Subject Name: Engineering Mathematics II
 (Common to Bio groups)

Subject code: SMT1106

Course Material

UNIT 1 MATRICES

RANK OF A MATRIX

Let A be any matrix of order mxn. The determinants of the sub square matrices of A are called the minors of A. If all the minors of order $(\mathbf{r} \mathbf{+ 1})$ are zero but there is at least one non zero minor of order \mathbf{r}, then \mathbf{r} is called the rank of A and is written as $R(A)$. For an mxn matrix,

- If m is less than n then the maximum rank of the matrix is m
- If m is greater than n then the maximum rank of the matrix is n.

The rank of a matrix would be zero only if the matrix had no non-zero elements. If a matrix had even one non-zero element, its minimum rank would be one.

Example

1. Find the rank of $A=\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 4 & 2 \\ 2 & 6 & 5\end{array}\right)$

$$
|\mathrm{A}|=1(20-12)-2(5-4)+3(6-8)=0
$$

Hence $R(A)<3$.
Let the second order minor $\left|\begin{array}{ll}1 & 2 \\ 1 & 4\end{array}\right|=2 \neq 0$

$$
R(A)=2 .
$$

2. Find the Rank of $\mathbf{B}=\left(\begin{array}{cccc}1 & -1 & -2 & -4 \\ 2 & 3 & -1 & -1 \\ 3 & 1 & 3 & -2 \\ 6 & 3 & 0 & -7\end{array}\right)$

$$
=\left(\begin{array}{cccc}
1 & -1 & -2 & -4 \\
0 & 5 & 3 & 7 \\
0 & 4 & 9 & 10 \\
0 & 9 & 12 & 17
\end{array}\right) \quad R_{2}=R_{2}-2 R_{1}, R_{3}=R_{3}-3 R_{1}, R_{4}=R_{4}-6 R_{1}
$$

$$
\begin{array}{ll}
=\left(\begin{array}{cccc}
1 & -1 & -2 & -4 \\
0 & 1 & 3 / 5 & 7 / 5 \\
0 & 4 & 9 & 10 \\
0 & 9 & 12 & 17
\end{array}\right) & R_{2}=1 / 5 R_{2}, R_{3}=R_{3}, R_{4}=R_{4} \\
=\left(\begin{array}{cccc}
1 & -1 & -2 & -4 \\
0 & 1 & 3 / 5 & 7 / 5 \\
0 & 0 & 33 / 5 & 22 / 5 \\
0 & 0 & 33 / 5 & 22 / 5
\end{array}\right) & R_{3}=R_{3}-4 R_{2}, R_{4}=R_{4}-9 R_{2} \\
=\left(\begin{array}{cccc}
1 & -1 & -2 & -4 \\
0 & 1 & 3 / 5 & 7 / 5 \\
0 & 0 & 335 \\
0 & 0 & 0 & 0
\end{array}\right) & R_{4}=R_{4}-R_{3}
\end{array}
$$

The number of Nonzero Rows is 3 . Hence $R(B)=3$.
3. Find the Rank of the Matrix $\mathbf{A}=\left(\begin{array}{ccc}2 & -2 & 1 \\ 1 & 4 & -1 \\ 4 & 6 & -3\end{array}\right)$

$$
\begin{aligned}
& =\left(\begin{array}{ccc}
1 & 4 & -1 \\
2 & -2 & 1 \\
4 & 6 & -3
\end{array}\right) \mathrm{R}_{1}=\mathrm{R}_{2}, \mathrm{R}_{2}=\mathrm{R}_{1} \\
& =\left(\begin{array}{ccc}
1 & 4 & -1 \\
0 & -10 & 3 \\
0 & -10 & 1
\end{array}\right) \mathrm{R}_{2}=\mathrm{R}_{2}-2 \mathrm{R}_{1}, \mathrm{R}_{3}=\mathrm{R}_{3}-4 \mathrm{R}_{1} \\
& =\left(\begin{array}{ccc}
1 & 4 & -1 \\
0 & -10 & 3 \\
0 & 0 & -2
\end{array}\right) \mathrm{R}_{3}=\mathrm{R}_{3}-\mathrm{R}_{2}
\end{aligned}
$$

The number of Nonzero Rows is 3 . Hence $R(A)=3$.
4. Find the Rank of the Matrix $\mathbf{A}=\left(\begin{array}{llll}1 & 0 & 2 & 1 \\ 0 & 2 & 4 & 2 \\ 0 & 2 & 2 & 1\end{array}\right)$

$$
=\left(\begin{array}{cccc}
1 & 0 & 2 & 1 \\
0 & 2 & 4 & 2 \\
0 & 0 & -2 & -1
\end{array}\right) \quad R_{3}=R_{3}-R_{2}
$$

5. Find the Rank of the Matrix $B=\left(\begin{array}{lll}1 & 0 & 2 \\ 0 & 2 & 4 \\ 0 & 2 & 2 \\ 1 & 2 & 1\end{array}\right)$

A possible minor of least order is $\left(\begin{array}{lll}1 & 0 & 2 \\ 0 & 2 & 4 \\ 0 & 2 & 2\end{array}\right)$ whose determinant is non zero.
Hence it is possible to find a nonzero minor of order 3.

$$
\text { Hence } R(B)=3 \text {. }
$$

CONSISTENCY OF LINEAR ALGEBRAIC EQUATION

A general set of m linear equations and n unknowns,

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+\cdots \cdots+a_{1 n} x_{n}=c_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\cdots \cdots+a_{2 n} x_{n}=c_{2}
\end{aligned}
$$

\qquad
\qquad

$$
a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots \ldots \ldots+a_{m n} x_{n}=c_{m}
$$

can be rewritten in the matrix form as

$$
\left[\begin{array}{ccccc}
a_{11} & a_{12} & \cdot & \cdot & a_{1 n} \\
a_{21} & a_{22} & \cdot & \cdot & a_{2 n} \\
\vdots & & & & \vdots \\
\vdots & & & & \vdots \\
a_{m 1} & a_{m 2} & \cdot & \cdot & a_{m n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\cdot \\
\cdot \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\cdot \\
\cdot \\
c_{m}
\end{array}\right]
$$

Denoting the matrices by A, X, and C, the system of equation is, $A X=C$ where A is called the coefficient matrix, C is called the right hand side vector and X is called the solution vector. Sometimes $\mathrm{AX}=\mathrm{C}$ systems of equations are written in the augmented form. That is

$$
[\mathrm{A}: \mathrm{C}]=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots \ldots . & a_{1 n} \\
a_{21} & a_{22} & \ldots \ldots . & a_{2 n} \\
\vdots & & & \vdots \\
\vdots & & & \vdots \\
a_{m 1} & a_{m 2} & \ldots . . & a_{m n} \\
\vdots c_{m}
\end{array}\right]
$$

Rouche'sTheorem

1. A system of equations $A X=C$ is consistent if the rank of A is equal to the rank of the augmented matrix ($\mathrm{A}: \mathrm{C}$). If in addition, the rank of the coefficient matrix A is same as the number of unknowns, then the solution is unique; if the rank of the coefficient matrix A is less than the number of unknowns, then infinite solutions exist.
2. A system of equations $A X=C$ is inconsistent if the rank of A is not equal to the rank of the augmented matrix (A:C).

Problems

1. Check whether the following system of equations

$$
\begin{aligned}
& 25 x_{1}+5 x_{2}+x_{3}=106.8 \\
& 64 x_{1}+8 x_{2}+x_{3}=177.2 \\
& 89 x_{1}+13 x_{2}+2 x_{3}=280 \text { is consistent or inconsistent. }
\end{aligned}
$$

Solution

The augmented matrix is

$$
[A: B]=\left[\begin{array}{cccc}
25 & 5 & 1 & : 106.8 \\
64 & 8 & 1 & : 177.2 \\
89 & 13 & 2 & : 280.0
\end{array}\right]
$$

To find the rank of the augmented matrix consider a square sub matrix of order 3×3 as
$\left[\begin{array}{ccc}5 & 1 & 106.8 \\ 8 & 1 & 177.2 \\ 13 & 2 & 280.0\end{array}\right]$ whose determinant is 12 . Hence $\mathrm{R}[A: B]$ is 3 .

So the rank of the augmented matrix is 3 but the rank of the coefficient matrix $[A]$ is 2
as the Determinant of A is zero. Hence $\mathrm{R}[A: B] \neq \mathrm{R}[\mathrm{A}]$. Hence the system is inconsistent.
2. Check the consistency of the system of linear equations and discuss the nature of the solution?

Solution

$$
\begin{gathered}
x_{1}+2 x_{2}+x_{3}=2 \\
3 x_{1}+x_{2}-2 x_{3}=1 \\
4 x_{1}-3 x_{2}-x_{3}=3 \\
2 x_{1}+4 x_{2}+2 x_{3}=4
\end{gathered}
$$

The augmented matrix is

$$
[A: B]=\left[\begin{array}{cccc}
1 & 2 & 1 & 2 \\
3 & 1 & -2 & 1 \\
4 & -3 & -1 & 3 \\
2 & 4 & 2 & 4
\end{array}\right]
$$

$[A: B]$ is reduced by elementary row transformations to an upper triangular matrix

$$
=\left[\begin{array}{cccc}
1 & 2 & 1 & 2 \\
0 & -5 & -5 & -5 \\
0 & -11 & -5 & -5 \\
0 & 0 & 0 & 0
\end{array}\right] R_{2}=R_{2}-3 R_{1}, R_{3}=R_{3}-4 R_{1}, R_{4}=R_{4}-2 R_{1}
$$

$$
=\left[\begin{array}{cccc}
1 & 2 & 1 & 2 \\
0 & 1 & 1 & 1 \\
0 & -11 & -5 & -5 \\
0 & 0 & 0 & 0
\end{array}\right] \quad \mathrm{R}_{2}=\mathrm{R}_{2} /-5
$$

$$
=\left[\begin{array}{llll}
1 & 2 & 1 & 2 \\
0 & 1 & 1 & 1 \\
0 & 0 & 6 & 6 \\
0 & 0 & 0 & 0
\end{array}\right] \quad R_{3}=R_{3}+11 R_{1}
$$

Here $\mathrm{R}[A: B]=\mathrm{R}[\mathrm{A}]=3$. Hence the system is consistent. Also $\mathrm{R}[\mathrm{A}]$ is equal to the number of unknowns. Hence the system has an unique solution.
3. Check whether the following system of equations is a consistent system of equations. Is the solution unique or does it have infinite solutions

$$
\begin{gathered}
x_{1}+2 x_{2}-3 x_{3}-4 x_{4}=6 \\
x_{1}+3 x_{2}+x_{3}-2 x_{4}=4 \\
2 x_{1}+5 x_{2}-2 x_{3}-5 x_{4}=10
\end{gathered}
$$

Solution

The given system has the augmented matrix given by

$$
[A: B]=\left[\begin{array}{ccccc}
1 & 2 & -3 & -4 & 6 \\
1 & 3 & 1 & -2 & 4 \\
2 & 5 & -2 & -5 & 10
\end{array}\right]
$$

$[A: B]$ is reduced by elementary row transformations to an upper triangular matrix

$$
\begin{aligned}
& =\left[\begin{array}{ccccc}
1 & 2 & -3 & -4 & 6 \\
0 & 1 & 4 & 2 & -2 \\
0 & 1 & 4 & 3 & -2
\end{array}\right] R_{2}=R_{2}-R_{1}, R_{3}=R_{3}-2 R_{1} \\
& =\left[\begin{array}{ccccc}
1 & 2 & -3 & -4 & 6 \\
0 & 1 & 4 & 2 & -2 \\
0 & 0 & 0 & 1 & 0
\end{array}\right] R_{3}=R_{3}-R_{2}
\end{aligned}
$$

A and $[A: B]$ are each of rank $r=3$, the given system is consistent but $\mathrm{R}[\mathrm{A}]$ is not equal to the number of unknowns. Hence the system does not has a unique solution.
4. Check whether the following system of equations

$$
\begin{gathered}
3 x-2 y+3 z=8 \\
x+3 y+6 z=-3 \\
2 x+6 y+12 z=-6
\end{gathered}
$$

is a consistent system of equations and hence solve them.

Solution

Let the augmented matrix of the system be

$$
\begin{aligned}
{[A: B] } & =\left[\begin{array}{cccc}
3 & -2 & 3 & 8 \\
1 & 3 & 6 & -3 \\
2 & 6 & 12 & -6
\end{array}\right] \\
& =\left[\begin{array}{cccc}
1 & 3 & 6 & -3 \\
3 & -2 & 3 & 8 \\
2 & 6 & 12 & -6
\end{array}\right] \quad R_{1}=R_{2} R_{2}=R_{1} \\
& =\left[\begin{array}{cccc}
1 & 3 & 6 & -3 \\
0 & 11 & 15 & -17 \\
0 & 0 & 0 & 0
\end{array}\right] \quad R_{2}=R_{2}-3 R_{1}, R_{3}=R_{3}-2 R_{1}
\end{aligned}
$$

$R[A: B]=R[A]=2$. Therefore the system is consistent and posses solution but rank is not
equal to the number of unknowns which is 3 .Hence the system has infinite solution. From the upper triangular matrix we have the reduced system of equations given by

$$
x+3 y+6 z=-3 ; 11 y+15 z=-17
$$

By assuming a value for y we have one set of values for z and x.For example when $y=3$, $z=-10 / 3$ and $x=8$. Similarly by choosing a value for z the corresponding y and x can be calculated. Hence the system has infinite number of solutions.
5. Check whether the following system of equations

$$
\begin{aligned}
& X+y+z=6 \\
& 3 x-2 y+4 z=9 \\
& x-y-z=0
\end{aligned}
$$

Is a consistent system of equations and hence solve them.

Solution

Let the augmented matrix of the system be

$$
\begin{aligned}
{[A: B] } & =\left[\begin{array}{cccc}
1 & 1 & 1 & 6 \\
3 & -2 & 4 & 9 \\
1 & -1 & -1 & 0
\end{array}\right] \\
& =\left[\begin{array}{cccc}
1 & 1 & 1 & 6 \\
0 & -5 & 1 & -9 \\
0 & -2 & -2 & -6
\end{array}\right] \quad R_{2}=R_{2}-3 R_{1}, R_{3}=R_{3}-R_{1} \\
& =\left[\begin{array}{cccc}
1 & 1 & 1 & 6 \\
0 & 1 & -1 / 5 & 9 / 5 \\
0 & -2 & -2 & -6
\end{array}\right] \quad R_{2}=R_{2} /-5 \\
& =\left[\begin{array}{cccc}
1 & 1 & 1 & 6 \\
0 & 1 & -1 / 5 & 9 / 5 \\
0 & 0 & -12 / 5 & -12 / 5
\end{array}\right] \quad R_{3}=R_{3}+2 R_{2}
\end{aligned}
$$

Hence $R[A B]=R[A]=3$ which is equal to the number of unknowns. Hence the system is consistent with unique solution. Now the system of equations takes the form

$$
x+y+z=6 ; \quad y-z / 5=9 / 5 ;-12 / 5 z=-12 / 5 .
$$

Hence $z=1$. Substituting $z=1$ in $y-z / 5=9 / 5$ we have $y-1 / 5=9 / 5$ or $y=1 / 5+9 / 5=10 / 5$.
Hence $y=2$. Substituting the values of y, z in $x+y+z=6$ we have $x=3$. Hence the system has the unique solution as $x=3, y=2, z=1$.

CHARACTERISTIC EQUATION

The equation $|A-\lambda I|=0$ is called the characteristic equation of the matrix A

Note:

1. Solving $|A-\lambda I|=0$, we get n roots for λ and these roots are called characteristic roots or eigen values or latent values of the matrix A
2. Corresponding to each value of λ, the equation $\mathrm{AX}=\lambda X$ has a non-zero solution vector X

If X_{r} be the non-zero vector satisfying $\mathrm{AX}=\lambda X$, when $\lambda=\lambda_{r}, X_{r}$ is said to be the latent vector or eigen vector of a matrix A corresponding to λ_{r}

Working rule to find characteristic equation:

For a 3×3 matrix:

Method 1:

The characteristic equation is $|A-\lambda I|=0$

Method 2:

Its characteristic equation can be written as $\lambda^{3}-S_{1} \lambda^{2}+S_{2} \lambda-S_{3}=0$ where $S_{1}=$ sum of the main diagonal elements, $\mathrm{S}_{2}=$ sum of the minors of the main diagonal elements, $\mathrm{S}_{3}=$ Determinant of $\mathrm{A}=\mathrm{A} \mid$

For a 2×2 matrix:

Method 1:

The characteristic equation is $|A-\lambda I|=0$

Method 2:

Its characteristic equation can be written as $\lambda^{2}-S_{1} \lambda+S_{2}=0$ where $S_{1}=$ sum of the main diagonal elements, $S_{2}=$ Determinant of $A=|A|$

1. Find the characteristic equation of $\left(\begin{array}{ccc}8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3\end{array}\right)$

Solution: Its characteristic equation is $\lambda^{3}-S_{1} \lambda^{2}+S_{2} \lambda-S_{3}=0$,
where $S_{1}=$ sum of the main diagonal elements $=8+7+3=18$,
$S_{2}=$ sum of the minors of the main diagonal elements=45
$S_{3}=$ Determinant of $A=|A|=0$
Therefore, the characteristic equation is $\lambda^{3}-18 \lambda^{2}+45 \lambda=0$.
2. Find the characteristic equation of $\left(\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right)$

Solution: Let $A=\left(\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right)$
The characteristic equationl of A is $\lambda^{2}-S_{1} \lambda+S_{2} \cdot S_{1}=$ sumofthemaindiagonalelements $=3$ $+2=5$ and $S_{2}=$ Determinantof $A=|A|=3(2)-1(-1)=7$

Therefore, the characteristic equation is $\lambda^{2}-5 \lambda+7=0$.

EIGEN VALUES AND EIGEN VECTORS OF A REAL MATRIX

Working rule to find Eigen values and Eigen vectors:

1. Find the characteristic equation $|A-\lambda I|=0$
2. Solve the characteristic equation to get characteristic roots. They are called Eigen values
3. To find the Eigen vectors, solve $[A-\lambda I] X=0$ for different values of λ

Note:

1. Corresponding to n distinct Eigen values, we get n independent Eigen vectors
2. If 2 or more Eigen values are equal, it may or may not be possible to get linearly independent Eigen vectors corresponding to the repeated Eigen values
3. If X_{i} is a solution for an Eigen value λ_{i}, then $\mathrm{c} X_{i}$ is also a solution, where c is an arbitrary constant. Thus, the Eigen vector corresponding to an Eigen value is not unique but may be any one of the vectors $\mathrm{c} X_{i}$

Problems

1. Find the eigen values and eigen vectors of the matrix $\left(\begin{array}{cc}1 & 1 \\ 3 & -1\end{array}\right)$

Solution: Let $\mathrm{A}=\left(\begin{array}{cc}1 & 1 \\ 3 & -1\end{array}\right)$ which is a non-symmetric matrix

To find the characteristic equation:

The characteristic equation of A is $\lambda^{2}-S_{1} \lambda+S_{2}=0$ where

$$
\begin{aligned}
& S_{1}=\text { sumofthemaindiagonalelements }=1-1=0, \\
& S_{2}=\text { Determinantof } A=|A|=1(-1)-1(3)=-4
\end{aligned}
$$

Therefore, the characteristic equation is $\lambda^{2}-4=0$ i.e., $\lambda^{2}=4$ or $\lambda= \pm 2$
Therefore, the eigen values are 2, -2

To find the eigen vectors:

$$
[A-\lambda I] X=0
$$

$$
\left[\left(\begin{array}{cc}
1 & 1 \\
3 & -1
\end{array}\right)-\lambda\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \Rightarrow\left[\left(\begin{array}{cc}
1 & 1 \\
3 & -1
\end{array}\right)-\left(\begin{array}{ll}
\lambda & 0 \\
0 & \lambda
\end{array}\right)\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

$$
\left[\begin{array}{cc}
1-\lambda & 1 \tag{1}\\
3 & -1-\lambda
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]-
$$

Case 1: If $\lambda=-2,\left[\begin{array}{cc}1-(-2) & 1 \\ 3 & -1-(-2)\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right][$ From (1) $]$

$$
\text { i.e., }\left[\begin{array}{ll}
3 & 1 \\
3 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

$$
\text { i.e., } 3 x_{1}+x_{2}=0, \quad 3 x_{1}+x_{2}=0
$$

i.e., we get only one equation $3 x_{1}+x_{2}=0 \Rightarrow 3 x_{1}=-x_{2} \Rightarrow \frac{x_{1}}{1}=\frac{x_{2}}{-3}$

Therefore $X_{1}=\left[\begin{array}{c}1 \\ -3\end{array}\right]$
Case 2: If $\lambda=\mathbf{2},\left[\begin{array}{cc}1-(2) & 1 \\ 3 & -1-(2)\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right][$ From (1) $]$
i.e., $\left[\begin{array}{cc}-1 & 1 \\ 3 & -3\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$
i.e., $-x_{1}+x_{2}=0 \Rightarrow x_{1}-x_{2}=0$
$3 x_{1}-3 x_{2}=0 \Rightarrow x_{1}-x_{2}=0$
i.e., we get only one equation $x_{1}-x_{2}=0$
$\Rightarrow x_{1}=x_{2} \Rightarrow \frac{x_{1}}{1}=\frac{x_{2}}{1}$
Hence, $X_{2}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$
2.Find the eigen values and eigen vectors of $\left[\begin{array}{ccc}2 & 2 & -7 \\ 2 & 1 & 2 \\ 0 & 1 & -3\end{array}\right]$

Solution: Let $\mathrm{A}=\left[\begin{array}{ccc}2 & 2 & -7 \\ 2 & 1 & 2 \\ 0 & 1 & -3\end{array}\right]$

To find the characteristic equation:

Its characteristic equation can be written as $\lambda^{3}-S_{1} \lambda^{2}+S_{2} \lambda-S_{3}=0$ where
$S_{1}=$ sumofthemaindiagonalelements $=2+1-3=0$,
$S_{2}=$ Sumoftheminorsofthemaindiagonalelements $=\left|\begin{array}{cc}1 & 2 \\ 1 & -3\end{array}\right|+\left|\begin{array}{cc}2 & -7 \\ 0 & -3\end{array}\right|+\left|\begin{array}{ll}2 & 2 \\ 2 & 1\end{array}\right|=-5+$ $(-6)+(-2)=-5-6-2=-13$
$S_{3}=$ Determinantof $A=|A|=2(-5)-2(-6)-7(2)=-10+12-14=-12$
Therefore, the characteristic equation of A is $\lambda^{3}-13 \lambda+12=0$

3	0	-13	12
0	3	9	-12
1	3	-4	0

$$
\begin{gathered}
(\lambda-3)\left(\lambda^{2}+3 \lambda-4\right)=0 \Rightarrow \lambda=3, \lambda=\frac{-3 \pm \sqrt{3^{2}-4(1)(-4)}}{2(1)}=\frac{-3 \pm \sqrt{25}}{2}=\frac{-3 \pm 5}{2} \\
=\frac{-3+5}{2}, \frac{-3-5}{2}=1,-4
\end{gathered}
$$

Therefore, the eigen values are 3,1 , and -4
To find the eigen vectors: Let $[A-\lambda I] X=0$
$\left[\begin{array}{ccc}2-\lambda & 2 & -7 \\ 2 & 1-\lambda & 2 \\ 0 & 1 & -3-\lambda\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
Case 1: If $\lambda=\mathbf{1},\left[\begin{array}{ccc}2-1 & 2 & -7 \\ 2 & 1-1 & 2 \\ 0 & 1 & -3-1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
i.e., $\left[\begin{array}{ccc}1 & 2 & -7 \\ 2 & 0 & 2 \\ 0 & 1 & -4\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
$\Rightarrow x_{1}+2 x_{2}-7 x_{3}=0$
$2 x_{1}+0 x_{2}+2 x_{3}=0$
$0 x_{1}+x_{2}-4 x_{3}=0$
Considering equations (1) and (2) and using method of cross-multiplication, we get,

$\frac{x_{1}}{4}=\frac{x_{2}}{-16}=\frac{x_{3}}{-4} \Rightarrow \frac{x_{1}}{1}=\frac{x_{2}}{-4}=\frac{x_{3}}{-1}$
Therefore, $X_{1}=\left(\begin{array}{c}1 \\ -4 \\ -1\end{array}\right)$
Case 2: If $\lambda=3,\left[\begin{array}{ccc}2-3 & 2 & -7 \\ 2 & 1-3 & 2 \\ 0 & 1 & -3-3\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
i.e., $\left[\begin{array}{ccc}-1 & 2 & -7 \\ 2 & -2 & 2 \\ 0 & 1 & -6\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
$\Rightarrow-x_{1}+2 x_{2}-7 x_{3}=0$
$2 x_{1}-2 x_{2}+2 x_{3}=0$
$0 x_{1}+x_{2}-6 x_{3}=0$
Considering equations (1) and (2) and using method of cross-multiplication, we get,

$\frac{x_{1}}{-10}=\frac{x_{2}}{-12}=\frac{x_{3}}{-2} \Rightarrow \frac{x_{1}}{5}=\frac{x_{2}}{6}=\frac{x_{3}}{1}$
$\Rightarrow \frac{x_{1}}{-10}=\frac{x_{2}}{-12}=\frac{x_{3}}{-2} \Rightarrow \frac{x_{1}}{5}=\frac{x_{2}}{6}=\frac{x_{3}}{1}$
Therefore, $X_{2}=\left[\begin{array}{l}5 \\ 6 \\ 1\end{array}\right]$
Case 3: If $\lambda=\mathbf{- 4},\left[\begin{array}{ccc}6 & 2 & -7 \\ 2 & 5 & 2 \\ 0 & 1 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
$\Rightarrow 6 x_{1}+2 x_{2}-7 x_{3}=0$
$2 x_{1}+5 x_{2}+2 x_{3}=0$
$0 x_{1}+x_{2}+x_{3}=0$
Considering equations (1) and (2) and using method of cross-multiplication, we get,

$\Rightarrow \frac{x_{1}}{39}=\frac{x_{2}}{-26}=\frac{x_{3}}{26} \Rightarrow \frac{x_{1}}{3}=\frac{x_{2}}{-2}=\frac{x_{3}}{2}$
Therefore, $X_{3}=\left[\begin{array}{c}3 \\ -2 \\ 2\end{array}\right]$
3.Find the eigen values and eigen vectors of the matrix $\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]$.

Solution: Let $\mathrm{A}=\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]$

To find the characteristic equation:

Its characteristic equation can be written as $\lambda^{3}-S_{1} \lambda^{2}+S_{2} \lambda-S_{3}=0$ where
$S_{1}=$ sum of the main diagonal elements $=0+0+0=0$,
$S_{2}=$ Sum of the minors of the main diagonal elements $=\left|\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right|+\left|\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right|+\left|\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right|=$ $-1-1-1=-3$
$S_{3}=$ Determinant of $A=|A|=0-1(-1)+1(1)=0+1+1=2$
Therefore, the characteristic equation of A is $\lambda^{3}-0 \lambda^{2}-3 \lambda-2=0$

-1 | 1 | 0 | -3 | -2 |
| :--- | :--- | :--- | :--- |
| 0 | -1 | 1 | 2 |
| 1 | -1 | -2 | 0 |

$$
\begin{aligned}
& (\lambda-(-1))\left(\lambda^{2}-\lambda-2\right)=0 \Rightarrow \lambda=-1, \\
& \quad \lambda=\frac{1 \pm \sqrt{(-1)^{2}-4(1)(-2)}}{2(1)}=\frac{1 \pm \sqrt{1+8}}{2}=\frac{1 \pm 3}{2}=\frac{1+3}{2}, \frac{1-3}{2}=2,-1
\end{aligned}
$$

Therefore, the eigen values are 2, -1 , and -1

To find the eigen vectors:

$$
[A-\lambda I] X=0
$$

$\left[\begin{array}{ccc}0-\lambda & 1 & 1 \\ 1 & 0-\lambda & 1 \\ 1 & 1 & 0-\lambda\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
Case 1: If $\lambda=\mathbf{2},\left[\begin{array}{ccc}0-2 & 1 & 1 \\ 1 & 0-2 & 1 \\ 1 & 1 & 0-2\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
i.e., $\left[\begin{array}{ccc}-2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
$\Rightarrow-2 x_{1}+x_{2}+x_{3}=0$
$x_{1}-2 x_{2}+x_{3}=0$
$x_{1}+x_{2}-2 x_{3}=0$
Considering equations (1) and (2) and using method of cross-multiplication, we get
$\Rightarrow \frac{x_{1}}{3}=\frac{x_{2}}{3}=\frac{x_{3}}{3} \Rightarrow \frac{x_{1}}{1}=\frac{x_{2}}{1}=\frac{x_{3}}{1}$

Therefore, $X_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$
Case 2: If $\lambda=-1,\left[\begin{array}{ccc}0-(-1) & 1 & 1 \\ 1 & 0-(-1) & 1 \\ 1 & 1 & 0-(-1)\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
i.e., $\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
$\Rightarrow x_{1}+x_{2}+x_{3}=0$
$x_{1}+x_{2}+x_{3}=0$
$x_{1}+x_{2}+x_{3}=0$
----------- (3). All the three equations are one and the same.
Therefore, $x_{1}+x_{2}+x_{3}=0$. Put $x_{1}=0 \Rightarrow x_{2}+x_{3}=0 \Rightarrow x_{3}=-x_{2} \Rightarrow \frac{x_{2}}{1}=\frac{x_{3}}{-1}$ Therefore, $X_{2}=\left[\begin{array}{c}0 \\ 1 \\ -1\end{array}\right]$

Since the given matrix is symmetric and the eigen values are repeated, let $X_{3}=\left[\begin{array}{c}l \\ m \\ n\end{array}\right] . X_{3}$ Is orthogonal to X_{1} and X_{2}.
$\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]\left[\begin{array}{c}l \\ m \\ n\end{array}\right]=0 \Rightarrow l+m+n=0$
$\left[\begin{array}{lll}0 & 1 & -1\end{array}\right]\left[\begin{array}{c}l \\ m \\ n\end{array}\right]=0 \Rightarrow 0 l+m-n=0$

Solving (1) and (2) by method of cross-multiplication, we get,

$$
\mathrm{l} \quad \mathrm{~m} \quad n
$$

$\frac{l}{-2}=\frac{m}{1}=\frac{n}{1}$. Therefore, $X_{3}=\left[\begin{array}{c}-2 \\ 1 \\ 1\end{array}\right]$
Thus, for the repeated eigen value $\lambda=-1$, there corresponds two linearly independent eigen vectors X_{2} and X_{3}.
4.Find the eigen values and eigen vectors of $\left[\begin{array}{ccc}2 & -2 & 2 \\ 1 & 1 & 1 \\ 1 & 3 & -1\end{array}\right]$

Solution: Let $\mathrm{A}=\left[\begin{array}{ccc}2 & -2 & 2 \\ 1 & 1 & 1 \\ 1 & 3 & -1\end{array}\right]$

To find the characteristic equation:

Its characteristic equation can be written as $\lambda^{3}-S_{1} \lambda^{2}+S_{2} \lambda-S_{3}=0$ where
$S_{1}=$ sumofthemaindiagonalelements $=2+1-1=2$,
$S_{2}=$ Sumoftheminorsofthemaindiagonalelements $=\left|\begin{array}{cc}1 & 1 \\ 3 & -1\end{array}\right|+\left|\begin{array}{cc}2 & 2 \\ 1 & -1\end{array}\right|+\left|\begin{array}{cc}2 & -2 \\ 1 & 1\end{array}\right|=$ $-4-4+4=-4$
$S_{3}=$ Determinantof $A=|A|=2(-4)+2(-2)+2(2)=-8-4+4=-8$
Therefore, the characteristic equation of A is $\lambda^{3}-2 \lambda^{2}-4 \lambda+8=0$

$(\lambda-2)\left(\lambda^{2}-4\right)=0 \Rightarrow \lambda=2, \quad \lambda=2,-2$

Therefore, the eigen values are 2,2 , and -2
A is a non-symmetric matrix with repeated eigen values

To find the eigen vectors:

$$
\begin{gathered}
{[A-\lambda I] X=0} \\
{\left[\begin{array}{ccc}
2-\lambda & -2 & 2 \\
1 & 1-\lambda & 1 \\
1 & 3 & -1-\lambda
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]}
\end{gathered}
$$

Case 1: If $\lambda=-\mathbf{2},\left[\begin{array}{ccc}2-(-2) & -2 & 2 \\ 1 & 1-(-2) & 1 \\ 1 & 3 & -1-(-2)\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
i.e., $\left[\begin{array}{ccc}4 & -2 & 2 \\ 1 & 3 & 1 \\ 1 & 3 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
$\Rightarrow 4 x_{1}-2 x_{2}+2 x_{3}=0$
$x_{1}+3 x_{2}+x_{3}=0$
$x_{1}+3 x_{2}+x_{3}=0$
(3) . Equations
(2) and (3) are one and the same.

Considering equations (1) and (2) and using method of cross-multiplication, we get,

$\Rightarrow \frac{x_{1}}{-4}=\frac{x_{2}}{-1}=\frac{x_{3}}{7} \Rightarrow \frac{x_{1}}{4}=\frac{x_{2}}{1}=\frac{x_{3}}{-7}$
Therefore, $X_{1}=\left[\begin{array}{c}4 \\ 1 \\ -7\end{array}\right]$
Case 2: If $\lambda=\mathbf{2},\left[\begin{array}{ccc}2-2 & -2 & 2 \\ 1 & 1-2 & 1 \\ 1 & 3 & -1-2\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
i.e., $\left[\begin{array}{ccc}0 & -2 & 2 \\ 1 & -1 & 1 \\ 1 & 3 & -.3\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
$\Rightarrow 0 x_{1}-2 x_{2}+2 x_{3}=0$
$x_{1}-x_{2}+x_{3}=0-$
$x_{1}+3 x_{2}-3 x_{3}=0$
Considering equations (1) and (2) and using method of cross-multiplication, we get,
$\begin{array}{lll}\mathrm{X}_{1} & \mathrm{X}_{2} & \mathrm{X}_{3}\end{array}$

$\Rightarrow \frac{x_{1}}{0}=\frac{x_{2}}{2}=\frac{x_{3}}{2} \Rightarrow \frac{x_{1}}{0}=\frac{x_{2}}{1}=\frac{x_{3}}{1}$
Therefore, $X_{2}=\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$
We get one eigen vector corresponding to the repeated root $\lambda_{2}=\lambda_{3}=2$
5.Find the eigen values and eigen vectors of $\left[\begin{array}{lll}1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1\end{array}\right]$

Solution: Let $\mathrm{A}=\left[\begin{array}{lll}1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1\end{array}\right]$ which is a symmetric matrix

To find the characteristic equation:

Its characteristic equation can be written as $\lambda^{3}-S_{1} \lambda^{2}+S_{2} \lambda-S_{3}=0$ where

$$
\begin{aligned}
& S_{1}=\text { sumofthemaindiagonalelements }=1+5+1=7, \\
& S_{2}=\text { Sumoftheminorsofthemaindiagonalelements }=\left|\begin{array}{ll}
5 & 1 \\
1 & 1
\end{array}\right|+\left|\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right|+\left|\begin{array}{ll}
1 & 1 \\
1 & 5
\end{array}\right|=4- \\
& 8+4=0 \\
& S_{3}=\text { Determinantof } A=|A|=1(4)-1(-2)+3(-14)=4+2-42=-36
\end{aligned}
$$

Therefore, the characteristic equation of A is $\lambda^{3}-7 \lambda^{2}+0 \lambda+36=0$

$$
\begin{aligned}
& (\lambda-(-2))\left(\lambda^{2}-9 \lambda+18\right)=0 \Rightarrow \lambda=-2, \\
& \lambda=\frac{9 \pm \sqrt{(-9)^{2}-4(1)(18)}}{2(1)}=\frac{9 \pm \sqrt{81-72}}{2}=\frac{9 \pm 3}{2}=\frac{9+3}{2}, \frac{9-3}{2}=6,3
\end{aligned}
$$

Therefore, the eigen values are $-2,3$, and 6

To find the eigen vectors:

$$
[A-\lambda I] X=0
$$

$\left[\begin{array}{ccc}1-\lambda & 1 & 3 \\ 1 & 5-\lambda & 1 \\ 3 & 1 & 1-\lambda\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
Case 1: If $\lambda=\mathbf{- 2},\left[\begin{array}{ccc}1-(-2) & 1 & 3 \\ 1 & 5-(-2) & 1 \\ 3 & 1 & 1-(-2)\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
i.e., $\left[\begin{array}{lll}3 & 1 & 3 \\ 1 & 7 & 1 \\ 3 & 1 & 3\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
$\Rightarrow 3 x_{1}+x_{2}+3 x_{3}=0$
$x_{1}+7 x_{2}+x_{3}=0$
$3 x_{1}+x_{2}+3 x_{3}=0$
Considering equations (1) and (2) and using method of cross-multiplication, we get,

X_{1}	X_{2}	X_{3}

$\frac{x_{1}}{-20}=\frac{x_{2}}{0}=\frac{x_{3}}{20} \Rightarrow \frac{x_{1}}{1}=\frac{x_{2}}{0}=\frac{x_{3}}{-1} . \quad$ Therefore, $\mathrm{X}_{1}=\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right)$

Case 2: If $\lambda=3,\left[\begin{array}{ccc}1-3 & 1 & 3 \\ 1 & 5-3 & 1 \\ 3 & 1 & 1-3\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
i.e., $\left[\begin{array}{ccc}-2 & 1 & 3 \\ 1 & 2 & 1 \\ 3 & 1 & -2\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
$\Rightarrow-2 x_{1}+x_{2}+3 x_{3}=0$
$x_{1}+2 x_{2}+x_{3}=0$
$3 x_{1}+x_{2}-2 x_{3}=0$
Considering equations (1) and (2) and using method of cross-multiplication, we get,

$\frac{x_{1}}{-5}=\frac{x_{2}}{5}=\frac{x_{3}}{-5} \Rightarrow \frac{x_{1}}{1}=\frac{x_{2}}{-1}=\frac{x_{3}}{1}$
Therefore, $X_{2}=\left[\begin{array}{r}1 \\ -1 \\ 1\end{array}\right]$

Case 3: lf $\lambda=6,\left[\begin{array}{ccc}1-6 & 1 & 3 \\ 1 & 5-6 & 1 \\ 3 & 1 & 1-6\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
i.e., $\left[\begin{array}{ccc}-5 & 1 & 3 \\ 1 & -1 & 1 \\ 3 & 1 & -5\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
$\Rightarrow-5 x_{1}+x_{2}+3 x_{3}=0$
$x_{1}-x_{2}+x_{3}=0$
$3 x_{1}+x_{2}-5 x_{3}=0$
Considering equations (1) and (2) and using method of cross-multiplication, we get,

$\Rightarrow \frac{x_{1}}{4}=\frac{x_{2}}{8}=\frac{x_{3}}{4} \Rightarrow \frac{x_{1}}{1}=\frac{x_{2}}{2}=\frac{x_{3}}{1}$
Therefore, $X_{3}=\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]$

PROPERTIES OF EIGEN VALUES AND EIGEN VECTORS:

Property 1 :

(i) The sum of the eigen values of a matrix is the sum of the elements of the principal diagonal (or) The sum of the eigen values of a matrix is equal to the trace of the matrix
(ii) Product of the eigen values is equal to the determinant of the matrix

Property 2 :
A square matrix A and its transpose $\boldsymbol{A}^{\boldsymbol{T}}$ have the same eigen values (or) A square matrix A and its transpose $\boldsymbol{A}^{\boldsymbol{T}}$ have the same characteristic values

Property 4:
If $\boldsymbol{\lambda}$ is an eigen value of a matrix A, then $\frac{1}{\boldsymbol{\lambda}},(\boldsymbol{\lambda} \neq 0)$ is the eigen value of \boldsymbol{A}^{-1}
Property 5:
If $\boldsymbol{\lambda}$ is an eigen value of an orthogonal matrix, then $\frac{1}{\lambda}$ is also its eigen value Property 6:

If $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are the eigen values of a matrix A , then $\boldsymbol{A}^{\boldsymbol{m}}$ has the eigen values $\lambda_{1}^{m}, \lambda_{2}^{m}, \ldots, \lambda_{n}^{m}$ (m being a positive integer)

Property 7:

The eigen values of a real symmetric matrix are real numbers
Property 8 :
The eigen vectors corresponding to distinct eigen values of a real symmetric matrix are orthogonal

Property 9 :
Similar matrices have same eigen values
Property 10 :
If a real symmetric matrix of order 2 has equal eigen values, then the matrix is a scalar matrix

Property 11:
The eigen vector X of a matrix A is not unique.
Property 12:
If $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ be distinct eigen values of a $\mathrm{n} \times \mathrm{n}$ matrix, then the corresponding eigen vectors $\boldsymbol{X}_{1}, \boldsymbol{X}_{2}, \ldots, \boldsymbol{X}_{n}$ form a linearly independent set

Property 13 :
If two or more eigen values are equal, it may or may not be possible to get linearly independent eigen vectors corresponding to the equal roots Property 14:

Two eigen vectors $\boldsymbol{X}_{\mathbf{1}}$ and $\boldsymbol{X}_{\mathbf{2}}$ are called orthogonal vectors if $\boldsymbol{X}_{\mathbf{1}}^{\boldsymbol{T}} \boldsymbol{X}_{\mathbf{2}}=\mathbf{0}$
Property 15:
Eigen vectors of a symmetric matrix corresponding to different eigen values are orthogonal

Property 16:
If A and B are $n \times n$ matrices and B is a non-singular matrix then A and $B^{-\mathbf{1}} \boldsymbol{A} \boldsymbol{B}$ have same eigen values

Problems:

1. Find the sum and product of the eigen values of the matrix $\left[\begin{array}{ccc}-1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1\end{array}\right]$

Solution: Sum of the eigen values $=$ Sum of the main diagonal elements $=-3$.

$$
\text { Product of the eigen values }=|A|=-1(1-1)-1(-1-1)+1(1-(-1))=2+2=4
$$

2. Two of the eigen values of $\left[\begin{array}{rrr}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right]$ are 2 and 8 . Find the third eigen value

Solution: We know that sum of the eigen values = Sum of the main diagonal elements

$$
=6+3+3=12
$$

Given $\lambda_{1}=2, \lambda_{2}=8, \lambda_{3}=$?
Therefore, $\lambda_{1}+\lambda_{2}+\lambda_{3}=12 \Rightarrow 2+8+\lambda_{3}=12 \Rightarrow \lambda_{3}=2$
Therefore, the third eigen value $=2$
3. If 3 and 15 are the two eigen values of $A=\left[\begin{array}{crc}8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3\end{array}\right]$, find $|A|$, without expanding the determinant

Solution: Given $\lambda_{1}=3$ and $\lambda_{2}=15, \lambda_{3}=$?
We know that sum of the eigen values $=$ Sum of the main diagonal elements
$\Rightarrow \lambda_{1}+\lambda_{2}+\lambda_{3}=8+7+3$
$\Rightarrow 3+15+\lambda_{3}=18 \Rightarrow \lambda_{3}=0$
We know that the product of the eigen values $=|A|$
$\Rightarrow(3)(15)(0)=|A| \quad \Rightarrow|A|=0$
4. If $2,2,3$ are the eigen values of $A=\left[\begin{array}{ccr}3 & 10 & 5 \\ -2 & -3 & -4 \\ 3 & 5 & 7\end{array}\right]$, find the eigen values of A^{T}

Solution: By the property "A square matrix A and its transpose A^{T} have the same eigen values", the eigen values of A^{T} are $2,2,3$
5. Two of the eigen values of $A=\left[\begin{array}{crr}3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3\end{array}\right]$ are 3 and 6 . Find the eigen values of A^{-1}

Solution: Sum of the eigen values $=$ Sum of the main diagonal elements $=3+5+3=11$
Given 3,6 are two eigen values of A. Let the third eigen value be k.
Then, $3+6+\mathrm{k}=11 \Rightarrow k=2$. Therefore, the eigen values of A are $3,6,2$
By the property "If the eigen values of A are $\lambda_{1}, \lambda_{2}, \lambda_{3}$, then the eigen values of A^{-1} are $\frac{1}{\lambda_{1}}, \frac{1}{\lambda_{A}}, \frac{1}{\lambda_{\mathrm{B}}}$, the eigen values of A^{-1} are $\frac{1}{2}, \frac{1}{3}, \frac{1}{6}$

CAYLEY-HAMILTON THEOREM

Statement: Every square matrix satisfies its own characteristic equation
Uses of Cayley-Hamilton theorem:
(1) To calculate the positive integral powers of A
(2) To calculate the inverse of a square matrix A

Problems:

1. Show that the matrix $\left[\begin{array}{cc}1 & -2 \\ 2 & 1\end{array}\right]$ satisfies its own characteristic equation Solution:Let $\mathrm{A}=\left[\begin{array}{cc}1 & -2 \\ 2 & 1\end{array}\right]$. The characteristic equation of A is $\lambda^{2}-S_{1} \lambda+S_{2}=0$ where

$$
\begin{aligned}
& S_{1}=\text { Sum of the main diagonal elements }=1+1=2 \\
& S_{2}=|A|=1-(-4)=5
\end{aligned}
$$

The characteristic equation is $\lambda^{2}-2 \lambda+5=0$
To prove $A^{2}-2 A+5 I=0$

$$
\begin{aligned}
& A^{2}=A(A)=\left[\begin{array}{cc}
1 & -2 \\
2 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & -2 \\
2 & 1
\end{array}\right]=\left[\begin{array}{rr}
-3 & -4 \\
4 & -3
\end{array}\right] \\
& A^{2}-2 A+5 I=\left[\begin{array}{cc}
-3 & -4 \\
4 & -3
\end{array}\right]-\left[\begin{array}{cc}
2 & -4 \\
4 & 2
\end{array}\right]+\left[\begin{array}{ll}
5 & 0 \\
0 & 5
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]=0
\end{aligned}
$$

Therefore, the given matrix satisfies its own characteristic equation.
2. Verify Cayley-Hamilton theorem for the matrix $\mathbf{A}=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$ and hence find its inverse.

Solution: The characteristic polynomial of A is $p(\lambda)=\lambda^{2}-\lambda-1$.

$$
\begin{aligned}
A^{2} & =\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right) \\
A^{2}-A-I & =\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right)-\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)-\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) \\
A^{2}-A-I & =0,
\end{aligned}
$$

Multiplying by A^{-1} we get $\mathrm{A}-\mathrm{I}-\mathrm{A}^{-1}=0$,

$$
\begin{aligned}
& A^{-1}=A-I \\
& A^{-1}=\left(\begin{array}{cc}
0 & 1 \\
1 & -1
\end{array}\right)
\end{aligned}
$$

3. Verify Cayley-Hamilton theorem for the matrix $\mathbf{A}=\left(\begin{array}{ccc}1 & -1 & 4 \\ 3 & 2 & -1 \\ 2 & 1 & -1\end{array}\right)$ and hence find is inverse.

Solution: The characteristic polynomial of A is $\mathrm{p}(\lambda)=\lambda^{3}-2 \lambda^{2}-5 \lambda+6$.

$$
A^{2}=\left(\begin{array}{ccc}
6 & 1 & 1 \\
7 & 0 & 11 \\
3 & -1 & 8
\end{array}\right), A^{3}=\left(\begin{array}{ccc}
11 & -3 & 22 \\
29 & 4 & 17 \\
16 & 3 & 5
\end{array}\right)
$$

To verify $A^{3}-2 A^{2}-5 A+6 I=0$ \qquad

$$
\begin{gather*}
A^{3}-2 A^{2}-5 A+6 I= \tag{1}\\
\left(\begin{array}{ccc}
11 & -3 & 22 \\
29 & 4 & 17 \\
16 & 3 & 5
\end{array}\right)-2\left(\begin{array}{ccc}
6 & 1 & 1 \\
7 & 0 & 11 \\
3 & -1 & 8
\end{array}\right)-5\left(\begin{array}{ccc}
1 & -1 & 4 \\
3 & 2 & -1 \\
2 & 1 & -1
\end{array}\right)+6\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
\end{gather*}
$$

Multiply equation (1) by A^{-1}

$$
\begin{aligned}
& \text { We get } A^{2}-2 A-5 I+6 A^{-1}=0 \\
& \qquad \begin{aligned}
& 6 A^{-1}=5 I+2 A-A^{2}=5\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)+2\left(\begin{array}{ccc}
1 & -1 & 4 \\
3 & 2 & -1 \\
2 & 1 & -1
\end{array}\right)-\left(\begin{array}{ccc}
6 & 1 & 1 \\
7 & 0 & 11 \\
3 & -1 & 8
\end{array}\right) \\
&=\left(\begin{array}{ccc}
1 & -3 & 7 \\
-1 & 9 & -13 \\
1 & 3 & -5
\end{array}\right) \\
& A^{-1}=\frac{1}{6}\left(\begin{array}{ccc}
1 & -3 & 7 \\
-1 & 9 & -13 \\
1 & 3 & -5
\end{array}\right)
\end{aligned}
\end{aligned}
$$

4. Verify Cayley-Hamilton theorem for the matrix $\mathbf{A}=\left(\begin{array}{ccc}-3 & 1 & -3 \\ 20 & 3 & 10 \\ 2 & -2 & 4\end{array}\right)$ and hence find its inverse and A^{4}.
Solution: The characteristic polynomial of A is $p(\lambda)=\lambda^{3}-4 \lambda^{2}-3 \lambda+18=0$.

$$
A^{2}=\left(\begin{array}{ccc}
23 & 6 & 7 \\
20 & 9 & 10 \\
-38 & -12 & -10
\end{array}\right), A^{3}=\left(\begin{array}{ccc}
65 & 27 & 19 \\
140 & 27 & 70 \\
-146 & -54 & -46
\end{array}\right)
$$

$$
\begin{equation*}
\text { To verify } A^{3}-4 A^{2}-3 A+18 I=0 \tag{1}
\end{equation*}
$$

$$
\begin{gathered}
\left(\begin{array}{ccc}
65 & 27 & 19 \\
140 & 27 & 70 \\
-146 & -54 & -46
\end{array}\right)-4\left(\begin{array}{ccc}
23 & 6 & 7 \\
20 & 9 & 10 \\
-38 & -12 & -10
\end{array}\right)-3\left(\begin{array}{ccc}
-3 & 1 & -3 \\
20 & 3 & 10 \\
2 & -2 & 4
\end{array}\right)+18\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
\\
=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
\end{gathered}
$$

Multiply equation (1) by A^{-1}
We get $A^{2}-4 A-3 I+18 A^{-1}=0$
$18 \mathrm{~A}^{-1}=3 \mathrm{I}+4 \mathrm{~A}-\mathrm{A}^{2}$

$$
\begin{aligned}
18 A^{-1} & =3\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)+4\left(\begin{array}{ccc}
-3 & 1 & -3 \\
20 & 3 & 10 \\
2 & -2 & 4
\end{array}\right)-\left(\begin{array}{ccc}
23 & 6 & 7 \\
20 & 9 & 10 \\
-38 & -12 & -10
\end{array}\right) \\
& =\left(\begin{array}{ccc}
-32 & -2 & -19 \\
60 & 6 & 30 \\
46 & 4 & 29
\end{array}\right) \\
A^{-1} & =\frac{1}{18}\left(\begin{array}{ccc}
-32 & -2 & -19 \\
60 & 6 & 30 \\
46 & 4 & 29
\end{array}\right)
\end{aligned}
$$

Multiply equation (1) by A

$$
\text { We get } A^{4}-4 A^{3}-3 A^{2}+18 A=0
$$

$$
A^{4}=4 A 3+3 A^{2}-18 A
$$

$$
\begin{aligned}
A^{4} & =4\left(\begin{array}{ccc}
65 & 27 & 19 \\
140 & 27 & 70 \\
-146 & -54 & -46
\end{array}\right)+3\left(\begin{array}{ccc}
23 & 6 & 7 \\
20 & 9 & 10 \\
-38 & -12 & -10
\end{array}\right)-18\left(\begin{array}{ccc}
-3 & 1 & -3 \\
20 & 3 & 10 \\
2 & -2 & 4
\end{array}\right) \\
& =\left(\begin{array}{ccc}
383 & 108 & 151 \\
260 & 81 & 130 \\
-734 & -216 & -286
\end{array}\right)
\end{aligned}
$$

5. Verify Cayley-Hamilton theorem, find A^{4} and A^{-1} when $\mathrm{A}=\left[\begin{array}{ccc}2 & -1 & 2 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]$

Solution: The characteristic equation of A is $\lambda^{3}-S_{1} \lambda^{2}+S_{2} \lambda-S_{3}=0$ where
$S_{1}=$ Sum of the main diagonal elements $=2+2+2=6$
$S_{2}=$ Sum of the minirs of the main diagonal elements $=3+2+3=8$
$S_{3}=|A|=2(4-1)+1(-2+1)+2(1-2)=2(3)-1-2=3$
Therefore, the characteristic equation is $\lambda^{3}-6 \lambda^{2}+8 \lambda-3=0$
To prove that: $A^{3}-6 A^{2}+8 A-3 I=0$

$$
\begin{align*}
& A^{2}=\left[\begin{array}{ccc}
2 & -1 & 2 \\
-1 & 2 & -1 \\
1 & -1 & 2
\end{array}\right]\left[\begin{array}{ccc}
2 & -1 & 2 \\
-1 & 2 & -1 \\
1 & -1 & 2
\end{array}\right]=\left[\begin{array}{ccc}
7 & -6 & 9 \\
-5 & 6 & -6 \\
5 & -5 & 7
\end{array}\right] \tag{1}\\
& A^{3}=A^{2}(A)=\left[\begin{array}{ccc}
7 & -6 & 9 \\
-5 & 6 & -6 \\
5 & -5 & 7
\end{array}\right]\left[\begin{array}{ccc}
2 & -1 & 2 \\
-1 & 2 & -1 \\
1 & -1 & 2
\end{array}\right]=\left[\begin{array}{ccc}
29 & -28 & 38 \\
-22 & 23 & -28 \\
22 & -22 & 29
\end{array}\right]
\end{align*}
$$

$A^{3}-6 A^{2}+8 A-3 I$
$=\left[\begin{array}{ccc}29 & -28 & 38 \\ -22 & 23 & -28 \\ 22 & -22 & 29\end{array}\right]-\left[\begin{array}{ccc}42 & -36 & 54 \\ -30 & 36 & -36 \\ 30 & -30 & 42\end{array}\right]+\left[\begin{array}{ccc}16 & -8 & 16 \\ -8 & 16 & -8 \\ 8 & -8 & 16\end{array}\right]-\left[\begin{array}{ccc}3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3\end{array}\right]$

$$
=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]=0
$$

To find A^{4} :

(l) $\Rightarrow A^{3}-6 A^{2}+8 A-3 I=0 \Rightarrow A^{3}=6 A^{2}-8 A+3 I$

Multiply by A on both sides, $A^{4}=6 A^{3}-8 A^{2}+3 A=6\left(6 A^{2}-8 A+3 I\right)-8 A^{2}+3 A$
Therefore, $A^{4}=36 A^{2}-48 A+18 I-8 A^{2}+3 A=28 A^{2}-45 A+18 I$
Hence, $A^{4}=28\left[\begin{array}{ccc}7 & -6 & 9 \\ -5 & 6 & -6 \\ 5 & -5 & 7\end{array}\right]-45\left[\begin{array}{ccc}2 & -1 & 2 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]+18\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
$=\left[\begin{array}{crr}196 & -168 & 252 \\ -140 & 168 & -168 \\ 140 & -140 & 196\end{array}\right]-\left[\begin{array}{crr}90 & -45 & 90 \\ -45 & 90 & -45 \\ 45 & -45 & 90\end{array}\right]+\left[\begin{array}{ccc}18 & 0 & 0 \\ 0 & 18 & 0 \\ 0 & 0 & 18\end{array}\right]=\left[\begin{array}{ccc}124 & -123 & 162 \\ -95 & 96 & -123 \\ 95 & -95 & 124\end{array}\right]$
To find A^{-1} :
Multiplying (1) by $A^{-1}{ }_{,} A^{2}-6 A+8 I-3 A^{-1}=0$

$$
\begin{aligned}
& \Rightarrow 3 A^{-1}=A^{2}-6 A+8 I \\
& \Rightarrow 3 A^{-1}=\left[\begin{array}{ccc}
7 & -6 & 9 \\
-5 & 6 & -6 \\
5 & -5 & 7
\end{array}\right]-6\left[\begin{array}{ccc}
2 & -1 & 2 \\
-1 & 2 & -1 \\
1 & -1 & 2
\end{array}\right]+8\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
7 & -6 & 9 \\
-5 & 6 & -6 \\
5 & -5 & 7
\end{array}\right]-\left[\begin{array}{ccc}
-12 & 6 & -12 \\
6 & -12 & 6 \\
-6 & 6 & -12
\end{array}\right]+\left[\begin{array}{lll}
8 & 0 & 0 \\
0 & 8 & 0 \\
0 & 0 & 8
\end{array}\right]=\left[\begin{array}{ccc}
3 & 0 & -3 \\
1 & 2 & 0 \\
-1 & 1 & 3
\end{array}\right]
\end{aligned}
$$

$\Rightarrow A^{-1}=\frac{1}{3}\left[\begin{array}{ccc}3 & 0 & -3 \\ 1 & 2 & 0 \\ -1 & 1 & 3\end{array}\right]$

