 
21

21.cos










 

Problems 

1) Find   if zyxyzyx 2),,(   at the point (1,1,1) 

Solution: 
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At (1,1,1), 
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2)  Find   if 82),,( 22  xzyxzyx  at the point (1,0,1) 

Solution: 
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At (1,0,1),  )1)(1(4)1())1(2)0)(1(2( 22 kji
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3)  Find the unit normal vector to the surface 
32),,( yzxzyx    

at the point (1,1,1) 

Solution: 
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At(1,1,1),  )1)(1)(1(3)1)(1()1)(1)(1(2 2232 kji
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Unit normal to the surface is 
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4)  Find the unit normal vector to the surface zyxzyx  22),,(   

at the point (1,-1,-2)  

Solution: 
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At (1,-1,-2),  kji
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   Unit normal to the surface is 
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5)  Find the angle between the surfaces xyz  and yzx3 at the point (1,1,-2) 

Solution: 

Given the surface  xyzzyx ),,(1  
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At(1,1,-2),  1 kji
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At (1,1,-2),  2 kji
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Angle between the surfaces is given by 
21

21.cos
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6) Find the angle between the normal to the surface xy - z2 at the point (1,4,-2) and 

(1,2,3) 

Solution: 
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At (1,4,-2),  1 kji
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At (1,2,3),  2 kji
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Angle between the surfaces is given by 
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21.cos
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7)  Find the directional derivative of 32),,( yzxyzyx   at the point (2,-1,1) in the 

direction of kji


22    

Solution: 
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At (2,-1,1),  kji


)1)(1(3)1)1)(2(2()1( 232   
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To find the directional derivative of    in the direction of the vector 
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find the unit vector along the direction 
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a

a




.

 

                                

                                                                   = 
3

)22(
).33(

kji
kji


 


 

                                                                                                   = 3

11

3

661 



units. 

8) Find the directional derivative of 
2),,( yzxyzzyx   at the point (1,1,1) in the  

direction of kji
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At (1,1,1),  kji
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To find the directional derivative of    in the direction of the vector 
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find the unit vector along the direction 
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Divergence of a differentiable vector point function F


 

The divergence of a differentiable vector point function F


is denoted by div F


and is defined by  

div F
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Curl of a vector point function 

The curl of a differentiable vector point function F


is denoted by curl F


and is defined by 
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Vector Identities 

Let   be a scalar point function and U


and V


be vector point functions. Then 
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Solenoidal and Irrotational vectors 

A vector point function is solenoidal if div F


= 0 and it is irrotational if curl F


= 0. 

Note: 

If F


is irrotational, then there exists a scalar function called Scalar Potential  such that  

F


=   

Problems  

1) Find div r


and curl r
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2) Find the divergence and curl of the vector kzyxzjxyixyzV


)(3 222  at the point 

(1,-1,1) 

Solution: 
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3) Find the constants a, b, c so that kzcyxjzybxiaxyxF
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c+1 = 0, 4-a = 0, b-2 = 0 

Hence c = -1, a = 4, b = 2. 

4) Prove that kxyzjzxyiyzxF


)6()4()2(   is both solenoidal  

and irrotational. 

Solution: 
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 is solenoidal vector. 
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for all points (x,y,z) 

F


 is irrotational vector. 

5) Prove that kzxzxyjxyxzixyzzyF
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solenoidal and irrotational and find its scalar potential. 
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 is solenoidal vector. 
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for all points (x,y,z) 
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 is irrotational vector. 
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Equating the coefficients of kji


,, , we get 

…………………………………………………………..…..…(1) 

 

……………………………………………………………………..……...(2)

 

 

…………………………………………………………………..……(3)

 

Integrating (1) with respect to ‘x’ treating ‘y’ and ‘z’ as constants, we get 

……………………………………………………(4) 

 

Integrating (2) with respect to ‘y’ treating ‘x’ and ‘z’ as constants, we get 
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Integrating (3) with respect to ‘z’ treating ‘x’ and ‘y’ as constants, we get 

…………………………………………………………..(6) 

 

Hence from equations (4), (5), (6), we get
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6) Prove that kzyjzyxiyxF
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potential. 
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Equating the coefficients of kji
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Integrating (1) with respect to ‘x’ treating ‘y’ and ‘z’ as constants, we get 

……………………………………………………(4) 

 

Integrating (2) with respect to ‘y’ treating ‘x’ and ‘z’ as constants, we get 

 

………………………………………………………….………(5) 

 

Integrating (3) with respect to ‘z’ treating ‘x’ and ‘y’ as constants, we get 

…………………………………………………………..(6) 

 

Hence from equations (4), (5), (6), we get
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