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5.5 QUANTIZATION : 

Quantization, in mathematics and digital signal processing, is the process of mapping a 

large set of input values to a (countable) smaller set. Rounding and truncation are typical 

examples of quantization processes. Quantization is involved to some degree in nearly all digital 

signal processing, as the process of representing a signal in digital form ordinarily involves 

rounding. Quantization also forms the core of essentially all lossy compression algorithms. The 

difference between an input value and its quantized value (such as round-off error) is referred to 

as quantization error. A device or algorithmic function that performs quantization is called a 

quantizer. An analog-to-digital converter is an example of a quantizer. 

It refers to the process of approximating the continuous set of values in the image data 

with a finite (preferably small) set of values. The input to a quantizer is the original data, and the 

output is always one among a finite number of levels. The quantizer is a function whose set of 

output values are discrete, and usually finite. Obviously, this is a process of approximation, and a 

good quantizer is one which represents the original signal with minimum loss or distortion. The 

difference between the actual analog value and quantized digital value due is called quantization 

error. This error is due either to rounding or truncation. 

 Quantization noise is a model of quantization error introduced by quantization in the 

analog-to-digital conversion (ADC) in telecommunication systems and signal processing. It is a 

rounding error between the analog input voltage to the ADC and the output digitized value. The 

noise is non-linear and signal-dependent. It can be modelled in several different ways. In an ideal 

analog-to-digital converter, where the quantization error is uniformly distributed between −1/2 
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LSB and +1/2 LSB, and the signal has a uniform distribution covering all quantization levels, the 

signal-to-noise ratio (SNR) can be calculated from The most common test signals that fulfil this 

are full amplitude triangle waves and sawtooth waves. In this case a 16-bit ADC has a maximum 

signal-to-noise ratio of 6.0206 × 16 = 96.33 dB. When the input signal is a full-amplitude sine 

wave the distribution of the signal is no longer uniform, and the corresponding equation is 

instead Here, the quantization noise is once again assumed to be uniformly distributed. When the 

input signal has a high amplitude and a wide frequency spectrum this is the case. In this case a 

16-bit ADC has a maximum signal-to-noise ratio of 98.09 dB. The 1.761 difference in signal-to-

noise only occurs due to the signal being a full-scale sine wave instead of a triangle/sawtooth. 

5.6 Basic properties of quantization 

Because quantization is a many-to-few mapping, it is an inherently non-linear and irreversible 

process (i.e., because the same output value is shared by multiple input values, it is impossible in 

general to recover the exact input value when given only the output value). 

              The set of possible input values may be infinitely large, and may possibly be continuous 

and therefore uncountable (such as the set of all real numbers, or all real numbers within some 

limited range). The set of possible output values may be finite or countably infinite. The input 

and output sets involved in quantization can be defined in a rather general way. For example, 

vector quantization is the application of quantization to multi-dimensional (vector-valued) input 

data 

Analog-to-digital converter (ADC) 

Outside the realm of signal processing, this category may simply be called rounding or scalar 

quantization. An ADC can be modeled as two processes: sampling and quantization. Sampling 

converts a voltage signal (function of time) into a discrete-time signal (sequence of real 

numbers). Quantization replaces each real number with an approximation from a finite set of 

discrete values (levels), which is necessary for storage and processing by numerical methods. 

Most commonly, these discrete values are represented as fixed-point words (either proportional 

to the waveform values or companded) or floating-point words. Common word-lengths are 8-bit 

(256 levels), 16-bit (65,536 levels), 32-bit (4.3 billion levels), and so on, though any number of 

quantization levels is possible (not just powers of two). Quantizing a sequence of numbers 

produces a sequence of quantization errors which is sometimes modeled as an additive random 

signal called quantization noise because of its stochastic behavior. The more levels a quantizer 

uses, the lower is its quantization noise power. 

           In general, both ADC processes lose some information. So discrete-valued signals are 

only an approximation of the continuous-valued discrete-time signal, which is itself only an 

approximation of the original continuous-valued continuous-time signal. But both types of 

approximation errors can, in theory, be made arbitrarily small by good design. 
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5.7 FIXED POINT AND FLOATING POINT NUMBER REPRESENTATIONS: 

 Fixed Point Representation: In computing, a fixed-point number representation is a real 

data type for a number that has a fixed number of digits after (and sometimes also before) the 

radix point (e.g., after the decimal point '.' in English decimal notation). Fixed-point number 

representation can be compared to the more complicated (and more computationally demanding) 

floating point number representation. Fixed-point numbers are useful for representing fractional 

values, usually in base 2 or base 10, when the executing processor has no floating point unit 

(FPU) or if fixed-point provides improved performance or accuracy for the application at hand. 

Most low-cost embedded microprocessors and microcontrollers do not have an FPU. The two 

most common fixed-point types are decimal and binary. Decimal fixed-point types have a scaling 

factor that is a power of ten, for binary fixed-point types it is a power of two. Binary fixed-point 

types are most commonly used, because the rescaling operations can be implemented as fast bit 

shifts. Binary fixed-point numbers can represent fractional powers of two exactly, but, like 

binary floating-point numbers, cannot exactly represent fractional powers of ten. If exact 

fractional powers of ten are desired, then a decimal format should be used. For example, one-

tenth (0.1) and one-hundredth (0.01) can be represented only approximately by binary fixed-

point or binary floating-point representations, while they can be represented exactly in decimal 

fixed-point or decimal floating-point representations. 

5.8 Floating Point Representation: 

 In computing, floating point describes a system for numerical representation in which a 

string of digits (or bits) represents a rational number. The term floating point refers to the fact 

that the radix point (decimal point, or, more commonly in computers, binary point) can "float"; 

that is, it can be placed anywhere relative to the significant digits of the number. This position is 

indicated separately in the internal representation, and floating-point representation can thus be 

thought of as a computer realization of scientific notation. The advantage of floating-point 

representation over fixed-point (and integer) representation is that it can support a much wider 

range of values. For example, a fixed-point representation that has seven decimal digits, with the 

decimal point assumed to be positioned after the fifth digit, can represent the numbers 12345.67, 

8765.43, 123.00, and so on, whereas a floating-point representation (such as the IEEE 754 

decimal32 format) with seven decimal digits could in addition represent 1.234567, 123456.7, 

0.00001234567, 1234567000000000, and so on. The floating-point format needs slightly more 

storage (to encode the position of the radix point), so when stored in the same space, floating-

point numbers achieve their greater range at the expense of slightly less precision. 

5.9 QUANTIZATION NOISE POWER: 

Quantization refers to the process of approximating the continuous set of values in the 

image data with a finite (preferably small) set of values. The input to a quantizer is the original 

data, and the output is always one among a finite number of levels. The quantizer is a function 



whose set of output values are discrete, and usually finite. Obviously, this is a process of 

approximation, and a good quantizer is one which represents the original signal with minimum 

loss or distortion. 

Finite register lengths and A/D converters cause errors in:- (i) Input quantisation. (ii) 

Coefficient (or multiplier) quantisation (iii) Products of multiplication truncated or rounded due 

to machine length 

Truncation: simply chop off the remaining digits; also called rounding to zero. 

 

Round to nearest: round to the nearest value, with ties broken in one of two 

ways. The result may round up or round down. 

  

5.9 TRUNCATION AND ROUNDING: ROUNDING ERROR:  

A round-off error, also called rounding error, is the difference between the calculated 

approximation of a number and its exact mathematical value. Numerical analysis specifically 

tries to estimate this error when using approximation equations and/or algorithms, especially 

when using finite digits to represent real numbers (which in theory have infinite digits). This is a 

form of quantization error. Truncation: simply chop off the remaining digits; also called 

rounding to zero. 0.142857 ≈ 0.142 (dropping all significant digits after 3rd) Round to nearest: 

round to the nearest value, with ties broken in one of two ways. The result may round up or 

round down. TRUNCATION: In mathematics, truncation is the term for limiting the number of 

digits right of the decimal point, by discarding the least significant ones. For example, consider 

the real numbers 5.6341432543653654 32.438191288 -6.3444444444444 To truncate these 

numbers to 4 decimal digits, we only consider the 4 digits to the right of the decimal point. The 

result would be: 5.6341 32.4381 -6.3444 Note that in some cases, truncating would yield the 

same result as rounding, but truncation does not round up or round down the digits; it merely 

cuts off at the specified digit. The truncation error can be twice the maximum error in rounding. 

5.10 ROUND OFF: 
 
           A round-off error, also called rounding error, is the difference between the calculated 

approximation of a number and its exact mathematical value. Numerical analysis 

specifically tries to estimate this error when using approximation equations and/or 

algorithms, especially when using finite digits to represent real numbers (which in theory 

have infinite digits). This is a form of quantization error. 

 

 

Rounding example: 



As an example, rounding a real number to the nearest integer value forms a very basic type of 

quantizer – a uniform one. A typical (mid-tread) uniform quantizer with a quantization step size 

equal to some value can be expressed as 

, 

where the notation or depict the floor function. For simple rounding to the nearest 

integer, the step size is equal to 1. With or with equal to any other integer value, this 

quantizer has real-valued inputs and integer-valued outputs, although this property is not a 

necessity – a quantizer may also have an integer input domain and may also have non-integer 

output values. The essential property of a quantizer is that it has a countable set of possible 

output values that has fewer members than the set of possible input values. The members of the 

set of output values may have integer, rational, or real values (or even other possible values as 

well, in general – such as vector values or complex numbers). 

When the quantization step size is small (relative to the variation in the signal being measured), 

it is relatively simple to show
[3][4][5][6][7][8]

 that the mean squared error produced by such a 

rounding operation will be approximately . Mean squared error is also called the 

quantization noise power. Adding one bit to the quantizer halves the value of Δ, which reduces 

the noise power by the factor ¼.  In terms of decibels, the noise power change is 

  

Because the set of possible output values of a quantizer is countable, any quantizer can be 

decomposed into two distinct stages, which can be referred to as the classification stage (or 

forward quantization stage) and the reconstruction stage (or inverse quantization stage), where 

the classification stage maps the input value to an integer quantization index and the 

reconstruction stage maps the index to the reconstruction value that is the output 

approximation of the input value. For the example uniform quantizer described above, the 

forward quantization stage can be expressed as 

, 

and the reconstruction stage for this example quantizer is simply 

. 

This decomposition is useful for the design and analysis of quantization behavior, and it 

illustrates how the quantized data can be communicated over a communication channel – a 

source encoder can perform the forward quantization stage and send the index information 

through a communication channel (possibly applying entropy coding techniques to the 

quantization indices), and a decoder can perform the reconstruction stage to produce the output 

approximation of the original input data. In more elaborate quantization designs, both the 
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forward and inverse quantization stages may be substantially more complex. In general, the 

forward quantization stage may use any function that maps the input data to the integer space of 

the quantization index data, and the inverse quantization stage can conceptually (or literally) be a 

table look-up operation to map each quantization index to a corresponding reconstruction value. 

This two-stage decomposition applies equally well to vector as well as scalar quantizers. 

 

5.11 TRUNCATION: 
 

In mathematics, truncation is the term for limiting the number of digits right of the 

decimal point, by discarding the least significant ones. 

For example, consider the real numbers 

5.6341432543653654 

32.438191288 

https://en.wikipedia.org/wiki/Vector_quantization


-6.3444444444444 

To truncate these numbers to 4 decimal digits, we only consider the 4 digits to the right 

of the decimal point. 

The result would be 

5.6341 

32.4381 

-6.3444 

Note that in some cases, truncating would yield the same result as  rounding, but 

truncation does not round up or round down the digits; it merely cuts off at the specified digit. 

The truncation error can be twice the maximum error in rounding. 
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5.12 LIMIT CYCLE OSCILLATIONS: 

         For an IIR filter implemented with infinite precision arithmetic the output should approach 

zero in the steady state if the input is zero and it should approach a constant value if the input is a 

constant. However , with an implementation using a finite length register an output can occur 

even with zero input. The output may be a fixed value or it may oscillate between finite positive 

and negative values. This effect is referred to as (zero input) limit cycle oscillation.  

A limit cycle, sometimes referred to as a multiplier round off limit cycle, is a low-level 

oscillations that can exist in an otherwise stable filter as a result of the nonlinearity associated 

with rounding (or truncating) internal filter calculations . Limit cycles require recursion to exist 

and do not occur in non-recursive FIR filters. There are at least three ways of dealing with limit 

cycles when fixed-point arithmetic is used. One is to determine a bound on the maximum limit 

cycle amplitude, expressed as an integral number of quantization steps. It is then possible to 

choose a word length that makes the limit cycle amplitude acceptably low. Alternately, limit 

cycles can be prevented by randomly rounding calculations up or down. However, this approach 

is complicated to implement. The third approach is to properly choose the filter realization 

structure and then quantize the filter calculations using magnitude approach. This approach has 

the disadvantage of producing more round off noise than truncation or rounding. 

 

5.13 LIMIT CYCLE OVERFLOW: 
 

  The addition of two fixed point arithmetic numbers cause overflow when the sum 

exceeds the word ze available to store the sum. This overflow caused by adder make the filter 

output to oscillate between maximum amplitude limits. Such limit cycles have been referred to 

as overflow oscillations. The limit cycles occur as a result of quantization effect in 

multiplication. The amplitudes of the output during a limit cycle are confined to a range of 

values called the dead band of the filter. 

5.14 GIBB’S OSCILLATION: 

  The truncation of Fourier series is known to introduce the unwanted ripples in the 

frequency response characteristics H(w) due to non uniform convergence of Fourier series at a 

discontinuity .These ripples or oscillatory behaviour near the band edge of the filter is known 

as “Gibb’s phenomenon or Gibb’s oscillation “. 

METHODS TO REDUCE GIBB’S OSCILLATION: 

There are two methods to reduce Gibb’s phenomenon 

1. The discontinuity between pass band and stop band in the frequency response is avoided by 

introducing the transition between the pass band and stop band. 

2. Another technique used for the reduction of Gibb’s phenomenon is by using window 

function that contains a taper which decays towards zero gradually instead abruptly. 



5.15 SCALING: 

Saturation arithmetic eliminates limit cycle due to overflow, but it causes undesirable 

signal distortion due to the non-linearity of the clipper. In order to limit the amount of non-linear 

distortion, it is important to scale the input signal and the unit sample response between the input 

and any internal summing node in the system such that overflows becomes a rare event. 

5.16 DYNAMIC RANGE: 

The dynamic range of a signal processing system can be defined as the 

maximum dB level sustainable without overflow (or other distortion) minus the dB level of the 

``noise floor''. 

Similarly, the dynamic range of a signal can be defined as its maximum decibel level 

minus its average ``noise level'' in dB. For digital signals, the limiting noise is 

ideally quantization noise. 

Quantization noise is generally modeled as a uniform random variable between plus and 

minus half the least significant bit (since rounding to the nearest representable sample value is 

normally used). If   denotes the quantization interval, then the maximum quantization-error 

magnitude is , and its variance (``noise power'') is  (see §G.3 for a derivation of 

this value). 

The rms level of the quantization noise is therefore , or about 60% 

of the maximum error. 

The number system (see Appendix G and number of bits chosen to represent signal 

samples determines their available dynamic range. Signal processing operations such as digital 

filtering may use the same number system as the input signal, or they may use extra bits in the 

computations, yielding an increased ``internal dynamic range''. 

Since the threshold of hearing is near 0 dB SPL, and since the ``threshold of pain'' is 

often defined as 120 dB SPL, we may say that the dynamic range of human hearing is 

approximately 120 dB. 

The dynamic range of magnetic tape is approximately 55 dB. To increase the dynamic 

range available for analog recording on magnetic tape, companding is often used. ``Dolby A'' 

adds approximately 10 dB to the dynamic range that will fit on magnetic tape (by compressing 

the signal dynamic range by 10 dB), while DBX adds 30 dB (at the cost of more ``transient 

distortion''). In general, any dynamic range can be mapped to any other dynamic range, subject 

only to noise limitations. 
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