
SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

1

Unit-V Windows Mobile App Development

Introduction to windows phone 8, Application life cycle, UI designing and Events,

Building, Files and storage, Network communication, Push notification, Background agents,

Maps and Locations, Data access and storage, Introduction to silverlight and XML, Running and

debugging the app, Deploying and publishing.

1. Introduction to windows phone 8

Microsoft was developing Windows Mobile 7 when it realized that the phone wouldn’t

be an appealing product for consumers who were starting to get used to iPhone or Android

devices. So its developers dropped the project and started from scratch to build a totally new

platform: Windows Phone 7. The result was really different from the other competitors: a new

user interface, based on a flat design style called Microsoft Design style (once known as Metro);

and deep integration with social networks and all the Microsoft services, like Office, SkyDrive,

and Xbox.

The current version of the platform (which will be covered in this series) is Windows

Phone 8; in the middle, Microsoft released an update called Windows Phone 7.5 that added many

new consumer features but, most of all, improved the developer experience by adding many new

APIs.

Windows Phone 8 is a fresh start for the platform: Microsoft has abandoned the old stack

of technologies used in Windows Phone 7 (the Windows Mobile kernel, Silverlight, XNA) to

embrace the new features introduced in Windows 8, like the new kernel, the Windows Runtime,

and the native code (C++) support.

1.1 Microsoft has released three updates:

 Update 1 (or GDR1), which added some improvements in Internet Explorer, Wi-Fi

connectivity, and messaging experience

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

2

 Update 2 (or GDR2), which improved support for Google accounts, Xbox Music, and

Skype, added FM radio support, and expanded the availability of the Data Sense

application to keep track of the data traffic

 Update 3 (or GDR3), which added support for a new resolution (1080p), driving mode,

screen lock orientation, and better storage management, and improved the Bluetooth and

Wi-Fi stack

1.2 The Hardware

Windows Phone can run on a wide range of devices, with different form factors and

hardware capabilities. However, Microsoft has defined a set of hardware guidelines that all

manufacturers need to follow to build a Windows Phone device. In addition, vendors can’t

customize the user interface or the operating system; all the phones, regardless of the producer,

offer the same familiar user experience.

This way, Windows Phone can take the best from both worlds: a wide range of devices

means more opportunities, because Windows Phone can run well on cheap and small devices in

the same way it works well on high-resolution, powerful phones. A more controlled hardware,

instead, makes the lives of developers much easier, because they can always count on features

like sensors or GPS.

Here are the key features of a Windows Phone 8 device:

 multi-core processor support (dual core and quad core processors)

 at least 512 MB of RAM (usually 1 GB or 2 GB on high-end devices)

 at least 4 GB of storage (that can be expanded with a Micro SD)

 camera

 motion sensors (accelerometer, gyroscope, compass), optional

 proximity sensor, optional

 Wi-Fi and 3G connection

 GPS

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

3

 four supported resolutions: WVGA (480 × 800), WXGA (768 × 1280), 720p(720 ×

1280), and 1080p (1080 × 1920)

 three hardware buttons: Back, Start, and Search

1.3 The Windows Runtime

The Windows Runtime is the new API layer that Microsoft introduced in Windows 8,

and it’s the foundation of a new and more modern approach to developing applications. In fact,

unlike the .NET framework, it’s a native layer, which means better performance. Plus, it supports

a wide range of APIs that cover many of the new scenarios that have been introduced in recent

years: geolocation, movement sensors, NFC, and much more. In the end, it’s well suited for

asynchronous and multi-threading scenarios that are one of the key requirements of mobile

applications; the user interface needs to be always responsive, no matter which operation the

application is performing.

Under the hood of the operating system, Microsoft has introduced the Windows Phone

Runtime. Compared to the original Windows Runtime, it lacks some features (specifically, all

the APIs that don’t make much sense on a phone, like printing APIs), but it adds several new

ones specific to the platform (like hub integration, contacts and appointments access, etc.).

1.4 Microsoft introduced three features:

 The XAML stack has been ported directly from Windows Phone 7 instead of from

Windows 8. This means that the XAML is still managed and not native, but it's

completely aligned with the previous one so that, for example, features like behaviors, for

which support has been added only in Windows 8.1, are still available). This way, you’ll

be able to reuse all the XAML written for Windows Phone 7 applications without having

to change it or fix it.

 Thanks to a feature called quirks mode, applications written for Windows Phone 7 are

able to run on Windows Phone 8 devices without having to apply any change in most

cases. This mode is able to translate Windows Phone 7 API calls to the related Windows

Runtime ones.

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

4

 The Windows Phone Runtime includes a layer called .NET for Windows Phone, which

is the subset of APIs that were available in Windows Phone 7. Thanks to this layer, you’ll

be able to use the old APIs in a Windows Phone 8 application, even if they’ve been

replaced by new APIs in the Windows Runtime. This way, you’ll be able to migrate your

old applications to the new platform without having to rewrite all the code.

Like the full Windows Runtime, Windows Phone 8 has added support for C++ as a

programming language, while the WinJS layer, which is a library that allows developers to

create Windows Store apps using HTML and JavaScript, is missing. If you want to develop

Windows Phone applications using web technologies, you’ll have to rely on

the WebBrowser control (which embeds a web view in the application) and make use of

features provided by frameworks like PhoneGap.

1.5 The Development Tools

The official platform to develop Windows Phone applications is Visual Studio 2012,

although support has also been added to the Visual Studio 2013 commercial versions. The major

difference is that while Visual Studio 2012 still allows you to open and create Windows Phone 7

projects, Visual Studio 2013 can only be used to develop Windows Phone 8 applications.

There are no differences between the two versions when we talk about Windows Phone

development: since the SDK is the same, you’ll get the same features in both environments, so

we’ll use Visual Studio 2012 as a reference for this series.

To start, you’ll need to download the Windows Phone 8 SDK from the official developer

portal. This download is suitable for both new developers and Microsoft developers who already

have a commercial version of Visual Studio 2012. If you don’t already have Visual Studio

installed, the setup will install the free Express version; otherwise, it will simply install the SDK

and the emulator and add them to your existing Visual Studio installation.

The setup will also install Blend for Windows Phone, a tool made by Microsoft

specifically for designers. It’s a XAML visual editor that makes it easier to create a user interface

for a Windows Phone application. If you’re a developer, you’ll probably spend most of the time

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

5

manually writing XAML in the Visual Studio editor, but it can be a valid companion when it

comes to more complex things like creating animations or managing the visual states of a

control.

To install the Windows Phone 8 SDK you’ll need a computer with Windows 8

Pro orWindows 8 Enterprise 64-bit. This is required since the emulator is based on Hyper-V,

which is the Microsoft virtualization technology that is available only in professional versions of

Windows. In addition, there’s a hardware requirement: your CPU needs to support the Second

Level Address Translation (SLAT), which is a CPU feature needed for Hyper-V to properly run.

If you have a newer computer, you don’t have to worry; basically all architectures from Intel i5

and further support it. Otherwise, you’ll still be able to install and the use the SDK, but you’ll

need a real device for testing and debugging.

1.6 The Emulator

Testing and debugging a Windows Phone app on a device before submitting it to the

Windows Phone Store is a requirement; only on a real phone will you be able to test the true

performance of the application. During daily development, using the device can slow you down.

This is when the emulator is useful, especially because you’ll easily be able to test different

conditions (like different resolutions, the loss of connectivity, etc.).

The emulator is a virtual machine powered by Hyper-V that is able to interact with the

hardware of your computer. If you have a touch monitor, you can simulate the phone touch

screen; if you have a microphone, you can simulate the phone microphone, etc. In addition, the

emulator comes with a set of additional tools that are helpful for testing some scenarios that

would require a physical device, like using the accelerometer or the GPS sensor.

You’ll be able to launch the emulator directly from Visual Studio. There are different

versions of the emulator to match the different resolutions and memory sizes available on the

market.

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

6

2. Windows application life cycle

The following image illustrates the lifecycle of a Windows Phone application. In this

diagram, the circles are application states. The rectangles show either application- or page-level

events where applications should manage their state.

2.1 The Launching Event

A user can launch a new instance of your app by selecting it from the installed

applications list or from a Tile on Start in addition to other means, such as tapping on a toast

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

7

notification associated with the app or selecting the app from the Photos Extras menu. When

your app is launched this way, it should present a user interface that makes it clear to the user

that a new instance the app was launched. It’s ok to provide context about the user’s previous

experience with the app, such as a list of recent documents the user viewed, but it shouldn’t

appear as though the user is returning to a previously running instance of the app.

When a new instance of your app is launched, the Launching event is raised. To help

ensure that your app loads quickly, you should execute as little code as possible in the handler

for this event. In particular, avoid resource-intensive tasks like file and network operations. You

should perform these tasks on a background thread after your app has loaded for the best user

experience.

2.2 Running

After being launched, an app is Running. It continues to run until the user navigates

forward, away from the app, or backwards past the app’s first page. Windows Phone apps

shouldn’t provide a mechanism for the user to quit or exit. Apps also leave the Running state

when the phone’s lock screen engages unless you have disabled application idle detection. For

more information, see Idle detection for Windows Phone 8.

2.3 The OnNavigatedFrom Method

The OnNavigatedFrom(NavigationEventArgs) method is called whenever the user

navigates away from one of the pages in your app. This can happen as the result of normal page

navigation within your application, but it is also called if the user navigates away from your app.

Whenever this method is called, your application should store the page state so that it can be

restored if the user returns to the page and the page is no longer in memory. The exception to this

is backward navigation. The NavigationMode property can be used to determine if the navigation

is a backward navigation, in which case there is no need to save state because the page will be re-

created the next time it is visited.

2.4 The Deactivated Event

The Deactivated event is raised when the user navigates forward, away from your app, by

pressing the Start button or by launching another application. The Deactivated event is also

raised if your application launches a Chooser. This event is also raised if the device’s lock screen

is engaged, unless application idle detection is disabled.

In the handler for the Deactivated event, your application should save any unsaved

application data so that it can be restored at a later time, if necessary. Windows Phone

applications are provided with the State object, which is a dictionary you can use to store

application state. If the operating system tombstones your app, as discussed below, it will save

this dictionary and return it to you if your app is reactivated..

It is possible for an application to be completely terminated after Deactivated is called.

When an application is terminated, its state dictionary is not preserved. So you should also store

any unsaved state that should be persisted across application instances to isolated storage during

the Deactivated event.

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

8

2.5 Dormant

When the user navigates forward, away from an app, after the Deactivated event is

raised, the operating system will attempt to put the app into a dormant state. In this state, all of

the application’s threads are stopped and no processing takes place, but the application remains

intact in memory. If the app is reactivated from the dormant, it doesn’t need to do anything to re-

establish state, because it has been preserved.

If new apps are launched after an app has been made dormant, and these applications

requires more memory than is available to provide a good user experience, the operating system

will begin to tombstone dormant applications to free up memory.

2.6 Tombstoned

A tombstoned app has been terminated, but the operating system preserves information

about its navigation state and also preserves the state dictionaries the app populated

during Deactivated. The device will maintain tombstoning information for up to five apps at a

time. If an app is tombstoned and the user navigates back to the application, it will be relaunched

and the application can use the preserved data to restore state.

2.7 The Activated Event

The Activated event is called when the user returns to a dormant or tombstoned app.

Your app should check the IsApplicationInstancePreserved property of the event args to

determine whether it is returning from being dormant or tombstoned.

If IsApplicationInstancePreserved is true, then your app was dormant and state was

automatically preserved by the operating system. If it is false, then your app was tombstoned and

should use the state dictionary to restore application state

2.8 The OnNavigatedTo Method

The OnNavigatedTo(NavigationEventArgs) method is called when the user navigates to a

page. This includes when the app is first launched, when the user navigates between the pages of

the app, and when the app is relaunched after being made dormant or tombstoned. In this

method, your app should check to see whether the page is a new instance. If it is not, then page

state does not need to be restored. If the page is a new instance, and there is data in the state

dictionary for the page, then you should use this data to restore the state of the page’s UI.

2.9 The Closing Event

The Closing event is raised when the user navigates backwards past the first page of an

app. In this case, the app is terminated and no state is saved. In the Closing event handler, your

app can save data that should persist across instances. There is a limit of 10 seconds for an app to

complete all application and page navigation events. If this limit is exceeded, the application is

terminated. For this reason, it is a good idea to save persistent state throughout the lifetime of the

application and avoid having to do large amounts of file I/O in the Closing event handle

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

9

3. UI Design Guidelines for Windows Phone 8

3.1 App bar and command bar

Command bars (also called "app bars") provide users with easy access to your app's most

common tasks, and can be used to show commands or options that are specific to the user's

context, such as a photo selection or drawing mode. They can also be used for navigation among

app pages or between app sections. Command bars can be used with any navigation pattern.

The command bar is divided into 4 main areas:

 The "see more" [•••] button is shown on the right of the bar. Pressing the "see more" [•••]

button has 2 effects: it reveals the labels on the primary command buttons, and it opens

the overflow menu if any secondary commands are present. In the newest SDK, the

button will not be visible when no secondary commands and no hidden labels are

present. OverflowButtonVisibility property allows apps to change this default auto-hide

behavior.

 The content area is aligned to the left side of the bar. It is shown if the Content property is

populated.

 The primary command area is aligned to the right side of the bar, next to the "see more"

[•••] button. It is shown if the PrimaryCommands property is populated.

 The overflow menu is shown only when the command bar is open and

the SecondaryCommands property is populated. The new dynamic overflow behavior

will automatically move primary commands into the SecondaryCommands area when

space is limited.

Command Bar

https://msdn.microsoft.com/library/windows/apps/windows.ui.xaml.controls.commandbar.overflowbuttonvisibility.aspx
https://msdn.microsoft.com/library/windows/apps/xaml/windows.ui.xaml.controls.contentcontrol.content.aspx
https://msdn.microsoft.com/library/windows/apps/xaml/windows.ui.xaml.controls.commandbar.primarycommands.aspx
https://msdn.microsoft.com/library/windows/apps/xaml/windows.ui.xaml.controls.commandbar.secondarycommands.aspx

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

10

Eg.

3.2 Buttons

A button gives the user a way to trigger an immediate action.

Create the button in XAML.

<Button Content="Submit" Click="SubmitButton_Click"/>

Or create the button in code.

Button submitButton = new Button();

submitButton.Content = "Submit";

submitButton.Click += SubmitButton_Click;

// Add the button to a parent container in the visual tree.

stackPanel1.Children.Add(submitButton);

Handle the Click event.

private async void SubmitButton_Click(object sender, RoutedEventArgs e)

{

// Call app specific code to submit form. For example:

Sample Code

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

11

// form.Submit();

Windows.UI.Popups.MessageDialog messageDialog = new

Windows.UI.Popups.MessageDialog("Thank you for your submission.");

await messageDialog.ShowAsync();

}

3.3 Check boxes

A check box is used to select or deselect action items. It can be used for a single item or for

a list of multiple items that a user can choose from. The control has three selection states:

unselected, selected, and indeterminate. Use the indeterminate state when a collection of

sub-choices have both unselected and selected states.

This XAML creates a single check box that is used to agree to terms of service before a form

can be submitted.

<CheckBox x:Name="termsOfServiceCheckBox" Content="I agree to the terms of

service."/>

the same check box created in code.

CheckBox checkBox1 = new CheckBox();

checkBox1.Content = "I agree to the terms of service.";

Button

Check Box

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

12

3.4 Calendar view

A calendar view lets a user view and interact with a calendar that they can navigate by

month, year, or decade. A user can select a single date or a range of dates. It doesn't have a

picker surface and the calendar is always visible.

The calendar view is made up of 3 separate views: the month view, year view, and decade

view. By default, it starts with the month view open.

This example shows how to create a simple calendar view.

<CalendarView/>

The resulting calendar view looks like this:

calendarView1.SelectedDates.Add(DateTimeOffset.Now);

calendarView1.SelectedDates.Add(new DateTime(1977, 1, 5));

Calender View

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

13

Customizing the calendar view's appearance

3.5 Date picker

The date picker gives you a standardized way to let users pick a localized date value using

touch, mouse, or keyboard input.

to create a simple date picker with a header.

<DatePicker x:Name=birthDatePicker Header="Date of birth"/>

or

DatePicker birthDatePicker = new DatePicker(); birthDatePicker.Header = "Date of

birth";

The resulting date picker looks like this:

Properties of Calender View

Date Picker

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

14

3.6 Time picker

The time picker gives you a standardized way to let users pick a time value using touch,

mouse, or keyboard input.

 to create a simple time picker with a header.

<TimePicker x:Name=arrivalTimePicker Header="Arrival time"/>

Or

TimePicker arrivalTimePicker = new TimePicker();

arrivalTimePicker.Header = "Arrival time";

The resulting time picker looks like this:

3.7 Dialogs

Dialogs is transient UI elements that appear when something happens that requires

notification, approval, or additional information from the user.

private async void displayDeleteFileDialog()

{

Time Picker

Dialog Control

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

15

ContentDialog deleteFileDialog = new ContentDialog()

{

Title = "Delete file permanently?",

Content = "If you delete this file, you won't be able to recover it. Do

you want to delete it?",

PrimaryButtonText = "Cancel",

SecondaryButtonText = "Delete file permanently"

};

ContentDialogResult result = await deleteFileDialog.ShowAsync();

// Delete the file if the user clicked the second button.

// Otherwise, do nothing.

if (result == ContentDialogResult.Secondary)

{

// Delete the file.

}

}

3.8 Hyperlinks

Hyperlinks navigate the user to another part of the app, to another app, or launch a specific

uniform resource identifier (URI) using a separate browser app. There are two ways that you

can add a hyperlink to a XAML app: the Hyperlink text element

and HyperlinkButton control.

This example shows how to use a Hyperlink text element inside of a TextBlock.

The hyperlink appears inline and flows with the surrounding text:

Sample Code

https://msdn.microsoft.com/library/windows/apps/windows.ui.xaml.controls.textblock.aspx

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

16

3.9 Images

To display an image, you can use either the Image object. An Image object renders an

image.

to create an image by using the Image object.

<Image Width="200" Source="licorice.jpg" />

Here's the rendered Image object.

Hyperlink

image

https://msdn.microsoft.com/library/windows/apps/xaml/windows.ui.xaml.controls.image.aspx

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

17

3.10Radio buttons

Radio buttons let users select one option from two or more choices. Each option is

represented by one radio button; a user can select only one radio button in a radio button

group.

private void BGRadioButton_Checked(object sender, RoutedEventArgs e)

{

 RadioButton rb = sender as RadioButton;

 if (rb != null && BorderExample1 != null)

 {

 string colorName = rb.Tag.ToString();

 switch (colorName)

 {

 case "Yellow":

 BorderExample1.Background = new SolidColorBrush(Colors.Yellow);

 break;

 case "Green":

 BorderExample1.Background = new SolidColorBrush(Colors.Green);

Sample Code

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

18

 break;

 case "Blue":

 BorderExample1.Background = new SolidColorBrush(Colors.Blue);

 break;

 case "White":

 BorderExample1.Background = new SolidColorBrush(Colors.White);

 break;

 }

 }

}

private void BorderRadioButton_Checked(object sender, RoutedEventArgs e)

{

 RadioButton rb = sender as RadioButton;

 if (rb != null && BorderExample1 != null)

 {

 string colorName = rb.Tag.ToString();

 switch (colorName)

 {

 case "Yellow":

 BorderExample1.BorderBrush = new SolidColorBrush(Colors.Gold);

 break;

 case "Green":

 BorderExample1.BorderBrush = new SolidColorBrush(Colors.DarkGreen);

 break;

 case "Blue":

 BorderExample1.BorderBrush = new SolidColorBrush(Colors.DarkBlue);

 break;

 case "White":

 BorderExample1.BorderBrush = new SolidColorBrush(Colors.White);

 break;

 }

 }

}

The radio button groups look like this.

Radio Buttons

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

19

3.11 Text box

The TextBox control lets a user type text into an app. It's typically used to capture a single

line of text, but can be configured to capture multiple lines of text. The text displays on the

screen in a simple, uniform, plaintext format.

Here's the XAML for a simple text box with a header and placeholder text.

<TextBox Width="500" Header="Notes" PlaceholderText="Type your notes here"/>

or

TextBox textBox = new TextBox();

textBox.Width = 500;

textBox.Header = "Notes";

textBox.PlaceholderText = "Type your notes here";

// Add the TextBox to the visual tree.

rootGrid.Children.Add(textBox);

Here's the text box that results from this XAML.

3.12 Password box

A password box is a text input box that conceals the characters typed into it for the purpose

of privacy. A password box looks like a text box, except that it renders placeholder

characters in place of the text that has been entered. You can configure the placeholder

character.

Here's the XAML for a password box control that demonstrates the default look of the

PasswordBox.

<StackPanel>

Text Box

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

20

 <PasswordBox x:Name="passwordBox" Width="200" MaxLength="16"

 PasswordChanged="passwordBox_PasswordChanged"/>

 <TextBlock x:Name="statusText" Margin="10" HorizontalAlignment="Center" />

</StackPanel>

private void passwordBox_PasswordChanged(object sender, RoutedEventArgs e)

{

 if (passwordBox.Password == "Password")

 {

 statusText.Text = "'Password' is not allowed as a password.";

 }

 else

 {

 statusText.Text = string.Empty;

 }

}

Here's the result when this code runs and the user enters "Password".

Password character

You can change the character used to mask the password by setting

the PasswordChar property. Here, the default bullet is replaced with an asterisk.

<PasswordBox x:Name="passwordBox" Width="200" PasswordChar="*"/>

The result looks like this.

Password

Password Character

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

21

Headers and placeholder text

<PasswordBox x:Name="passwordBox" Width="200" Header="Password"

PlaceholderText="Enter your password"/>

3.13 Auto-suggest box

Use an AutoSuggestBox to provide a list of suggestions for a user to select from as they

type.

to make the AutoSuggestBox look like a typical search box, add a ‘find’ icon, like this.

<AutoSuggestBox QueryIcon="Find"/>

Here's an AutoSuggestBox with a 'find' icon.

Password help text

AutoSuggest Box

AutoSuggest Box

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

22

3.14 Labels

A label is the name or title of a control or a group of related controls.

3.15 Toggle switches

The toggle switch represents a physical switch that allows users to turn things on or off.

Use ToggleSwitch controls to present users with exactly two mutually exclusive options

(like on/off), where choosing an option results in an immediate action.

This XAML creates the WiFi toggle switch shown previously.

<ToggleSwitch x:Name="wiFiToggle" Header="Wifi"/>

Here's how to create the same toggle switch in code.

ToggleSwitch wiFiToggle = new ToggleSwitch();

wiFiToggle.Header = "WiFi";

// Add the toggle switch to a parent container in the visual tree.

stackPanel1.Children.Add(wiFiToggle);

Label

Toggle switch

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

23

3.16 Tooltips

A tooltip is a short description that is linked to another control or object. Tooltips help users

understand unfamiliar objects that aren't described directly in the UI. They display

automatically when the user moves focus to, presses and holds, or hovers the mouse

pointer over a control. The tooltip disappears after a few seconds, or when the user moves

the finger, pointer or keyboard/gamepad focus.

4. Events

An event is a message sent by an object to signal the occurrence of an action. The action

could be caused by user interaction, such as touching the screen, or it could be triggered by the

internal logic of a class. The object that raises the event is called the event sender. The object that

captures the event and responds to it is called the event receiver. Basically the purpose of events

is to communicate time-specific, relatively lightweight information from an object at run time,

and potentially to deliver that information to other objects in the app.

4.1 Windows Phone events

Generally speaking, Windows Phone events are CLR events, and therefore are events that

you can handle with managed code. If you know how to work with basic CLR events already,

you have a head start on some of the concepts involved. But you do not necessarily need to know

that much about the CLR event model in order to perform some basic tasks, such as attaching

handlers.

Because the UI for a typical Windows Phone-based app is defined in markup (XAML),

some of the principles of connecting UI events from markup elements to a runtime code entity

are similar to other Web technologies, such as ASP.NET, or working with an HTML DOM. In

Windows Phone the code that provides the runtime logic for a XAML-defined UI is often

referred to as code-behind or the code-behind file. In the Visual Studio solution views, this

relationship is shown graphically, with the code-behind file being a dependent and nested file

versus the XAML page it refers to.

4.2 Button.Click: an introduction to using Windows Phone events

Tooltips

javascript:void(0)
javascript:void(0)

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

24

Generally, you define the UI for your Windows Phone-based app by generating XAML.

This XAML can be the output from a designer such as Blend for Visual Studio or from a design

surface in a larger IDE such as Windows Phone. The XAML can also be written out in a

plaintext editor or a third-party XAML editor. As part of generating that XAML, you can wire

event handlers for individual UI elements at the same time that you define all the other attributes

that describe that UI element.

If you are using Windows Phone, you can use design features that make it very simple to wire

event handlers from XAML and then define them in code-behind. This includes providing an

automatic naming scheme for the handlers.

4.3 Defining an event handler

Event handlers in the partial class are written as methods, based on the CLR delegates

that are used by that particular event. Your event handler methods can be public, or they can

have a private access level. Private access works because the handler and instance created by the

XAML are ultimately joined by code generation. The general recommendation is to not make

your event handler methods public in the class.

4.4 The sender parameter and event data

Any handler you write for a managed Windows Phone event can access two values that

are available as input for each case where your handler is invoked. The first such value is sender,

which is a reference to the object where the handler is attached. The sender parameter is typed as

the base Object type. A common technique in Windows Phone event handling is to cast sender to

a more precise type. This technique is useful if you expect to check or change state on

thesender object itself. Based on your own app design, you expect a type that is safe to

cast sender to, based on where the handler is attached or other design specifics.

The second value is event data, which generally appears in signatures as the e parameter.

Per the CLR event model, all events send some kind of event data, with that data captured as an

instance of a class that inherits EventArgs (or isEventArgs itself). You can discover which

properties for event data are available by looking at the e parameter of the delegate that is

assigned for the specific event you are handling, and then using Intellisense in Visual Studio or

the .NET Framework Class Library for Windows Phone. Some Windows Phone events use

the EventHandler<TEventArgs>delegate or other generic handler types. In most cases, the event

definitions constrains the generic with a specific EventArgs derived event data class. You should

then write the handler method as if it took that EventArgs derived event data class directly as the

second parameter.

For some events, the event data in the EventArgs derived class is as important as

knowing that the event was raised. This is especially true of the input events. For keyboard

events, key presses on the keyboard raise the same KeyUp andKeyDown events. In order to

javascript:void(0)
javascript:void(0)

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

25

determine which key was pressed, you must access the KeyEventArgs that is available to the

event handler.

4.5 Adding event handlers in managed code

XAML is not the only way to assign an event handler to an object. To add event handlers

to any given object in managed code, including to objects that are not even usable in XAML, you

can use the CLR language-specific syntax for adding event handlers.In C#, the syntax is to use

the += operator. You instantiate the handler by declaring a new delegate that uses the event

handler method name.

If you are using code to add event handlers to objects that appear in the run-time UI, a

common practice for Windows Phone is to add such handlers in response to an object lifetime

event or callback, such as Loaded orOnApplyTemplate, so that the event handlers on the relevant

object are ready for user-initiated events at run time.

The other option for Visual Basic syntax is to use the Handles keyword on event

handlers. This technique is appropriate for cases where handlers are expected to exist on objects

at load time and persist throughout the object lifetime. Using Handles on an object that is

defined in XAML requires that you provide a Name / x:Name. This name becomes the instance

qualifier that is needed for the Instance.Event part of the Handles syntax. In this case you do not

need an object lifetime-based event handler to initiate attaching the other event handlers;

the Handles connections are created when you compile your XAML page.

VB

Sub textBlock1_MouseEnter(ByVal sender As Object, ByVal e As MouseEventArgs) Handles

textBlock1.MouseEnter

'....

End Sub

Sub textBlock1_MouseLeave(ByVal sender As Object, ByVal e As MouseEventArgs) Handles

textBlock1.MouseLeave

'....

End Sub

4.6 Routed events

Windows Phone supports the concept of a routed event for several input events that are

defined in base classes and are present on most UI elements that support user interaction and

input. The following is a list of input events that are routed events:

 KeyDown

 KeyUp

 GotFocus

 LostFocus

javascript:void(0)
javascript:void(0)
https://msdn.microsoft.com/en-us/library/windows/apps/system.windows.uielement.keydown(v=vs.105).aspx
https://msdn.microsoft.com/en-us/library/windows/apps/system.windows.uielement.keyup(v=vs.105).aspx
https://msdn.microsoft.com/en-us/library/windows/apps/system.windows.uielement.gotfocus(v=vs.105).aspx
https://msdn.microsoft.com/en-us/library/windows/apps/system.windows.uielement.lostfocus(v=vs.105).aspx

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

26

 MouseLeftButtonDown

 MouseLeftButtonUp

 MouseMove

 BindingValidationError

A routed event is an event that is potentially passed on (routed) from a child object to

each of its successive parent objects in the object tree. The object tree in question is

approximated by the XAML structure of your UI, with the root of that tree being the root

element in XAML. The true object tree might vary somewhat from the XAML because the

object tree does not include XAML language features such as property element tags.

4.7 The OriginalSource property of RoutedEventArgs

When an event bubbles up an event route, sender is no longer the same object as the

event-raising object. Instead,sender is the object where the handler that is being invoked is

attached. In many cases, sender is not the object of interest, and you are instead interested in

knowing information such as object held focus when a keyboard key was pressed. In such a case,

the value of the OriginalSource property is the object of interest.

At all points on the route, OriginalSource reports the original object that raised the event,

instead of where the handler is attached. For an example scenario where this is useful, consider

an app where you want certain key combinations to be "hot keys" or accelerators, regardless of

which control currently holds keyboard focus and initiated the event. In terms of the object tree,

the focused object might be nested within some items list in a list box, or could be one of

hundreds of objects in the overall UI.

4.8 The Handled property

Several event data classes for specific routed events contain a property named Handled.

For examples, seeMouseButtonEventArgs.Handled, KeyEventArgs.Handled,

, DragEventArgs.Handled, andValidationErrorEventArgs.Handled. Handled is a settable

Boolean property.

Setting the Handled property to true influences the event system in Windows Phone.

When you set the value to truein event data, the routing stops for most event handlers; the event

does not continue along the route to notify other attached handlers of that particular event case.

What "handled" as an action means in the context of the event and how your app responds is up

to you. However, you should keep in mind the behavior of the Windows Phone event system if

you set Handled in your event handlers.

4.8 Input event handlers in controls

Specific existing Windows Phone controls sometimes use this Handled concept for input

events internally. This can give the appearance from user code that an input event never occurs.

https://msdn.microsoft.com/en-us/library/windows/apps/system.windows.uielement.mouseleftbuttondown(v=vs.105).aspx
https://msdn.microsoft.com/en-us/library/windows/apps/system.windows.uielement.mouseleftbuttonup(v=vs.105).aspx
https://msdn.microsoft.com/en-us/library/windows/apps/system.windows.uielement.mousemove(v=vs.105).aspx
https://msdn.microsoft.com/en-us/library/windows/apps/system.windows.frameworkelement.bindingvalidationerror(v=vs.105).aspx
javascript:void(0)

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

27

For example, the Button class includes logic that deliberately handles the general input

event MouseLeftButtonDown. Reference topics for specific control classes in the .NET

Framework Library often note the event handling behavior implemented by the class. In some

cases, the behavior can be changed or appended in subclasses by overriding OnEvent methods.

For example, you can change how your TextBox derived class reacts to key input by

overriding TextBox.OnKeyDown.

4.9 Registering handlers for already-handled routed events

Earlier it was stated that setting Handled to true prevented most handlers from acting.

The API AddHandler provides a technique where you can attach a handler that will always be

invoked for the route, even if some other handler earlier in the route has set Handled to true.

This technique is useful if a control you are using has handled the event in its internal

compositing or for control-specific logic but you still want to respond to it on a control instance,

or higher in the route. However, this technique should be used with caution because it can

contradict the purpose of Handled and possibly violate a control's intended usage or object

model.

4.10 User-initiated events

Windows Phone enforces that certain operations are only permitted in the context of a

handler that handles a user-initiated event. The following is a list of such operations:

 Navigating from a HyperlinkButton.

 Accessing the primary Clipboard API.

Windows Phone user-initiated events include the mouse events (such

as MouseLeftButtonDown), and the keyboard events (such as KeyDown). Events of controls that

are based on such events are also considered user-initiated.

API calls that require user initiation should be called as soon as possible in an event handler.

This is because the Windows Phone user initiation concept also requires that the calls occur

within a certain time window after the event occurrence. In Windows Phone, this time window is

approximately one second.

4.11 Removing event handlers

In some circumstances, you might want to remove event handlers during the app lifetime.

To remove event handlers, you use the CLR-language-specific syntax. In C#, you use the -

= operator. In Visual Basic, you use the RemoveHandlerfunction. In either case, you reference

the event handler method name

javascript:void(0)
javascript:void(0)

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

28

DATA ACCESS AND STORAGE

Local Storage

The Internet plays an important role in mobile applications. Most Windows Phone

applications available in the Store make use of the network connection offered by every device.

However, relying only on the network connection can be a mistake; users can find themselves in

situations where no connection is available. In addition, data plans are often limited, so the fewer

network operations we do, the better the user experience is.

Windows Phone offers a special way to store local data called isolated storage. It works

like a regular file system, so you can create folders and files as on a computer hard drive. The

difference is that the storage is isolated—only your applications can use it. No other applications

can access your storage, and users are not able to see it when they connect their phone to the

computer. Moreover, as a security measure, the isolated storage is the only storage that the

application can use. You’re not allowed to access the operating system folders or write data in

the application’s folder.

Local storage is one of the features which offers duplicated APIs—the old Silverlight

ones based on the IsolatedStorageFile class and the new Windows Runtime ones based on the

LocalFolder class. As mentioned in the beginning of the series, we’re going to focus on the

Windows Runtime APIs.

Working With Folders

The base class that identifies a folder in the local storage is called StorageFolder. Even

the root of the storage (which can be accessed using theApplicationData.Current.LocalStorage

class that is part of the Windows.Storagenamespace) is a StorageFolder object.

This class exposes different asynchronous methods to interact with the current folder, such as:

• CreateFolderAsync() to create a new folder in the current path.

• GetFolderAsync() to get a reference to a subfolder of the current path.

• GetFoldersAsync() to get the list of folders available in the current path.

• DeleteAsync() to delete the current folder.

• RenameAsync() to rename a folder.

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

29

In the following sample, you can see how to create a folder in the local storage’s root:

private async void OnCreateFolderClicked(object sender, RoutedEventArgs e)

{

 await

 ApplicationData.Current.LocalFolder.CreateFolderAsync(“myFolder”);

}

Working With File

Files, instead, are identified by the StorageFile class, which similarly offers methods to

interact with files:

 DeleteAsync() to delete a file.

 RenameAsync() to rename a file.

 CopyAsync() to copy a file from one location to another.

 MoveAsync() to move a file from one location to another.

The starting point to manipulate a file is the StorageFolder class we’ve previously discussed,

since it offers methods to open an existing file (GetFileAsync()) or to create a new one in the

current folder (CreateFileAsync()).

Let’s examine the two most common operations: writing content to a file and reading content

from a file.

How to Create a File

As already mentioned, the first step to create a file is to use the CreateFile() method on

a StorageFolder object. The following sample shows how to create a new file called file.txt in

the local storage’s root:

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

30

private async void OnCreateFileClicked(object sender, RoutedEventArgs e)

{

 StorageFile file = await ApplicationData.Current.LocalFolder.CreateFileAsync(“file.txt”, CreationCollisionOption.ReplaceExisting);

}

You can also pass the optional parameter CreationCollisionOption to the method to define the

behavior to use in case a file with the same name already exists. In the previous sample,

the ReplaceExisting value is used to overwrite the existing file.

Now that you have a file reference thanks to the StorageFile object, you are able to

work with it using the OpenAsync() method. This method returns the file stream, which you

can use to write and read content.

The following sample shows how to write text inside the file:

private async void OnCreateFileClicked(object sender, RoutedEventArgs e)

{

 StorageFile file = await ApplicationData.Current.LocalFolder.CreateFileAsync(“file.txt”, CreationCollisionOption.ReplaceExisting);

 IRandomAccessStream randomAccessStream = await file.OpenAsync(FileAccessMode.ReadWrite);

 using (DataWriter writer = new DataWriter(randomAccessStream.GetOutputStreamAt(0)))

 {

 writer.WriteString(“Sample text”);

 await writer.StoreAsync(); }

}

The key is the DataWriter class, which is a Windows Runtime class that can be used to

easily write data to a file. We simply have to create a new DataWriter object, passing as a

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

31

parameter the output stream of the file we get using the GetOuputStreamAt() method on the

stream returned by the OpenAsync() method.

The DataWriter class offers many methods to write different data types,

like WriteDouble() for decimal numbers, WriteDateTime() for dates, and WriteBytes() for

binary data. In the sample we write text using the WriteString() method, and then we call

the StoreAsync() and FlushAsync() methods to finalize the writing operation.

How to Read a File

The operation to read a file is not very different from the writing one. In this case, we

also need to get the file stream using the OpenFile() method. The difference is that, instead of

using the DataWriter class, we’re going to use the DataReader class, which does the opposite

operation. Look at the following sample code:

private async void OnReadFileClicked(object sender, RoutedEventArgs e)

{

 StorageFile file = await ApplicationData.Current.LocalFolder.GetFileAsync("file.txt");

 IRandomAccessStream randomAccessStream = await file.OpenAsync(FileAccessMode.Read);

 using (DataReader reader = new DataReader(randomAccessStream.GetInputStreamAt(0)))

 {

 uint bytesLoaded = await reader.LoadAsync((uint) randomAccessStream.Size);

 string readString = reader.ReadString(bytesLoaded);

 MessageBox.Show(readString);

 }

}

In this case, instead of the CreateFileAsync() method, we use the GetFileAsync() method,

which can be used to get a reference to an already existing file. Then, we start the reading

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

32

procedure using the DataReader class, this time using the input stream that we get using

the GetInputStreamAt() method.

Manage Settings

One common scenario in mobile development is the need to store settings. Many

applications offer a Settings page where users can customize different options.

To allow developers to quickly accomplish this task, the SDK includes a class

called IsolatedStorageSettings , which offers a dictionary called ApplicationSettings that you

can use to store settings.

Note: The IsolatedStorageSettings class is part of the old storage APIs; the Windows Runtime

offers a new API to manage settings but, unfortunately, it isn’t available in Windows Phone.

Using the ApplicationSettings property is very simple: its type is Dictionary<string,

object> and it can be used to store any object.

In the following sample, you can see two event handlers: the first one saves an object in the

settings, while the second one retrieves it.

private void OnSaveSettingsClicked(object sender, RoutedEventArgs e)

{

 IsolatedStorageSettings settings = IsolatedStorageSettings.ApplicationSettings;

 settings.Add("name", "Matteo");

 settings.Save();

}

private void OnReadSettingsClicked(object sender, RoutedEventArgs e)

{

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

33

 IsolatedStorageSettings settings = IsolatedStorageSettings.ApplicationSettings;

 if (settings.Contains("name"))

 {

 MessageBox.Show(settings["name"].ToString());

 }

}

The only thing to highlight is the Save() method, which you need to call every time you want to

persist the changes you’ve made. Except for this, it works like a regular Dictionary collection.

Debugging the Local Storage

A common requirement for a developer working with local storage is the ability to see

which files and folders are actually stored. Since the storage is isolated, developers can’t simply

connect the phone to a computer and explore it.

The best way to view an application’s local storage is by using a third-party tool available

on CodePlex called Windows Phone Power Tools, which offers a visual interface for exploring

an application’s local storage.

The tool is easy to use. After you’ve installed it, you’ll be able to connect to a device or

to one of the available emulators. Then, in the Isolated Storage section, you’ll see a list of all

the applications that have been side-loaded from Visual Studio. Each one will be identified by its

application ID (which is a GUID). Like a regular file explorer, you can expand the tree structure

and analyze the storage’s content. You’ll be able to save files from the device to your PC, copy

files from your PC to the application storage, and even delete items.

http://wptools.codeplex.com/

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

34

Storing Techniques

Serialization and Deserialization

Serialization is the simplest way to store an application’s data in the local storage. It’s the

process that converts complex objects into plain text so that they can be stored in a text file,

using XML or JSON as output. Deserialization is the opposite process; the plain text is converted

back into objects so that they can be used by the application.

In a Windows Phone application that uses these techniques, serialization is typically applied

every time the application’s data is changed (when a new item is added, edited, or removed) to

minimize the risk of losing data if something happens, like an unexpected crash or a suspension.

Deserialization, instead, is usually applied when the application starts for the first time.

Serialization is very simple to use, but its usage should be limited to applications that work with

small amounts of data, since everything is kept in memory during the execution. Moreover, it

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

35

best suits scenarios where the data to track is simple. If you have to deal with many relationships,

databases are probably a better solution (we’ll talk more about this later in the article).

In the following samples, we’re going to use the same Person class we used earlier in this

series.

public class Person

{

 public string Name { get; set; }

 public string Surname { get; set; }

}

We assume that you will have a collection of Person objects, which represents your local data:

List<Person> people = new List<Person>

 {

 new Person

 {

 Name = "Matteo",

 Surname = "Pagani"

 },

 new Person

 {

 Name = "John",

 Surname = "Doe"

 }

 };

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

36

Serialization

To serialize our application’s data we’re going to use the local storage APIs we learned

about in the previous section. We’ll use the CreateFile() method again, as shown in the

following sample:

private async void OnSerializeClicked(object sender, RoutedEventArgs e)

{

 DataContractSerializer serializer = new DataContractSerializer(typeof(List<Person>));

 StorageFile file = await ApplicationData.Current.LocalFolder.CreateFileAsync("people.xml");

 IRandomAccessStream randomAccessStream = await file.OpenAsync(FileAccessMode.ReadWrite);

 using (Stream stream = randomAccessStream.AsStreamForWrite())

 {

 serializer.WriteObject(stream, people);

 await stream.FlushAsync();

 }

}

The DataContractSerializer class (which is part of

the System.Runtime.Serialization namespace) takes care of managing the serialization process.

When we create a new instance, we need to specify which data type we’re going to serialize (in

the previous sample, it’s List<Person>). Next, we create a new file in the local storage and get

the stream needed to write the data. The serialization operation is made by calling

the WriteObject() method of the DataContractSerializer class, which requires as parameters

the stream location in which to write the data and the object to serialize. In this example, it’s the

collection of Person objects we’ve previously defined.

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

37

If you take a look at the storage content using the Windows Phone Power Tools, you’ll find

a people.xml file, which contains an XML representation of your data:

<ArrayOfPerson xmlns:i="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://schemas.datacontract.org/2004/07/Storage.Classes">

 <Person>

 <Name>Matteo</Name>

 <Surname>Pagani</Surname>

 </Person>

 <Person>

 <Name>John</Name>

 <Surname>Doe</Surname>

 </Person>

</ArrayOfPerson>

Deserialization

The deserialization process is very similar and involves, again, the storage APIs to read

the file’s content and the DataContractSerializer class. The following sample shows how to

deserialize the data we serialized in the previous section:

private async void OnDeserializeClicked(object sender, RoutedEventArgs e)

{

 StorageFile file = await ApplicationData.Current.LocalFolder.GetFileAsync("people.xml");

 DataContractSerializer serializer = new DataContractSerializer(typeof(List<Person>));

 IRandomAccessStream randomAccessStream = await file.OpenAsync(FileAccessMode.Read);

 using (Stream stream = randomAccessStream.AsStreamForRead())

http://www.w3.org/2001/XMLSchema-instance
http://schemas.datacontract.org/2004/07/Storage.Classes

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

38

 {

 List<Person> people = serializer.ReadObject(stream) as List<Person>;

 }

}

The only differences are:

 We get a stream to read by using the AsStreamForRead() method.

 We use the ReadObject() method of the DataContractSerializer class to deserialize the

file’s content, which takes the file stream as its input parameter. It’s important to note

that the method always returns a generic object, so you’ll always have to cast it to your

real data type (in the sample, we cast it as List<Person>).

Using Databases: SQL CE

SQL CE is the database solution that was introduced in Windows Phone 7.5. It’s a stand-

alone database, which means that data is stored in a single file in the storage without needing a

DBMS to manage all the operations.

Windows Phone uses SQL CE 3.5 (the latest release at this time is 4.0, but it is not

supported) and doesn’t support SQL query execution. Every operation is made using LINQ to

SQL, which is one of the first of Microsoft’s ORM solutions.

The approach used by SQL CE on Windows Phone is called code first. The database is

created the first time the data is needed, according to the entities definition that you’re going to

store in tables. Another solution is to include an already existing SQL CE file in your Visual

Studio project. In this case, you’ll only be able to work with it in read-only mode.

How to Define the Database

The first step is to create the entities that you’ll need to store in your database. Each

entity will be mapped to a specific table.entity definition is made using attributes, which are part

of the System.Data.Linq.Mapping namespace. Each property is decorated with an attribute,

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

39

which will be used to translate it into a column. In the following sample we adapt the

familiar Person class to be stored in a table:

[Table]

public class Person

{

 [Column(IsPrimaryKey = true, CanBeNull = false, IsDbGenerated = true)]

 public string Id { get; set; }

 [Column]

 public string Name { get; set; }

 [Column]

 public string Surname { get; set; }

}

The entire entity is marked with the Table attribute, while every property is marked with

the Column attribute. Attributes can be customized with some properties, like:

 IsPrimaryKey to apply to columns that are part of the primary key.

 IsDbGenerated in case the column’s value needs to be automatically generated every

time a new row is inserted (for example, an automatically incremented number).

 Name if you want to assign to the column a different name than the property.

 DbType to customize the column’s type. By default, the column’s type is automatically

set by the property’s type.

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

40

Working With the Database: The DataContext

DataContext is a special class that acts as an intermediary between the database and

your application. It exposes all the methods needed to perform the most common operations, like

insert, update, and delete.

The DataContext class contains the connection string’s definition (which is the path where the

database is stored) and all the tables that are included in the database. In the following sample,

you can see a DataContext definition that includes the Person table we’ve previously defined:

public class DatabaseContext: DataContext

{

 public static string ConnectionString = "Data source=isostore:/Persons.sdf";

 public DatabaseContext(string connectionString):base(connectionString)

 {

 }

 public Table<Person> Persons;

}

A separate class of your project inherits from the DataContext class. It will force you to

implement a public constructor that supports a connection string as its input parameter. There are

two connection string types, based on the following prefixes:

 isostore:/ means that the file is stored in the local storage. In the previous sample, the

database’s file name is Persons.sdf and it’s stored in the storage’s root.

 appdata:/ means that the file is stored in the Visual Studio project instead. In this case,

you’re forced to set the File Mode attribute to Read Only .

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

41

Creating the Database

As soon as the data is needed, you’ll need to create the database if it doesn’t exist yet. For

this purpose, the DataContext class exposes two methods:

 DatabaseExists() returns whether the database already exists.

 CreateDatabase() effectively creates the database in the storage.

In the following sample, you can see a typical database initialization that is executed every time

the application starts:

private void OnCreateDatabaseClicked(object sender, RoutedEventArgs e)

{

 using (DatabaseContext db = new DatabaseContext(DatabaseContext.ConnectionString))

 {

 if (!db.DatabaseExists())

 {

 db.CreateDatabase();

 }

 }

}

Working With the Data

All the operations are made using the Table<T> object that we’ve declared in

the DataContext definition. It supports standard LINQ operations, so you can query the data

using methods like Where() , FirstOrDefault() , Select() , and OrderBy() .

In the following sample, you can see how we retrieve all the Person objects in the table whose

name is Matteo:

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

42

private void OnShowClicked(object sender, RoutedEventArgs e)

{

 using (DatabaseContext db = new DatabaseContext(DatabaseContext.ConnectionString))

 {

 List<Person> persons = db.Persons.Where(x => x.Name == "Matteo").ToList();

 }

}

The returned result can be used not only for display purposes, but also for editing. To update the

item in the database, you can change the values of the returned object by calling

the SubmitChanges() method exposed by the DataContext class.

To add new items to the table, the Table<T> class offers two

methods: InsertOnSubmit() and InsertAllOnSubmit() . The first method can be used to insert a

single object, while the second one adds multiple items in one operation (in fact, it accepts a

collection as a parameter).

private void OnAddClicked(object sender, RoutedEventArgs e)

{

 using (DatabaseContext db = new DatabaseContext(DatabaseContext.ConnectionString))

 {

 Person person = new Person

 {

 Name = "Matteo",

 Surname = "Pagani"

 };

 db.Persons.InsertOnSubmit(person);

 db.SubmitChanges();

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

43

 }

}

Please note again the SubmitChanges() method: it’s important to call it every time you modify

the table (by adding a new item or editing or deleting an already existing one), otherwise changes

won’t be saved.

In a similar way, you can delete items by using

the DeleteOnSubmit() and DeleteAllOnSubmit() methods. In the following sample, we delete

all persons with the name Matteo:

private void OnDeleteClicked(object sender, RoutedEventArgs e)

{

 using (DatabaseContext db = new DatabaseContext(DatabaseContext.ConnectionString))

 {

 List<Person> persons = db.Persons.Where(x => x.Name == "Matteo").ToList();

 db.Persons.DeleteAllOnSubmit(persons);

 db.SubmitChanges();

 }

}

Updating the Schema

SQL CE in Windows Phone offers a specific class to satisfy this requirement,

called DatabaseSchemaUpdater , which offers some methods to update an already existing

database’s schema.

The key property offered by the DatabaseSchemaUpdater class

is DatabaseSchemaVersion , which is used to track the current schema’s version. It’s important

to properly set it every time we apply an update because we’re going to use it when the database

is created or updated to recognize whether we’re using the latest version.

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

44

After you’ve modified your entities or the DataContext definition in your project, you can use

the following methods:

 AddTable<T>() if you’ve added a new table (of type T).

 AddColumn<T>() if you’ve added a new column to a table (of type T).

 AddAssociation<T>() if you’ve added a new relationship to a table (of type T).

The following sample code is executed when the application starts and needs to take care of the

schema update process:

private void OnUpdateDatabaseClicked(object sender, RoutedEventArgs e)

{

 using (DatabaseContext db = new DatabaseContext(DatabaseContext.ConnectionString))

 {

 if (!db.DatabaseExists())

 {

 db.CreateDatabase();

 DatabaseSchemaUpdater updater = db.CreateDatabaseSchemaUpdater();

 updater.DatabaseSchemaVersion = 2;

 updater.Execute();

 }

 else

 {

 DatabaseSchemaUpdater updater = db.CreateDatabaseSchemaUpdater();

 if (updater.DatabaseSchemaVersion < 2)

 {

 updater.AddColumn<Person>("BirthDate");

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

45

 updater.DatabaseSchemaVersion = 2;

 updater.Execute();

 }

 }

 }

}

We’re assuming that the current database’s schema version is 2. In case the database

doesn’t exist, we simply create it and, using the DatabaseSchemaUpdater class, we update

the DatabaseSchemaVersion property. This way, the next time the data will be needed, the

update operation won’t be executed since we’re already working with the latest version.

Instead, if the database already exists, we check the version number. If it’s an older

version, we update the current schema. In the previous sample, we’ve added a new column to

the Person table, called BirthDate (which is the parameter requested by

the AddColumn<T>() method). Also in this case we need to remember to properly set

the DatabaseSchemaVersion property to avoid further executions of the update operation.

In both cases, we need to apply the described changes by calling the Execute() method.

SQL Server Compact Toolbox: An Easier Way to Work With SQL CE

Two versions of the tool are available:

 As an extension that’s integrated into commercial versions of Visual Studio.

 As a stand-alone tool for Visual Studio Express since it does not support extensions.

The following are some of the features supported by the tool:

 Automatically create entities and a DataContext class starting from an already existing

SQL CE database.

http://visualstudiogallery.msdn.microsoft.com/0e313dfd-be80-4afb-b5e9-6e74d369f7a1/
http://sqlcetoolbox.codeplex.com/releases/view/104096

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

46

 The generated DataContext is able to copy a database from your Visual Studio project

to your application’s local storage. This way, you can start with a prepopulated database

and, at the same time, have write access.

 The generated DataContext supports logging in the Visual Studio Output Window so

you can see the SQL queries generated by LINQ to SQL.

Advertisement

Using Databases: SQLite

SQLite, from a conceptual point of view, is a similar solution to SQL CE: it’s a stand-

alone database solution, where data is stored in a single file without a DBMS requirement.

The pros of using SQLite are:

 It offers better performance than SQL CE, especially with large amounts of data.

 It is open source and cross-platform; you’ll find a SQLite implementation for Windows 8,

Android, iOS, web apps, etc.

SQLite support has been introduced only in Windows Phone 8 due to the new native code

support feature (since the SQLite engine is written in native code), and it’s available as a Visual

Studio extension that you can download from the Visual Studio website.

After you’ve installed it, you’ll find the SQLite for Windows Phone runtime available in

the Add reference window, in the Windows Phone Extension section. Be careful; this runtime

is just the SQLite engine, which is written in native code. If you need to use a SQLite database in

a C# application, you’ll need a third-party library that is able to execute the appropriate native

calls for you.

In actuality, there are two available SQLite libraries: sqlite-net and SQLite Wrapper for

Windows Phone. Unfortunately, neither of them is as powerful and flexible as the LINQ to SQL

library that is available for SQL CE.

http://visualstudiogallery.msdn.microsoft.com/cd120b42-30f4-446e-8287-45387a4f40b7

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

47

Sqlite-net

Sqlite-net is a third-party library. The original version for Windows Store apps is

developed by Frank A. Krueger, while the Windows Phone 8 port is developed byPeter Huene.

The Windows Phone version is available on GitHub. Its configuration procedure is a bit tricky

and changes from time to time, so be sure to follow the directions provided by the developer on

the project’s home page.

Sqlite-net offers a LINQ approach to use the database that is similar to the code-first one offered

by LINQ to SQL with SQL CE.

For example, in sqlite-net, tables are mapped with your project’s entities. The difference is that,

this time, attributes are not required since every property will be automatically translated into a

column. Attributes are needed only if you need to customize the conversion process, as in the

following sample:

public class Person

{

 [PrimaryKey, AutoIncrement]

 public int Id { get; set; }

 [MaxLength(50)]

 public string Name { get; set; }

 public string Surname { get; set; }

}

Surname doesn’t have any attribute, so it will be automatically converted into

a varchar column. Instead, we set Id as a primary key with an auto increment value, while we

specify that Name can have a maximum length of 50 characters.

https://github.com/praeclarum
https://github.com/peterhuene
https://github.com/peterhuene/sqlite-net-wp8

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

48

All the basic operations with the database are accomplished using

the SQLiteAsyncConnection class, which exposes asynchronous methods to create tables, query

the data, delete items, etc. It requires as an input parameter the local storage path where the

database will be saved.

As with SQL CE and LINQ to SQL, we need to create the database before using it. This

is done by calling the CreateTableAsync<T>() method for every table we need to create,

where T is the table’s type. In the following sample, we create a table to store

the Person entity:

private async Task CreateDatabase()

{

 SQLiteAsyncConnection conn = new SQLiteAsyncConnection(Path.Combine(ApplicationData.Current.LocalFolder.Path, "people.db"), true);

 await conn.CreateTableAsync<Person>();

}

In a similar way to LINQ to SQL, queries are performed using the Table<T> object. The only

difference is that all the LINQ methods are asynchronous.

private async void OnReadDataClicked(object sender, RoutedEventArgs e)

{

 SQLiteAsyncConnection conn = new SQLiteAsyncConnection(Path.Combine(ApplicationData.Current.LocalFolder.Path, "people.db"), true);

 List<Person> person = await conn.Table<Person>().Where(x => x.Name == "Matteo").ToListAsync();

}

In the previous sample, we retrieve all the Person objects whose name is Matteo.

Insert, update, and delete operations are instead directly executed using

the SQLiteAsyncConnection object, which offers the InsertAsync() , UpdateAsync() ,

and DeleteAsync() methods. It is not required to specify the object’s type; sqlite-net will

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

49

automatically detect it and execute the operation on the proper table. In the following sample,

you can see how a new record is added to a table:

private async void OnAddDataClicked(object sender, RoutedEventArgs e)

{

 SQLiteAsyncConnection conn = new SQLiteAsyncConnection(Path.Combine(ApplicationData.Current.LocalFolder.Path, "people.db"), true);

 Person person = new Person

 {

 Name = "Matteo",

 Surname = "Pagani"

 };

 await conn.InsertAsync(person);

}

Sqlite-net is the SQLite library that offers the easiest approach, but it has many limitations. For

example, foreign keys are not supported, so it’s not possible to easily manage relationships.

SQLite Wrapper for Windows Phone

SQLite Wrapper for Windows Phone has been developed directly by Microsoft team

members (notably Peter Torr and Andy Wigley) and offers a totally different approach than

sqlite-net. It doesn’t support LINQ, just plain SQL query statements.

The advantage is that you have total control and freedom, since every SQL feature is

supported: indexes, relationships, etc. The downside is that writing SQL queries for every

operation takes more time, and it’s not as easy and intuitive as using LINQ.

The key class is called Database , which takes care of initializing the database and offers

all the methods needed to perform the queries. As a parameter, you need to set the local storage

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

50

path to save the database. If the path doesn’t exist, it will be automatically created. Then, you

need to open the connection using the OpenAsync() method. Now you are ready to perform

operations.

There are two ways to execute a query based on the value it returns.

If the query doesn’t return a value—for example, a table creation—you can use

the ExecuteStatementAsync() method as shown in the following sample:

private async void OnCreateDatabaseClicked(object sender, RoutedEventArgs e)

{

 Database database = new Database(ApplicationData.Current.LocalFolder, “people.db”);

 await database.OpenAsync();

 string query = “CREATE TABLE PEOPLE “ +

 “(Id INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL,” +

 “Name varchar(100), “ +

 “Surname varchar(100))”;

 await database.ExecuteStatementAsync(query);

}

The previous method simply executes the query against the opened database. In the sample, we

create a People table with two fields, Name and Surname .

The query, instead, can contain some dynamic parameters or return some values. In this case, we

need to introduce a new class called Statement as demonstrated in the following sample:

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

51

private async void OnAddDataClicked(object sender, RoutedEventArgs e)

{

 Database database = new Database(ApplicationData.Current.LocalFolder, “people.db”);

 await database.OpenAsync();

 string query = “INSERT INTO PEOPLE (Name, Surname) VALUES (@name, @surname)”;

 Statement statement = await database.PrepareStatementAsync(query);

 statement.BindTextParameterWithName(“@name”, “Matteo”);

 statement.BindTextParameterWithName(“@surname”, “Pagani”);

 await statement.StepAsync();

}

The Statement class identifies a query, but it allows additional customization to be performed

with it. In the sample, we use it to assign a dynamic value to

the Name and Surname parameters. We set the placeholder using the @ prefix

(@name and @surname), and then we assign them a value using

the BindTextParameterWithName() method, passing the parameter’s name and the value.

BindTextParameterWithName() isn’t the only available method, but it’s specifically for string

parameters. There are other methods based on the parameter’s type, such

as BindIntParameterWithName() for numbers.

To execute the query, we use the StepAsync() method. Its purpose isn’t just to execute the

query, but also to iterate the resulting rows.

In the following sample, we can see how this method can be used to manage the results of

a SELECT query:

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

52

private async void OnGetDataClicked(object sender, RoutedEventArgs e)

{

 Database database = new Database(ApplicationData.Current.LocalFolder, “people.db”);

 await database.OpenAsync();

 string query = “SELECT * FROM PEOPLE”;

 Statement statement = await database.PrepareStatementAsync(query);

 while (await statement.StepAsync())

 {

 MessageBox.Show(statement.GetTextAt(0) + “ “ + statement.GetTextAt(1));

 }

}

NETWORK COMMUNICATION

The Windows Runtime API, Windows.Networking.Sockets, has been adopted for

Windows Phone 8. It has been implemented as a Windows Phone Runtime API, making it easy

to use in whatever supported programming language you choose. Although we've enhanced the

.NET API, System.Net.Sockets, to support more features such as IPv6 and listener sockets, you

should consider using the new API for sockets programming because it is more portable than the

.NET API. Windows.Networking.Sockets has been built from the ground up to be clean, secure,

and easy-to-use APIs that enforce best practices

New Features in Windows Phone 8

•Two different Networking APIs

•System.Net – Windows Phone 7.1 API, upgraded with new features

•Windows.Networking.Sockets – WinRT API adapted for Windows Phone

•Support for IPV6

•Support for the 128-bit addressing system added to System.Net.Sockets and also is supported in

Windows.Networking.Sockets

•NTLM and Kerberos authentication support

https://msdn.microsoft.com/en-us/library/windows/apps/windows.networking.sockets.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/system.net.sockets(v=vs.105).aspx
https://msdn.microsoft.com/en-us/library/windows/apps/windows.networking.sockets.aspx

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

53

•Incoming Sockets

•Listener sockets supported in both System.Net and in Windows.Networking

•Winsock support

•Winsock supported for native development

Windows Phone 8 Emulator and local host

•In Windows Phone 7.x, the emulator shared the networking of the Host PC

•You could host services on your PC and access them from your code using http://localhost...

•In Windows Phone 8, the emulator is a Virtual machine running under Hyper-V

•You cannot access services on your PC using http://localhost...

•You must use the correct host name or raw IP address of your host PC in URIs

Sockets for Windows Phone 8

Windows Phone provides a programming interface to enable developers to create

applications that can communicate with internet services and other remote applications using

sockets. Examples of applications and services that use sockets to communicate include FTP,

email, chat systems, and streaming multimedia. Using sockets in your Windows Phone

application enables you to create rich client applications that can communicate with services

over Transmission Control Protocol (TCP) or User Datagram Protocol (UDP) sockets.

Sockets Support on Windows Phone

Windows Phone provides the programming interface needed to create and use TCP and

UDP sockets. You can select which type of socket to use based on your application’s needs. The

following diagram shows a view of the operations that take place during a communication

session between a client application and a service.

javascript:void(0)

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

54

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

55

Operation TCP UDP

1 To communicate over TCP, a connection must

be established between the client and the server.

The endpoint to which the client wants to

communicate must be defined as part of the

connection request. This is an asynchronous

operation in Windows Phone.

Communication over UDP is connectionless,

meaning a connection does not have to be

created prior to communication.

2 Once the connection has been successfully

established, the client can send data to the server

by setting up a buffer of data and passing it to

the server. TCP is stream-based and the order in

which the data is received is guaranteed to be in

the order in which it was sent. The TCP protocol

takes care of this ordering and reliability for the

transmission.

A UDP socket can begin communicating by

creating a send request and passing the buffer

of data to the server. The successful receipt of

the data by the server and the order in which it

is received is not guaranteed. If the client

requires this certainty, then this must be

custom implemented on both the client and the

server.

3 The client can request to receive data from the

server. This is an asynchronous call and, if

successful, the resulting callback will contain

the buffer of data that was sent.

A UDP socket can receive data from a service

by “listening” on the port associated with this

service for any incoming data, and processing

it as appropriate.

4 The send and receive pattern in operations 2 and

3 can be repeated for as long as the socket

remains connected.

The client can continue to send and receive

data.

5 Once the client has finished communicating, it

calls shutdown to inform the server that the

socket is terminating. This call is used to make

sure the remaining data from the server is

received before the socket disconnects.

6 Finally, the client disconnects the socket and

closes the communication channel.

7 At this point, there is no active socket channel,

and data sent to the client will be lost.

At this point, there is no active socket channel,

and data sent to the client will be lost.

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

56

The following is a comparison of the characteristics of TCP and UDP sockets on

Windows Phone.

TCP UDP

Transmission Type Stream-based Datagram

Example Uses Email, Remote Administration, File

Transfer, Web

Streaming Multimedia, Online Games,

Internet Telephony

Unicast Yes Yes

Any Source Multicast

(ASM)

No Yes

Source-specific Multicast

(SSM)

No Yes

Broadcast No No

Connectionless or

Connected

Connection-oriented Connectionless

Reliable Communication Yes No

Terminology

A socket is a mechanism for delivering data packets or messages between applications or

processes. In programming terms, a socket is a programming interface against the TCP/IP

protocol stack. Sockets are identified on a network through a socket address, which is a

combination of Internet protocol (IP) address and port number. The following table lists some

common terminology that you should become familiar with as you work with sockets in your

Windows Phone applications.

Term Description

Broadcast To send data to all devices on a network.

Client In socket communication, the consumer of a service provided by a server. For example, a

chat client is a consumer of a chat service and can use that service to establish a chat

session with other clients. An application running on a Windows Phone device is a client

javascript:void(0)

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

57

application that can consume a service over sockets.

Connectionless Communication in which a connection does not need to be set up between the sending

socket and the receiving socket prior to the communication starting. In this mode, there is

no guarantee that the recipient is ready to receive the data and there is also no

acknowledgement that the data was ever received, or received with no errors. A UDP

socket provides a connectionless communication interface.

Connection-

oriented

Communication in which a socket must first set up a connection to a destination socket

prior to sending or receiving data. Once a connection is established, a stream of data can

be sent and it will be received in the same order. A TCP socket provides a connection-

oriented communication interface.

Endpoint A communication port on either side of the communication. It is typically defined by an

IP address, supported transport protocol type, and port number.

IP Address The industry-standard naming convention for devices on a network. It is a binary

number, usually stored in a human readable format such as 172.36.254.14.

IPv4 The older 32-bit addressing system for devices on the Internet. An example of an IPv4

address in human-readable form is 172.36.254.14.

IPv6 The latest 128-bit addressing system for devices on a network. It was developed to

accommodate the ever-increasing growth of the number of devices on the Internet. An

example of an IPv6 address in human-readable form is fe80::e42b:2e74:6ddb:e30.

Important Note:

IPv6 is not supported in sockets for Windows Phone OS 7.1.

Multicast Sending data to devices on a network that have registered interest in that data by joining

a multicast group.

Port Number A number that, combined with an IP address and the transport protocol it supports for

communication, identifies a port or endpoint on a network. A well-known list of ports

has been reserved for use by specific services such as Telnet (23) and HTTP (80). Other

numbers are available for use by other services and applications.

Server A device on a network that provides a service, or multiple services, for consumption by

clients. As an example, a chat server provides a chat service that can be used by chat

clients to establish chat sessions with other clients. Although applications on a

Windows Phone device can send and receive data over a socket, they are not considered

servers.

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

58

Socket A programming interface to communicate with other applications or services on a

network.

Transmission

Control Protocol

(TCP)

An Internet standard that guarantees reliable, in order, delivery of messages on a

network.

TCP/IP The suite of communication protocols used on the Internet and other networks. It was

named after the first two protocols that were added to this standard, namely, TCP and IP,

but it consists of four layers of protocols, with the TCP and UDP protocols being parts of

the Transport Layer.

User Datagram

Protocol (UDP)

A Transport Layer protocol used to transmit datagrams in a connectionless manner,

meaning that no prior connection needs to be established before sending and receiving

messages. This characteristic makes UDP a fast transport protocol, but it can have

disadvantages over TCP in terms of reliability since receipt of these datagrams by the

destination is not guaranteed and no acknowledgement is sent by default.

Unicast Sending data to a specific destination with a uniquely identifiable address in a network.

Simple Http Operations – WebClient

using System.Net; ... WebClient client; // Constructor

public MainPage()

{ ...

client = new WebClient();

client.DownloadStringCompleted += client_DownloadStringCompleted;

}

void client_DownloadStringCompleted(object sender, DownloadStringCompletedEventArgs e)

{ this.downloadedText = e.Result;

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

59

}

private void loadButton_Click(object sender, RoutedEventArgs e) {

client.DownloadStringAsync(new Uri("http://MyServer/ServicesApplication/rssdump.xml"));

}

Determining the Current Internet Connection Type

private const int IANA_INTERFACE_TYPE_OTHER = 1;

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

60

 private const int IANA_INTERFACE_TYPE_ETHERNET = 6;

private const int IANA_INTERFACE_TYPE_PPP = 23;

private const int IANA_INTERFACE_TYPE_WIFI = 71; ... string network = string.Empty;

// Get current Internet Connection Profile. ConnectionProfile internetConnectionProfile =

Windows.Networking.Connectivity.NetworkInformation.GetInternetConnectionProfile();

 switch (internetConnectionProfile.NetworkAdapter.IanaInterfaceType)

 {

case IANA_INTERFACE_TYPE_OTHER: cost += "Network: Other";

break;

 case IANA_INTERFACE_TYPE_ETHERNET: cost += "Network: Ethernet";

 break;

case IANA_INTERFACE_TYPE_WIFI: cost += "Network: Wifi\r\n";

break;

default:

cost += "Network: Unknown\r\n"; break;

}

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

61

PUSH NOTIFICATION

Microsoft Push Notification Service in Windows Phone is an asynchronous, best-effort

service that offers third-party developers a channel to send data to a Windows Phone app from a

cloud service in a power-efficient manner.

The following diagram shows how a push notification is sent.

1. Your app requests a push notification URI from the Push client service.

2. The Push client service negotiates with the Microsoft Push Notification Service (MPNS),

and MPNS returns a notification URI to the Push client service.

3. The Push client service returns the notification URI to your app.

4. Your app can then send the notification URI to your cloud service.

5. When your cloud service has info to send to your app, it uses the notification URI to send

a push notification to MPNS.

6. MPNS routes the push notification to your app.

To send push notifications, your web service or app must:

 Create a POST message for each Windows Phone device to which you want to send a

notification.

 Form the message for the appropriate notification type. The following sections describe

the message formats for toast, Tile, and raw notification messages. You can post only one

notification type (toast, Tile, or raw) to the server at a time. If you want to send multiple

notification types to the same client device at the same time, you must create separate POST

messages for each notification type.

 Post the messages to the push notification service.

 Get the response from the push notification service and respond accordingly.

Custom HTTP headers

javascript:void(0)

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

62

Custom HTTP headers can include a notification message ID, batching interval, the type

of push notification being sent, and the notification channel URI.The MessageID is the

notification message ID associated with the response. If this header is not added to the POST

request, the push notification service omits this header in the response.

The header specification is "X-MessageID"":"1*MessageIDValue MessageIDValue =

STRING (uuid).

For example: X-MessageID: UUID

The NotificationClass is the batching interval that indicates when the push notification will be

sent to the app from the push notification service. See the tables in the toast, Tile, and raw

notification sections for possible values for this header. If this header is not present, the message

will be delivered by the push notification service immediately.

The header specification is ”X-NotificationClass””:”1*NotificationClassValue

NotificationClassValue = DIGIT.

For example: X-NotificationClass:1

The Notification Type is the type of push notification being sent. Possible options are

Tile, toast, and raw. If this header is not present, the push notification will be treated as a raw

notification. For more info, see Push notifications for Windows Phone 8. The header

specification is “X-WindowsPhone-Target””:”1*NotificationTypeValue NotificationTypeValue

= STRING.

For example: X-WindowsPhone-Target:toast.

Special characters

The following characters should be encoded as shown in the table when used in a Tile or toast

payload.

Character XML encoding

< <

> >

& &

‘ '

“ "

Tile and toast notification payloads

https://msdn.microsoft.com/en-us/library/windows/apps/ff402558(v=vs.105).aspx
javascript:void(0)
javascript:void(0)

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

63

The following sections describe payload info needed for sending a push notification to a

toast or Tile.

Toast notification payloads

For general info about how to structure the toast notification payload using code or XML,

as well as for info about how to structure the payload to deep link into your app, see Toasts for

Windows Phone 8.

Toast notification payload HTTP headers

Use the following HTTP headers when creating a toast notification:

C#

sendNotificationRequest.ContentType = "text/xml";

sendNotificationRequest.Headers.Add("X-WindowsPhone-Target", "toast");

sendNotificationRequest.Headers.Add("X-NotificationClass", "[batching interval]");

Toast notification batching intervals

The following table describes the values that the batching interval can have.

Value Delivery interval

2 Immediate delivery.

12 Delivered within 450 seconds.

22 Delivered within 900 seconds.

Tile notification batching intervals

The following table describes the values that the batching interval can have.

Value Delivery interval

1 Immediate delivery.

11 Delivered within 450 seconds.

21 Delivered within 900 seconds.

Sending push notifications to secondary Tiles

If your app has secondary Tiles, the Id attribute designates which Tile to update. You can

omit the Id attribute of theTile element if updating your app's default Tile.

https://msdn.microsoft.com/en-us/library/windows/apps/jj662938(v=vs.105).aspx
https://msdn.microsoft.com/en-us/library/windows/apps/jj662938(v=vs.105).aspx

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

64

The following code shows an example of the Id attribute of the Tile element, which should

contain the exact navigation URI of the secondary Tile.

string tileMessage = "<?xml version=\"1.0\" encoding=\"utf-8\"?>" +

"<wp:Notification xmlns:wp=\"WPNotification\">" +

 "<wp:Tile Id=\"/SecondaryTile.xaml?DefaultTitle=FromTile\">" +

…

 "</wp:Tile> " +

"</wp:Notification>";

Raw Tile notification payload

Use the following HTTP headers when sending a raw Tile notification.

C#

sendNotificationRequest.ContentType = "text/xml";

sendNotificationRequest.Headers.Add("X-NotificationClass", "[batching interval]");

The following table describes the values that the batching interval can have.

Value Delivery interval

3 Immediate delivery.

13 Delivered within 450 seconds.

23 Delivered within 900 seconds.

The structure of the payload is defined by the app. The following code shows an example.

string tileMessage = "<?xml version=\"1.0\" encoding=\"utf-8\"?>" +

 "<root>" +

 "<Value1>[UserValue1]<Value1>" +

 "<Value2>[UserValue2]<Value2>" +

 "</root>"

You can also pass a byte stream. The following code shows an example.

new byte[] {0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08};

Background agents for Windows Phone 8

Scheduled Tasks and background agents allow an application to execute code in the

background, even when the application is not running in the foreground. The different types of

Scheduled Tasks are designed for different types of background processing scenarios and

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

65

therefore have different behaviors and constraints. This topic describes the scheduling, duration,

and limitations of scheduled tasks.

The following are the types of Scheduled Tasks. Note that ScheduledTask derives

from ScheduledAction. The code that runs in the background is placed in a class that derives

from ScheduledTaskAgent, which derives fromBackgroundAgent.

Scheduled Task Type Description

PeriodicTask Periodic agents run for a small amount of time on a regular recurring interval.

Typical scenarios for this type of task include uploading the device’s location and

performing small amounts of data synchronization.

ResourceIntensiveTask Resource-intensive agents run for a relatively long period of time when the phone

meets a set of requirements relating to processor activity, power source, and network

connection. A typical scenario for this type of task is synchronizing large amounts of

data to the phone while it is not being actively used by the user.

Background Agent Lifecycle

An application may have only one background agent. This agent can be registered as

a PeriodicTask, aResourceIntensiveTask, or both. The schedule on which the agent runs

depends on which type of task it is registered as. The details of the schedules are described later

in this topic. Only one instance of the agent runs at a time.

The code for the agent is implemented by the application in a class that inherits

from BackgroundAgent. When the agent is launched, the operating system

calls OnInvoke(ScheduledTask). In this method, the application can determine which type

of ScheduledTask it is being run as, and perform the appropriate actions.

When the agent has completed its task, it should call NotifyComplete() or Abort() to let

the operating system know that it has completed.NotifyComplete should be used if the task was

successful. If the agent is unable to perform its task – such as a needed server being unavailable -

the agent should call Abort, which causes the IsScheduled property to be set to false.

The following constraints apply to all Scheduled Tasks.

Constraint Description

https://msdn.microsoft.com/en-us/library/windows/apps/microsoft.phone.scheduler.scheduledtask(v=vs.105).aspx
https://msdn.microsoft.com/en-us/library/windows/apps/microsoft.phone.scheduler.scheduledaction(v=vs.105).aspx
https://msdn.microsoft.com/en-us/library/windows/apps/microsoft.phone.scheduler.scheduledtaskagent(v=vs.105).aspx
https://msdn.microsoft.com/en-us/library/windows/apps/microsoft.phone.backgroundagent(v=vs.105).aspx
https://msdn.microsoft.com/en-us/library/windows/apps/microsoft.phone.scheduler.periodictask(v=vs.105).aspx
https://msdn.microsoft.com/en-us/library/windows/apps/microsoft.phone.scheduler.resourceintensivetask(v=vs.105).aspx
javascript:void(0)
https://msdn.microsoft.com/en-us/library/windows/apps/microsoft.phone.backgroundagent(v=vs.105).aspx
https://msdn.microsoft.com/en-us/library/windows/apps/microsoft.phone.scheduler.scheduledtaskagent.oninvoke(v=vs.105).aspx
https://msdn.microsoft.com/en-us/library/windows/apps/microsoft.phone.backgroundagent.notifycomplete(v=vs.105).aspx
https://msdn.microsoft.com/en-us/library/windows/apps/microsoft.phone.backgroundagent.abort(v=vs.105).aspx
https://msdn.microsoft.com/en-us/library/windows/apps/microsoft.phone.scheduler.scheduledaction.isscheduled(v=vs.105).aspx

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

66

Unsupported APIs There is a set of APIs that cannot be used by any Scheduled Task. Using these APIs

either will cause an exception to be thrown at run time or will cause the application to

fail certification during submission to Store. For the list of restricted APIs,

see Unsupported APIs for background agents for Windows Phone 8.

Memory usage cap Periodic agents and resource-intensive agents can use no more than 20 MB of memory at

any time on devices with 1 GB of memory or more.

Reschedule

required every two

weeks

Use the ExpirationTime property of the ScheduledTask object to set the time after which

the task no longer runs. This value must be set to a time within two weeks of the time

when the action is scheduled with the Add(ScheduledAction) method.

Agents

unscheduled after

two consecutive

crashes

Both periodic and resource-intensive agents are unscheduled if they exit two consecutive

times due to exceeding the memory quota or any other unhandled exception. The agents

must be rescheduled by the foreground application.

The following are the schedule, duration, and general constraints for Resource-intensive agents.

Constraint Description

Duration: 10

minutes

Resource-intensive agents typically run for 10 minutes. There are other constraints that may

cause an agent to be terminated early.

External power

required

Resource-intensive agents do not run unless the device is connected to an external power

source.

Non-cellular

connection

required

Resource-intensive agents do not run unless the device has a network connection over Wi-Fi

or through a connection to a PC.

Minimum

battery power

Resource-intensive agents do not run unless the device’s battery power is greater than 90%.

Device screen

lock required

Resource-intensive agents do not run unless the device screen is locked.

No active phone

call

Resource-intensive agents do not run while a phone call is active.

https://msdn.microsoft.com/en-us/library/windows/apps/hh202962(v=vs.105).aspx
https://msdn.microsoft.com/en-us/library/windows/apps/microsoft.phone.scheduler.scheduledaction.expirationtime(v=vs.105).aspx
https://msdn.microsoft.com/en-us/library/windows/apps/microsoft.phone.scheduler.scheduledtask(v=vs.105).aspx
https://msdn.microsoft.com/en-us/library/windows/apps/microsoft.phone.scheduler.scheduledactionservice.add(v=vs.105).aspx

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

67

Cannot change

network to

cellular

If a resource-intensive agent attempts to call AssociateToNetworkInterface(Socket,

NetworkInterfaceInfo) specifying

either MobileBroadbandGSM() or MobileBroadbandCDMA(), the method call fails.

https://msdn.microsoft.com/en-us/library/windows/apps/microsoft.phone.net.networkinformation.socketextensions.associatetonetworkinterface(v=vs.105).aspx
https://msdn.microsoft.com/en-us/library/windows/apps/microsoft.phone.net.networkinformation.socketextensions.associatetonetworkinterface(v=vs.105).aspx

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

68

Introduction to Silverlight

Microsoft Silverlight is a deprecated application framework for writing and running rich

Internet applications, similar to Adobe Flash. A plug-in for Silverlight is available for some

browsers.

Microsoft Silverlight is a cross-browser, cross-platform implementation of .NET for building and

delivering the next generation of media experiences & rich interactive applications for the Web.

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

69

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

70

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

71

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

72

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

73

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

74

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

75

Background Agents

With the release of Windows Phone 7 Mango, you now have the ability to multitask

(scheduled multitask) by using background agents. Background agents allow you to do things

when your application is not running.

It is important to understand that the OS is responsible for determining when your

background agent can run and is determined by a number of factors. It is also dependent on the

type of Background Agent you use.

For both types of Agents you are constrained by the following:

- Unsupported APIs

- Memory Cap Usage

- Agent Crashes (unscheduled Agents after two crashes)

- Rescheduling (You have to reschedule every two weeks)

Periodic Agents (PeriodicTask) are used when you want a “semi” predictable action to fire. But

they are constrained to the following. For example, you can use Periodic Agents for collecting

quick GPS coordinates or updating an RSS feed.

- 30 Minute Intervals (this time may drift)

- Run for 25 seconds

- Might not run on Battery Saver mode

- Agents per device (The number of apps using agents) can be as low as 6 on some devices

Resource-intensive Agents (resourceIntensiveTask) can be used for more intensive items like

downloading larger files or coping database entries to a replication server. But you must keep in

mind that they have some specific constraints as well.

- Duration 10 Minutes

- External Power Required (You need to plug it in)

- Connection through WiFi or PC

- Battery 90% or better

- Screen Lock on

- No active phone call

- Add a ScheduledAgentTasks project to your solution

- Add a reference to the agent project in your phone application project

- Add your code to the Invoke Method in the ScheduledAgentTasks project as shown below

 protected override void OnInvoke(ScheduledTask task)

 {

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

76

 //TODO: Add code to perform your task in background

 string toastMessage = "";

 // If your application uses both PeriodicTask and ResourceIntensiveTask

 // you can branch your application code here. Otherwise, you don't need to.

 if (task is PeriodicTask)

 {

 // Execute periodic task actions here.

 toastMessage = "Periodic task running.";

 }

 else

 {

 // Execute resource-intensive task actions here.

 toastMessage = "Resource-intensive task running.";

 }

 // Launch a toast to show that the agent is running.

 // The toast will not be shown if the foreground application is running.

 ShellToast toast = new ShellToast();

 toast.Title = "Background Agent Sample";

 toast.Content = toastMessage;

 toast.Show();

 // If debugging is enabled, launch the agent again in one minute.

#if DEBUG_AGENT

 ScheduledActionService.LaunchForTest(task.Name, TimeSpan.FromSeconds(60));

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

77

#endif

 // Call NotifyComplete to let the system know the agent is done working.

 NotifyComplete();

 }

The one caveat is that it can sometimes be difficult to debug in an emulator. If you have a

developer phone you will have a much easier time debugging it on the device.

Background Agents

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

78

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

79

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

80

Applications of Background Agents

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

81

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

82

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

83

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

84

Using maps and Locations

The Maps app in Windows Phone can show you where you are, where you want to go,

and provide directions to get you there. It can also show you nearby shops or restaurants you

might be interested in and what other people are saying about them.

Displaying a Map

To display a map in your Windows Phone 8 app, use the Map control. For more info, see How to

add a Map control to a page in Windows Phone 8.

Important Note:

To use the control, you have to select the ID_CAP_MAP capability in the app manifest file. For

more info, see How to modify the app manifest file for Windows Phone 8.

Displaying a Map with XAML

The following code example shows how you can use XAML to display a Map control in your

Windows Phone 8 app.

http://www.windowsphone.com/en-in/how-to/wp7/web/get-directions

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

85

<!--ContentPanel - place additional content here-->

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

 <maps:Map />

</Grid>

If you add the control by writing XAML, you also have to add the following xmlns declaration to

the phone:PhoneApplicationPage element. If you drag and drop the Map control from the

Toolbox, this declaration is added automatically.

xmlns:maps="clr-namespace:Microsoft.Phone.Maps.Controls;assembly=Microsoft.Phone.Maps"

Displaying a Map with code (C#)

The following code example shows how you can use code to display a Map control in your

Windows Phone 8 app.

using Microsoft.Phone.Maps.Controls;

...

 Map MyMap = new Map();

 ContentPanel.Children.Add(MyMap);

Displaying a Map by using a built-in launcher

This topic describes how to write code that displays a map inside your app. If you simply want to

display a map, you can also use the Maps task, which launches the built-in Maps app. For more

info, see How to use the Maps task for Windows Phone 8.

The following table lists all the built-in launchers that display or manage maps. For more info

about launchers, see Launchers and Choosers for Windows Phone 8.

Launcher More info

Maps task Launches the built-in Maps app and optionally marks a location.

Maps directions task Launches the built-in Maps app and displays directions.

MapDownloader task Downloads maps for offline use.

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

86

MapUpdater task Checks for updates for offline maps that the user has previously downloaded.

Specifying the center of a map (XAML)

You can set the center of the Map control by using its Center property. To set the property using

XAML, assign a (latitude, longitude) pair to the Center property.

The following code example shows how you can set the center of Map by using XAML.

<!--ContentPanel - place additional content here-->

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

 <maps:Map x:Name="MyMap" Center="47.6097, -122.3331" />

</Grid>

The following code example shows how can set the center of Map using code. (C#)

using Microsoft.Phone.Maps.Controls;

using System.Device.Location;

...

 Map MyMap = new Map();

 MyMap.Center = new GeoCoordinate(47.6097, -122.3331);

 ContentPanel.Children.Add(MyMap);

}

Specifying the zoom level of a map (XAML)

Use the ZoomLevel property to set the initial resolution at which you want to display the

map. ZoomLevel property takes values from 1 to 20, where 1 corresponds to a fully zoomed out

map, and higher zoom levels zoom in at a higher resolution. The following code examples show

how you can set the zoom level of the map by using the ZoomLevel property in XAML and

code.

The following code example shows how you can set the zoom level of the map by using the

ZoomLevel property in XAML.

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

87

<!--ContentPanel - place additional content here-->

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

 <maps:Map x:Name="MyMap" Center="47.6097, -122.3331" ZoomLevel="10"/>

</Grid>

The following code example shows how you can set the zoom level of the map by using the

ZoomLevel property in code. (C#)

using Microsoft.Phone.Maps.Controls;

using System.Device.Location;

...

 Map MyMap = new Map();

 MyMap.Center = new GeoCoordinate(47.6097, -122.3331);

 MyMap.ZoomLevel = 10;

 ContentPanel.Children.Add(MyMap);

}

Converting a Geocoordinate to a GeoCoordinate

The Center property of the Map control requires a value of type GeoCoordinate from the

System.Device.Location namespace. If you are using location services from the

Windows.Devices.Geolocation namespace, you have to convert a

Windows.Devices.Geolocation.Geocoordinate value to a

System.Device.Location.GeoCoordinate value for use with the Map control.

You can get an extension method to do this conversion, along with other useful

extensions to the Maps API, by downloading the Windows Phone Toolkit. If you want to write

your own code, here is an example of a method that you can use to convert a Geocoordinate to a

GeoCoordinate:

using System;

using System.Device.Location; // Contains the GeoCoordinate class.

using Windows.Devices.Geolocation; // Contains the Geocoordinate class.

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

88

namespace CoordinateConverter

{

 public static class CoordinateConverter

 {

 public static GeoCoordinate ConvertGeocoordinate(Geocoordinate geocoordinate)

 {

 return new GeoCoordinate

 (

 geocoordinate.Latitude,

 geocoordinate.Longitude,

 geocoordinate.Altitude ?? Double.NaN,

 geocoordinate.Accuracy,

 geocoordinate.AltitudeAccuracy ?? Double.NaN,

 geocoordinate.Speed ?? Double.NaN,

 geocoordinate.Heading ?? Double.NaN

);

 }

 }

}

Displaying landmarks and pedestrian features

Landmarks. Set the LandmarksEnabled property to true to display landmarks on a Map

control. Landmarks are visible on the map only when the ZoomLevel property is set to a value of

16 or higher.

Pedestrian features. Set PedestrianFeaturesEnabled to true on a Map control to display

pedestrian features such as public stairs. Pedestrian features are visible on the map only when the

ZoomLevel property is set to a value of 16 or higher.

The following illustration displays a map with landmarks and pedestrian features.

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

89

The following example shows how you can set the PedestrianFeaturesEnabled property and the

LandmarksEnabled property in XAML.

<!--ContentPanel - place additional content here-->

 <Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

 <maps:Map Center="47.6097, -122.3331" ZoomLevel="16" LandmarksEnabled="true"

PedestrianFeaturesEnabled="true"/>

 </Grid>

The following example shows how to set these properties in code.

using Microsoft.Phone.Maps.Controls;

using System.Device.Location;

...

 Map MyMap = new Map();

 MyMap.Center = new GeoCoordinate(47.6097, -122.3331);

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

90

 MyMap.ZoomLevel = 16;

 MyMap.LandmarksEnabled = true;

 MyMap.PedestrianFeaturesEnabled = true;

 ContentPanel.Children.Add(MyMap);

}

Setting the cartographic mode

Once you set the center and zoom level of a map, you You might may also want to set the

cartographic mode of the map. The cartographic mode defines the display and the translation of

coordinate systems from screen coordinates to world coordinates on the Map control. You can

use the CartographicMode property of the Map control to set the cartographic mode of the map.

This property takes accepts values from the MapCartographicMode enumeration. The following

types of cartographic modes are supported in the MapCartographicMode enumeration:

Road: displays the normal, default 2-D map.

Aerial: displays an aerial photographic map.

Hybrid: displays an aerial view of the map overlaid with roads and labels.

Terrain: displays physical relief images for displaying elevation and water features such as

mountains and rivers.

The following illustration displays the four cartographic modes.

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

91

The following example displays a map in the default Road mode. The buttons in the app

bar can be used to view the map in Aerial, Hybrid, and Terrain modes.

XAML

<!--LayoutRoot is the root grid where all page content is placed-->

<Grid x:Name="LayoutRoot" Background="Transparent">

 <Grid.RowDefinitions>

 <RowDefinition Height="Auto"/>

 <RowDefinition Height="*"/>

 </Grid.RowDefinitions>

 <!--TitlePanel contains the name of the application and page title-->

 <StackPanel x:Name="TitlePanel" Grid.Row="0" Margin="12,17,0,28">

 <TextBlock x:Name="ApplicationTitle" Text="Maps" Style="{StaticResource

PhoneTextNormalStyle}"/>

 <TextBlock x:Name="PageTitle" Text="map modes" Margin="9,-7,0,0"

Style="{StaticResource PhoneTextTitle1Style}"/>

 </StackPanel>

 <!--ContentPanel - place additional content here-->

 <Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

 <maps:Map x:Name="MyMap" Center="13.0810, 80.2740" ZoomLevel="10"/>

 </Grid>

</Grid>

<!--Sample code showing usage of ApplicationBar-->

<phone:PhoneApplicationPage.ApplicationBar>

 <shell:ApplicationBar IsVisible="True" IsMenuEnabled="True">

 <shell:ApplicationBarIconButton IconUri="/Images/appbar_button1.png" Text="Road"

Click="Road_Click"/>

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

92

 <shell:ApplicationBarIconButton IconUri="/Images/appbar_button2.png" Text="Aerial"

Click="Aerial_Click"/>

 <shell:ApplicationBarIconButton IconUri="/Images/appbar_button3.png" Text="Hybrid"

Click="Hybrid_Click"/>

 <shell:ApplicationBarIconButton IconUri="/Images/appbar_button4.png" Text="Terrain"

Click="Terrain_Click"/>

 </shell:ApplicationBar>

</phone:PhoneApplicationPage.ApplicationBar>

C#

void Road_Click(object sender, EventArgs args)

{

 MyMap.CartographicMode = MapCartographicMode.Road;

}

void Aerial_Click(object sender, EventArgs args)

{

 MyMap.CartographicMode = MapCartographicMode.Aerial;

}

void Hybrid_Click(object sender, EventArgs args)

{

 MyMap.CartographicMode = MapCartographicMode.Hybrid;

}

void Terrain_Click(object sender, EventArgs args)

{

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

93

 MyMap.CartographicMode = MapCartographicMode.Terrain;

}

Setting the color mode

You can display the map in a light color mode or a dark mode by using the ColorMode

property. The values that this property can take—Light or Dark—is accepts are specified

contained in the MapColorMode enumeration. The default is Light.

In the following illustration, the first map is in the Light color mode and the second map is in the

Dark color mode.

The following code example displays a map in the default Light mode. The buttons in the app

bar can be used to view the map in Light or Dark modes.

XAML

<!--LayoutRoot is the root grid where all page content is placed-->

 <Grid x:Name="LayoutRoot" Background="Transparent">

 <Grid.RowDefinitions>

 <RowDefinition Height="Auto"/>

 <RowDefinition Height="*"/>

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

94

 </Grid.RowDefinitions>

 <!--TitlePanel contains the name of the application and page title-->

 <StackPanel x:Name="TitlePanel" Grid.Row="0" Margin="12,17,0,28">

 <TextBlock x:Name="ApplicationTitle" Text="Maps" Style="{StaticResource

PhoneTextNormalStyle}"/>

 <TextBlock x:Name="PageTitle" Text="color modes" Margin="9,-7,0,0"

Style="{StaticResource PhoneTextTitle1Style}"/>

 </StackPanel>

 <!--ContentPanel - place additional content here-->

 <Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

 <maps:Map x:Name="MyMap" />

 </Grid>

 </Grid>

 <!--Sample code showing usage of ApplicationBar-->

 <phone:PhoneApplicationPage.ApplicationBar>

 <shell:ApplicationBar IsVisible="True" IsMenuEnabled="True">

 <shell:ApplicationBarIconButton IconUri="/Images/appbar_button1.png" Text="Light"

Click="Light_Click"/>

 <shell:ApplicationBarIconButton IconUri="/Images/appbar_button2.png" Text="Dark"

Click="Dark_Click"/>

 </shell:ApplicationBar>

</phone:PhoneApplicationPage.ApplicationBar>

C#

void Light_Click(object sender, EventArgs args)

{

 MyMap.ColorMode = MapColorMode.Light;

}

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

95

void Dark_Click(object sender, EventArgs args)

{

 MyMap.ColorMode = MapColorMode.Dark;

}

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

96

XAML

XAML --> Extensible Markup Language. XAML is very easy in use and it is tag based

language. There are different tags that do their work. It is tag based and when we open a tag

mostly it is necessary to close the same tag as same in HTML.

The Extensible Application Markup Language (XAML) with C# to create a simple

"Hello, world" app that targets the Universal Windows Platform (UWP) on Windows 10. With a

single project in Microsoft Visual Studio, you can build an app that runs on any Windows 10

device. Here we focus on creating an app that runs equally well on desktop and mobile devices.

Step 1: Create a new project in Visual Studio

1. Launch Visual Studio 2015.

The Visual Studio 2015 Start page appears. (From now on, we'll refer to Visual Studio 2015

simply as Visual Studio .)

2. On the File menu, select New > Project.

The New Project dialog appears. The left pane of the dialog lets you select the type of templates

to display.

3. In the left pane, expand Installed > Templates > Visual C# > Windows, then pick

the Universal template group. The dialog's center pane displays a list of project templates for

Universal Windows Platform (UWP) apps.

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

97

4. In the center pane, select the Blank App (Universal Windows) template.

The Blank App template creates a minimal UWP app that compiles and runs, but contains no

user-interface controls or data. You add controls to the app over the course of this tutorial.

5. In the Name text box, type "HelloWorld".

6. Click OK to create the project.

Visual Studio creates your project and displays it in the Solution Explorer.

Although the Blank App is a minimal template, it still contains a lot of files:

 A manifest file (Package.appxmanifest) that describes your app (its name, description,

tile, start page, and so on) and lists the files that your app contains.

 A set of logo images (Assets/Square150x150Logo.scale-200.png,

Assets/Square44x44Logo.scale-200.png, and Assets/Wide310x150Logo.scale-200.png)to

display in the start menu.

 An image (Assets/StoreLogo.png) to represent your app in the Windows Store.

 A splash screen (Assets/SplashScreen.scale-200.png) to display when your app starts.

 XAML and code files for the app (App.xaml and App.xaml.cs).

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

98

 A start page (MainPage.xaml) and an accompanying code file (MainPage.xaml.cs) that

run when your app starts.

These files are essential to all UWP apps using C#. Every project that you create in Visual Studio

contains them.

Step 2: Modify your start page

What's in the files?

To view and edit a file in your project, double-click the file in the Solution Explorer. By

default, you can expand a XAML file just like a folder to see its associated code file. XAML

files open in a split view that shows both the design surface and the XAML editor.

In this tutorial, you work with just a few of the files listed previously: App.xaml,

MainPage.xaml, and MainPage.xaml.cs.

App.xaml and App.xaml.cs

App.xaml is where you declare resources that are used across the app. App.xaml.cs is the

code-behind file for App.xaml. Code-behind is the code that is joined with the XAML page's

partial class. Together, the XAML and code-behind make a complete class. App.xaml.cs is the

entry point for your app. Like all code-behind pages, it contains a constructor that calls

the InitializeComponent method. You don't write the InitializeComponent method. It's generated

by Visual Studio, and its main purpose is to initialize the elements declared in the XAML file.

App.xaml.cs also contains methods to handle activation and suspension of the app.

MainPage.xaml

In MainPage.xaml you define the UI for your app. You can add elements directly using

XAML markup, or you can use the design tools provided by Visual Studio. MainPage.xaml.cs is

the code-behind page for MainPage.xaml. It's where you add your app logic and event handlers.

Together these two files define a new class called MainPage, which inherits from Page, in

the HelloWorld namespace.

MainPage.xaml

<Page

 x:Class="HelloWorld.MainPage"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 xmlns:local="using:HelloWorld"

 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"

 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"

 mc:Ignorable="d">

 <Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">

https://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.page.aspx

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

99

 </Grid>

</Page>

MainPage.xaml.cs

using Windows.UI.Xaml;

using Windows.UI.Xaml.Controls;

namespace HelloWorld

{

 /// <summary>

 /// An empty page that can be used on its own or navigated to within a Frame.

 /// </summary>

 public sealed partial class MainPage : Page

 {

 public MainPage()

 {

 this.InitializeComponent();

 }

 }

}

Modify the start page

Now, let's add some content to the app. To modify the start page

1. Double-click MainPage.xaml in Solution Explorer to open it.

2. In the XAML editor, add the controls for the UI.

In the root Grid, add this XAML. It contains a StackPanel with a title TextBlock,

a TextBlock that asks the user's name, a TextBox element to accept the user's name, a Button,

and another TextBlock to show a greeting. Some of these controls have names so that you can

refer to them later in your code.

<StackPanel x:Name="contentPanel" Margin="8,32,0,0">

 <TextBlock Text="Hello, world!" Margin="0,0,0,40"/>

 <TextBlock Text="What's your name?"/>

 <StackPanel x:Name="inputPanel" Orientation="Horizontal" Margin="0,20,0,20">

 <TextBox x:Name="nameInput" Width="280" HorizontalAlignment="Left"/>

 <Button x:Name="inputButton" Content="Say "Hello""/>

 </StackPanel>

 <TextBlock x:Name="greetingOutput"/>

</StackPanel>

https://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.grid.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.stackpanel.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.textblock.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.textbox.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.button.aspx

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

100

The controls that you added in the XAML editor show up in the design view.

Step 3: Start the app

At this point, you've created a very simple app. This is a good time to build, deploy, and launch

your app and see what it looks like. You can debug your app on the local machine, in a simulator

or emulator, or on a remote device. Here's the target device menu in Visual Studio.

Start the app on a Desktop device

By default, the app runs on the local machine. The target device menu provides several options

for debugging your app on devices from the desktop device family.

 Simulator

 Local Machine

 Remote Machine

To start debugging on the local machine

1. In the target device menu () on the Standard toolbar, make sure

that Local Machine is selected. (It's the default selection.)

2. Click the Start Debugging button () on the toolbar.

–or–

From the Debug menu, click Start Debugging.

–or–

Press F5.

The app opens in a window, and a default splash screen appears first. The splash screen is

defined by an image (SplashScreen.png) and a background color (specified in your app's

manifest file).

The splash screen disappears, and then your app appears. It looks like this.

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

101

Press the Windows key to open the Start menu, then show all apps. Notice that deploying the

app locally adds its tile to the Start menu. To run the app again (not in debugging mode), tap or

click its tile in the Start menu.

It doesn't do much—yet—but congratulations, you've built your first UWP app!

To stop debugging

 Click the Stop Debugging button () in the toolbar.

–or–

From the Debug menu, click Stop debugging.

–or–

Close the app window.

Start the app on a mobile device emulator

Your app runs on any Windows 10 device, so let’s see how it looks on a Windows Phone.

In addition to the options to debug on a desktop device, Visual Studio provides options for

deploying and debugging your app on a physical mobile device connected to the computer, or on

a mobile device emulator. You can choose among emulators for devices with different memory

and display configurations.

 Device

 Emulator <SDK version> WVGA 4 inch 512MB

 Emulator <SDK version> WVGA 4 inch 1GB

 etc... (Various emulators in other configurations)

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

102

It's a good idea to test your app on a device with a small screen and limited memory, so use

the Emulator 10.0.10240.0 WVGA 4 inch 512MB option.

To start debugging on a mobile device emulator

1. In the target device menu () on the Standard toolbar, pick Emulator

10.0.10240.0 WVGA 4 inch 512MB.

2. Click the Start Debugging button () in the toolbar.

–or–

From the Debug menu, click Start Debugging.

–or–

Press F5.

Visual Studio starts the selected emulator and then deploys and starts your app. On the mobile

device emulator, the app looks like this.

The first thing you'll notice is the button is pushed off the smaller screen of a mobile device.

Later in this tutorial, you'll learn how to adapt the UI to different screen sizes so your app always

looks good.

You might also notice that you can type in the TextBox, but right now, clicking or tapping

the Button doesn't do anything. In the next steps, you create an event handler for the

button's Click event to display a personalized greeting. You add the event handler code to your

MainPage.xaml.cs file.

https://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.textbox.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.button.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.buttonbase.click.aspx

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

103

Step 4: Create an event handler

XAML elements can send messages when certain events occur. These event messages give you

the opportunity to take some action in response to the event. You put your code to respond to the

event in an event handler method. One of the most common events in many apps is a user

clicking a Button.

Let's create an event handler for your button's Click event. The event handler will get the user's

name from the nameInputTextBox control and use it to output a greeting to

the greetingOutput TextBlock.

Using events that work for touch, mouse, and pen input

What events should you handle? Because they can run on a variety of devices, design

your Windows Store apps with touch input in mind. Your app must also be able to handle input

from a mouse or a stylus. Fortunately, events such asClick and DoubleTapped are device-

independent. If you're familiar with Microsoft .NET programming, you might have seen separate

events for mouse, touch, and stylus input, like MouseMove, TouchMove, and StylusMove. In

Windows Store apps, these separate events are replaced with a single PointerMoved event that

works equally well for touch, mouse, and stylus input.

To add an event handler

1. In XAML or design view, select the "Say Hello" Button that you added to

MainPage.xaml.

2. In the Properties Window, click the Events button ().

3. Find the Click event at the top of the event list. In the text box for the event, type the

name of the function that handles the Click event. For this example, type "Button_Click".

https://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.button.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.buttonbase.click.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.textbox.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.textblock.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.buttonbase.click.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.uielement.doubletapped.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.uielement.pointermoved.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.button.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.buttonbase.click.aspx

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

104

4. Press Enter. The event handler method is created and opened in the code editor so you

can add code to be executed when the event occurs.

In the XAML editor, the XAML for the Button is updated to declare the Click event handler like

this.

<Button x:Name="inputButton" Content="Say "Hello"" Click="Button_Click"/>

5. Add code to the event handler that you created in the code-behind page. In the event

handler, retrieve the user's name from the nameInput TextBox control and use it to create a

greeting. Use the greetingOutput TextBlock to display the result.

private void Button_Click(object sender, RoutedEventArgs e)

{

 greetingOutput.Text = "Hello, " + nameInput.Text + "!";

}

6. Debug the app on the local machine. When you enter your name in the text box and click

the button, the app displays a personalized greeting.

Step 5: Adapt the UI to different window sizes

Now we'll make the UI adapt to different screen sizes so it looks good on mobile devices. To do

this, you add aVisualStateManager and set properties that are applied for different visual states.

To adjust the UI layout

https://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.button.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.buttonbase.click.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.textbox.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.textblock.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.visualstatemanager.aspx

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

105

1. In the XAML editor, add this block of XAML after the opening tag of the

root Grid element.

<VisualStateManager.VisualStateGroups>

 <VisualStateGroup>

 <VisualState x:Name="wideState">

 <VisualState.StateTriggers>

 <AdaptiveTrigger MinWindowWidth="641" />

 </VisualState.StateTriggers>

 </VisualState>

 <VisualState x:Name="narrowState">

 <VisualState.StateTriggers>

 <AdaptiveTrigger MinWindowWidth="0" />

 </VisualState.StateTriggers>

 <VisualState.Setters>

 <Setter Target="inputPanel.Orientation" Value="Vertical"/>

 <Setter Target="inputButton.Margin" Value="0,4,0,0"/>

 </VisualState.Setters>

 </VisualState>

 </VisualStateGroup>

</VisualStateManager.VisualStateGroups>

2. Debug the app on the local machine. Notice that the UI looks the same as before unless

the window gets narrower than 641 pixels.

3. Debug the app on the mobile device emulator. Notice that the UI uses the properties you

defined in the narrowStateand appears correctly on the small screen.

https://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.grid.aspx

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

106

If you've used a VisualStateManager in previous versions of XAML, you might notice that the

XAML here uses a simplified syntax.

The VisualState named wideState has an AdaptiveTrigger with

its MinWindowWidth property set to 641. This means that the state is to be applied only when

the window width is not less than the minimum of 641 pixels. You don't define anySetter objects

for this state, so it uses the layout properties you defined in the XAML for the page content.

The second VisualState, narrowState, has an AdaptiveTrigger with

its MinWindowWidth property set to 0. This state is applied when the window width is greater

than 0, but less than 641 pixels. (At 641 pixels, the wideState is applied.) In this state, you do

define some Setter objects to change the layout properties of controls in the UI:

 You change the Orientation of the inputPanel element from Horizontal to Vertical.

 You add a top margin of 4 to the inputButton element.

Summary

Congratulations, you've created your first app for Windows 10 and the UWP!

Adding controls and handling events (XAML)

You create the UI for your app by using controls such as buttons, text boxes, and combo boxes.

Here we show you how to add controls to your app. You typically use this pattern when working

with controls:

 You add a control to your app UI.

 You set properties on the control, such as width, height, or foreground color.

 You hook up some code to the control so that it does something.

https://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.visualstatemanager.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.visualstate.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.adaptivetrigger.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.adaptivetrigger.minwindowwidth.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.setter.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.visualstate.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.adaptivetrigger.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.adaptivetrigger.minwindowwidth.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.setter.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.stackpanel.orientation.aspx

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

107

Adding a control

You can add a control to an app in several ways:

 Use a design tool like Blend for Visual Studio or the Microsoft Visual Studio XAML

designer.

 Add the control to the XAML markup in the Visual Studio XAML editor.

 Add the control in code. Controls that you add in code are visible when the app runs, but

are not visible in the Visual Studio XAML designer.

Documentation for each control includes a "How to" topic that describes how to add the control

in XAML, code, or using a design tool. For example, to add a Button control, see How to add a

button.

Here, we use Visual Studio as our design tool, but you can do the same tasks and more in Blend

for Visual Studio.

In Visual Studio, when you add and manipulate controls in your app, you can use many of the

program's features, including the Toolbox, XAML designer, XAML editor, and

the Properties window.

The Visual Studio Toolbox displays many of the controls that you can use in your app. To add a

control to your app, double-click it in the Toolbox. For example, when you double-click

the TextBox control, this XAML is added to the XAMLview.

 <TextBox HorizontalAlignment="Left" Text="TextBox" VerticalAlignment="Top"/>

You can also drag the control from the Toolbox to the XAML designer.

 Setting the name of a control

To work with a control in code, you set its x:Name attribute and reference it by name in your

code. You can set the name in the Visual Studio Properties window or in XAML. Here's how to

change the name of the currently selected control by using the Name text box at the top of

the Properties window.

To name a control

1. Select the element to name.

2. In the Properties panel, type a name into the Name text box.

3. Press Enter to commit the name.

https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.button.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/jj153345.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/jj153345.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.textbox.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/hh758295.aspx

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

108

Here's how you can change the name of a control in the XAML editor by changing

the x:Name attribute.

<Button x:Name="Button1" Content="Button"/>

 Setting control properties

You use properties to specify the appearance, content, and other attributes of controls. When you

add a control using a design tool, some properties that control size, position, and content might

be set for you by Visual Studio. You can change some properties, such

as Width, Height or Margin, by selecting and manipulating the control in the Design view. This

illustration shows some of the resizing tools available in Design view.

You might want to let the control be sized and positioned automatically. In this case, you can

reset the size and position properties that Visual Studio set for you.

To reset a property

1. In the Properties panel, click the property marker next to the property value. The

property menu opens.

2. In the property menu, click Reset.

https://msdn.microsoft.com/en-us/library/windows/apps/xaml/hh758295.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.frameworkelement.width.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.frameworkelement.height.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.frameworkelement.margin.aspx

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

109

You can set control properties in the Properties window, in XAML, or in code. For example, to

change the foreground color for a Button, you set the control's Foreground property. This

illustration shows how to set the Foregroundproperty by using the color picker in

the Properties window.

Here's how to set the Foreground property in the XAML editor. Notice the Visual Studio

IntelliSense window that opens to help you with the syntax.

https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.button.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.control.foreground.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.control.foreground.aspx

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

110

Here's the resulting XAML after you set the Foreground property.

XAML

<Button x:Name="Button1" Content="Button"

 HorizontalAlignment="Left" VerticalAlignment="Top"

 Foreground="Beige"/>

Here's how to set the Foreground property in code. C#, C++, VB

Button1.Foreground = new SolidColorBrush(Windows.UI.Colors.Beige);

 Creating an event handler

Each control has events that enable you to respond to actions from your user or other changes in

your app. For example, a Button control has a Click event that is raised when a user clicks

the Button. You create a method, called an event handler, to handle the event. You can associate

a control's event with an event handler method in the Propertieswindow, in XAML, or in code.

For more info about events, see Events and routed events overview.

To create an event handler, select the control and then click the Events tab at the top of

the Properties window. TheProperties window lists all of the events available for that control.

Here are some of the events for a Button.

https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.control.foreground.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.control.foreground.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/hh465336.aspx?cs-save-lang=1&cs-lang=cpp#code-snippet-4
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/hh465336.aspx?cs-save-lang=1&cs-lang=vb#code-snippet-4
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.button.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.primitives.buttonbase.click.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/hh758286.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.button.aspx

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

111

To create an event handler with the default name, double-click the text box next to the

event name in the Propertieswindow. To create an event handler with a custom name, type the

name of your choice into the text box and press enter. The event handler is created and the code-

behind file is opened in the code editor. The event handler method has 2 parameters. The first

is sender, which is a reference to the object where the handler is attached. The sender parameter

is anObject type. You typically cast sender to a more precise type if you expect to check or

change state on the sender object itself. Based on your own app design, you expect a type that is

safe to cast sender to, based on where the handler is attached. The second value is event data,

which generally appears in signatures as the e parameter.

Here's code that handles the Click event of a Button named Button1. When you click the button,

the Foreground property of the Button you clicked is set to blue. C#, C++, VB

private void Button_Click(object sender, RoutedEventArgs e)

{

 Button b = (Button)sender;

 b.Foreground = new SolidColorBrush(Windows.UI.Colors.Blue);

}

You can also associate an event handler in XAML. In the XAML editor, you type in the event

name that you want to handle. Visual Studio shows an IntelliSense window when you begin

typing. After you specify the event, you can double-click <New Event Handler> in the

IntelliSense window to create a new event handler with the default name, or select an existing

https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.primitives.buttonbase.click.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.button.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.control.foreground.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/hh465336.aspx?cs-save-lang=1&cs-lang=cpp#code-snippet-5
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/hh465336.aspx?cs-save-lang=1&cs-lang=vb#code-snippet-5

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

112

event handler from the list. Here's the IntelliSense window that appears to help you create a new

event handler.

This example shows how to associate a Click event with an event handler

named Button_Click in XAML.

<Button Name="Button1" Content="Button" Click="Button_Click"/>

You can also associate an event with its event handler in the code-behind. Here's how to

associate an event handler in code. C#, C++, VB

Button1.Click += new RoutedEventHandler(Button_Click);

New controls

If you use other XAML platforms, you might be interested in these controls that are new for

Windows 8.

 AppBar

 CaptureElement

 FlipView

 GridView

 SemanticZoom

 ProgressRing

 ToggleSwitch

 VariableSizedWrapGrid

https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.primitives.buttonbase.click.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/hh465336.aspx?cs-save-lang=1&cs-lang=cpp#code-snippet-7
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/hh465336.aspx?cs-save-lang=1&cs-lang=vb#code-snippet-7
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.appbar.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.captureelement.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.flipview.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.gridview.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.semanticzoom.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.progressring.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.toggleswitch.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.variablesizedwrapgrid.aspx

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

113

Displaying text (XAML)

The XAML framework provides several controls for rendering text, and a set of properties for

formatting the text. The controls for displaying read-only text

areTextBlock and RichTextBlock. This quickstart shows you how to use TextBlockcontrols to

display text.

TextBlock

TextBlock is the primary control for displaying read-only text in Windows Runtime apps using

C++, C#, or Visual Basic. You can display text in a TextBlock control using its Text property.

This XAML shows how to define a TextBlock control and set its Text property to a string.

XAML

<TextBlock Text="Hello, world!" />

You can also display a series of strings in a TextBlock, where each string has different

formatting. You can do this by using a Run element to display each string with its formatting

and by separating each Run element with a LineBreakelement.

Here's how to define several differently formatted text strings in a TextBlock by

using Run objects separated with aLineBreak.

XAML

<TextBlock FontFamily="Arial" Width="400" Text="Sample text formatting runs">

 <LineBreak/>

 <Run Foreground="LightGray" FontFamily="Courier New" FontSize="24">

 Courier New 24

 </Run>

 <LineBreak/>

 <Run Foreground="Teal" FontFamily="Times New Roman" FontSize="18"

FontStyle="Italic">

 Times New Roman Italic 18

 </Run>

 <LineBreak/>

 <Run Foreground="SteelBlue" FontFamily="Verdana" FontSize="14" FontWeight="Bold">

 Verdana Bold 14

 </Run>

</TextBlock>

Here's the result.

https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.textblock.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.richtextblock.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.textblock.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.textblock.text.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.textblock.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.documents.run.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.documents.linebreak.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.textblock.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.documents.run.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.documents.linebreak.aspx

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

114

Summary and next steps

You learned how to create TextBlock controls to display text in your app.

https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.textblock.aspx

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

115

Adding text input and editing controls (XAML)

The XAML framework includes several controls for entering and editing text, and a set

of properties for formatting the text. The text-entry controls areTextBox,PasswordBox,

and RichEditBox. This quickstart shows you how you can use these text controls to display,

enter, and edit text.

Choosing a text control

The XAML framework includes 3 core text-entry controls: TextBox, PasswordBox,

and RichEditBox. The text control that you use depends on your scenario. Here are some

scenarios and the recommended control.

Scenario
Recommended

Control

Enter or edit plain text, such as in a form. TextBox

Enter a password. PasswordBox

Edit a document, article, or blog that requires formatting, paragraphs, hyperlinks, or

inline images.
RichEditBox

TextBox

You can use a TextBox control to enter and edit unformatted text. You can use the Text property

to get and set the text in a TextBox. Here's the XAML for a simple TextBox with

it's Text property set.

<TextBox Height="35" Width="200" Text="Hello World!" Margin="20"/>

Here's the TextBox that results from this XAML.

You can make a TextBox read-only by setting the IsReadOnly property to true. To make the

text in a multi-line TextBoxwrap, set the TextWrapping property to Wrap and

the AcceptsReturn property to true.

You can get or set the selected text in a TextBox using the SelectedText property. Use

the SelectionChanged event to do something when the user selects or de-selects text.

https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.textbox.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.passwordbox.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.richeditbox.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.textbox.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.passwordbox.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.richeditbox.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.textbox.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.passwordbox.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.richeditbox.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.textbox.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.textbox.text.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.textbox.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.textbox.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.textbox.isreadonly.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.textbox.textwrapping.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.textwrapping.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.textbox.acceptsreturn.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.textbox.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.textbox.selectedtext.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.textbox.selectionchanged.aspx

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

116

Here, we have an example of these properties and methods in use. When you select text in the

first TextBox, the selected text is displayed in the second TextBox, which is read-only. The

values of the SelectionLength and SelectionStartproperties are shown in two TextBlocks. This

is done using the SelectionChanged event.

<TextBox x:Name="textBox1" Height="75" Width="300" Margin="10"

 Text="The text that is selected in this TextBox will show up in the read only TextBox

below."

 TextWrapping="Wrap" AcceptsReturn="True"

 SelectionChanged="TextBox1_SelectionChanged" />

<TextBox x:Name="textBox2" Height="75" Width="300" Margin="5"

 TextWrapping="Wrap" AcceptsReturn="True" IsReadOnly="True"/>

<TextBlock x:Name="label1" HorizontalAlignment="Center"/>

<TextBlock x:Name="label2" HorizontalAlignment="Center"/>

private void TextBox1_SelectionChanged(object sender, RoutedEventArgs e)

{

 textBox2.Text = textBox1.SelectedText;

 label1.Text = "Selection length is " + textBox1.SelectionLength.ToString();

 label2.Text = "Selection starts at " + textBox1.SelectionStart.ToString();

}

Here's the result of this code.

PasswordBox

You can enter a single line of non-wrapping content in a PasswordBox control. The user

cannot view the entered text; only password characters that represents the text are displayed. You

can specify this password character by using thePasswordChar property, and you can specify

the maximum number of characters that the user can enter by setting theMaxLength property.

https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.textbox.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.textbox.selectionlength.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.textbox.selectionstart.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.textblock.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.textbox.selectionchanged.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.passwordbox.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.passwordbox.passwordchar.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.passwordbox.maxlength.aspx

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

117

You get the text that the user entered from the Password property, typically in the handler for

the PasswordChangedevent.

Here's the XAML for a password box control that demonstrates the default look of

the PasswordBox. When the user enters a password, it is checked to see if it is the literal value,

"Password". If it is, we display a message to the user.

XAML

<PasswordBox x:Name="pwBox" Height="35" Width="200"

 MaxLength="8" PasswordChanged="pwBox_PasswordChanged"/>

<TextBlock x:Name="statusText" Margin="10" HorizontalAlignment="Center" />

// C#

private void pwBox_PasswordChanged(object sender, RoutedEventArgs e)

{

 if (pwBox.Password == "Password")

 {

 statusText.Text = "'Password' is not allowed as a password.";

 }

}

Here's the result when this code runs and the user enters "Password".

In Windows Store apps, the PasswordBox has a built-in button that the user can touch or click to

display the password text. Here's the result of the user's action. When the user releases it, the

password is automatically hidden again.

In Windows Phone Store apps, the PasswordBox has a built-in checkbox below it that the user

can check to display the password text.

https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.passwordbox.password.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.passwordbox.passwordchanged.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.passwordbox.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.passwordbox.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.passwordbox.aspx

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

118

RichEditBox

You can use a RichEditBox control to enter and edit rich text documents that contain

formatted text, hyperlinks, and images. You can make a RichEditBox read-only by setting

its IsReadOnly property to true.

By default, the RichEditBox supports spell checking. To disable the spell checker, set

the IsSpellCheckEnabled property to false. For more info, see Guidelines and checklist for spell

checking.

You use the Document property of the RichEditBox to get its content. The content of

a RichEditBox is aWindows.UI.Text.ITextDocument object, unlike

the RichTextBlock control, which usesWindows.UI.Xaml.Documents.Block objects as its

content. The ITextDocument interface provides a way to load and save the document to a

stream, retrieve text ranges, get the active selection, undo and redo changes, set default

formatting attributes, and so on.

This example shows how to load and save a Rich Text Format (rtf) file in a RichEditBox.

<Grid Margin="120">

 <Grid.RowDefinitions>

 <RowDefinition Height="50"/>

 <RowDefinition/>

 </Grid.RowDefinitions>

 <StackPanel Orientation="Horizontal">

 <Button Content="Open file" Click="OpenButton_Click"/>

 <Button Content="Save file" Click="SaveButton_Click"/>

 </StackPanel>

 <RichEditBox x:Name="editor" Grid.Row="1"/>

</Grid>

private async void OpenButton_Click(object sender, RoutedEventArgs e)

{

 // Open a text file.

 Windows.Storage.Pickers.FileOpenPicker open =

 new Windows.Storage.Pickers.FileOpenPicker();

 open.SuggestedStartLocation =

 Windows.Storage.Pickers.PickerLocationId.DocumentsLibrary;

https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.richeditbox.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.richeditbox.isreadonly.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.richeditbox.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.richeditbox.isspellcheckenabled.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/hh738359.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/hh738359.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.richeditbox.document.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.richeditbox.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/bb774052.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.richtextblock.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.documents.block.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.richeditbox.aspx

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

119

 open.FileTypeFilter.Add(".rtf");

 Windows.Storage.StorageFile file = await open.PickSingleFileAsync();

 if (file != null)

 {

 Windows.Storage.Streams.IRandomAccessStream randAccStream =

 await file.OpenAsync(Windows.Storage.FileAccessMode.Read);

 // Load the file into the Document property of the RichEditBox.

 editor.Document.LoadFromStream(Windows.UI.Text.TextSetOptions.FormatRtf,

randAccStream);

 }

}

private async void SaveButton_Click(object sender, RoutedEventArgs e)

{

 if (((ApplicationView.Value != ApplicationViewState.Snapped) ||

 ApplicationView.TryUnsnap()))

 {

 FileSavePicker savePicker = new FileSavePicker();

 savePicker.SuggestedStartLocation = PickerLocationId.DocumentsLibrary;

 // Dropdown of file types the user can save the file as

 savePicker.FileTypeChoices.Add("Rich Text", new List<string>() { ".rtf" });

 // Default file name if the user does not type one in or select a file to replace

 savePicker.SuggestedFileName = "New Document";

 StorageFile file = await savePicker.PickSaveFileAsync();

 if (file != null)

 {

 // Prevent updates to the remote version of the file until we

 // finish making changes and call CompleteUpdatesAsync.

 CachedFileManager.DeferUpdates(file);

 // write to file

 Windows.Storage.Streams.IRandomAccessStream randAccStream =

 await file.OpenAsync(Windows.Storage.FileAccessMode.ReadWrite);

 editor.Document.SaveToStream(Windows.UI.Text.TextGetOptions.FormatRtf,

randAccStream);

 // Let Windows know that we're finished changing the file so the

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

120

 // other app can update the remote version of the file.

 FileUpdateStatus status = await CachedFileManager.CompleteUpdatesAsync(file);

 if (status != FileUpdateStatus.Complete)

 {

 Windows.UI.Popups.MessageDialog errorBox =

 new Windows.UI.Popups.MessageDialog("File " + file.Name + " couldn't be

saved.");

 await errorBox.ShowAsync();

 }

 }

 }

}

Using the touch keyboard

The touch keyboard can be used for text entry when your app runs on a device with a

touch screen. The touch keyboard is invoked when the user taps on an editable input field, such

as a TextBox or PasswordBox, and is dismissed when the input field loses focus. The touch

keyboard uses accessibility info to determine when it is invoked and dismissed. The text controls

provided in the XAML framework have the automation properties built in. If you create your

own custom text controls, you must implement TextPattern to use the touch keyboard.

Summary

You learned how to create TextBox, PasswordBox, and RichEditBox controls to display and

edit text in your app.

https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.textbox.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.passwordbox.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/ee696214.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.textbox.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.passwordbox.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.ui.xaml.controls.richeditbox.aspx

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

121

Packaging Universal Windows apps

To sell your Universal Windows app or distribute it to other users, you need to create an

appxupload package for it. When you create the appxupload, another appx package will be

generated to use for testing and sideloading. You can distribute your app directly by sideloading

the appx package to a device.

For Windows 10, you generate one package (.appxupload) that can be uploaded to the Windows

Store. Your app is then available to be installed and run on any Windows 10 device.

Here are the steps:

1. Before packaging your app: Follow these steps to make sure your application is ready to

be packaged for store submission.

2. Configure an app package: Use the manifest designer to configure the package. For

example, add tile images and choose the orientations that your app supports.

3. Create an app package: Use the wizard in Visual Studio and then certify your package

with the Windows App Certification Kit.

4. Sideload your app package: After sideloading your app to a device, you can test it works

correctly.

Once you’ve done this, you are ready to sell your app in the Store. If you have a line-of-business

(LOB) app, that you don’t plan to sell because it is for internal users only, you can sideload this

app to install it on any Windows 10 device.

Before packaging your app

1. Test your app: Before you package your app for store submission, make sure it works as

expected on all device families that you plan to support. These device families may include

desktop, mobile, Surface Hub, XBOX, IoT devices, or others.

2. Optimize your app: You can use Visual Studio’s profiling and debugging tools to

optimize the performance of your Universal Windows app. For example, the Timeline tool for UI

responsiveness, the memory Usage tool, the CPU Usage tool, and more.

3. Check .NET Native compatibility (for VB and C# apps): With the Universal Windows

Platform, there is now a new native compiler that will improve the runtime performance of your

app. With this change, it is highly recommended that you test your app in this compilation

environment. By default, the Release build configuration enables the .NET native toolchain, so it

is important to test your app with this Release configuration and check that your app behaves as

expected.

https://msdn.microsoft.com/en-us/library/windows/apps/xaml/hh454036.aspx#BeforePackaging
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/hh454036.aspx#Configure
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/hh454036.aspx#Create
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/hh454036.aspx#InstallRemote
javascript:void(0)

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

122

Configure an app package

The app manifest file (package.appxmanifest.xml) has the properties and settings that are

required to create your app package. For example, properties in the manifest file describe the

image to use as the tile of your app and the orientations that your app supports when a user

rotates the device.

Visual Studio has a manifest designer that makes it easy for you to update the manifest file

without editing the raw XML of the file.

Visual Studio can associate your package with the Store. When you do this, some of the fields in

the Packaging tab of the manifest designer are automatically updated.

Configure a package with the manifest designer

1. In Solution Explorer, expand the project node of your Universal Windows app.

2. Double-click the Package.appxmanifest file.

If the manifest file is already open in XML code view, Visual Studio prompts you to close the

file.

3. Now you can decide how to configure your app. Each tab contains information that you

can configure about your app and links to more information if necessary.

Check that you have all the images that are required for a Universal Windows app on the Visual

Assets tab.

javascript:void(0)

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

123

From the Packaging tab, you can enter publishing data. This is where you can choose which

certificate to use to sign your app. All Universal Windows Apps must be signed with a

certificate. In order to sideload an app package, you need to trust the package. The certificate

must be installed on that device to trust the package.

4. Save your file after you have made the necessary edits for your app.

Create an app package

To distribute an app through the Store you must create an appxupload package. You can do that

by using the Create App Packages wizard. Follow these steps to create a package suitable for

store submission with Visual Studio 2015:

To create your app package

1. In Solution Explorer, open the solution for your Universal Windows app project.

2. Right-click the project and choose Store->Create App Packages. If this option is

disabled or does not appear at all, check that the project is a Universal Windows project.

The Create App Packages wizard appears.

3. Select Yes in the first dialog asking if you want to build packages to upload to the

Windows Store, then click Next.

javascript:void(0)

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

124

If you choose No here, Visual Studio will not generate the required .appxupload package you

need for store submission. If you only want to sideload your app to run it on internal devices,

then you can select this option.

4. Sign in with your developer account to the Windows Dev Center. (If you don’t have a

developer account yet, the wizard will help you create one.)

5. Select the app name for your package, or reserve a new one if you have not already

reserved one with the Windows Dev Center portal.

6. Make sure you select all three architecture configurations (x86, x64, and ARM) in

the Select and Configure Packages dialog. That way your app can be deployed to the widest

range of devices. In the Generate app bundlelistbox, select Always. This makes the store

submission process much simpler because you will only have one file to upload (.appxupload).

The single bundle will contain all the necessary packages to deploy to devices with each

processor architecture.

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

125

7. It is a good idea to include full PDB symbol files for the best crash analytics experience

from the Windows Dev Center.

8. Now you can configure the details to create your package. When you’re ready to publish

your app, you’ll upload the packages from the output location.

9. Click Create to generate your appxupload package.

10. Now you will see this dialog:

http://blogs.windows.com/buildingapps/2015/07/13/crash-analysis-in-the-unified-dev-center/

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

126

Validate your app before you submit it to the Store for certification on a local or remote machine.

(You can only validate release builds for your app package and not debug builds.)

11. To validate locally, leave the Local machine option selected and click Launch

Windows App Certification Kit.

The Windows App Certification Kit performs tests and shows you the results.

If you have a remote Windows 10 device, that you want to use for testing, you will need to

install the Windows App Certification Kit manually on that device. The next section will walk

you through these steps. Once you’ve done that, then you can select Remote machine and

click Launch Windows App Certification Kit to connect to the remote device and run the

validation tests.

12. After WACK has finished and your app has passed, you are ready to upload to the store.

Make sure you upload the correct file. It can be found in the root folder of your solution

\[AppName]\AppPackages and it will end with .appxupload file extension. The name will be of

the form [AppName]_[AppVersion]_x86_x64_arm_bundle.appxupload.

Validate your app package on a remote Windows 10 device

1. Enable your Windows 10 device for development using these instructions.

2. Download and install the remote tools for Visual Studio. These tools are used to run the

Windows App Certification Kit remotely.

https://msdn.microsoft.com/en-us/library/windows/apps/dn706236.aspx
https://www.microsoft.com/en-us/download/details.aspx?id=46874

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

127

3. Download the required version of the Windows App Certification Kit and then install it

on your remote Windows 10 device.

4. On the Package Creation Completed page of the wizard, choose the Remote

Machine option button, and then choose the ellipsis button next to the Test Connection button.

5. Specify a device from inside your subnet, or provide the Domain Name Server (DNS)

name or IP address of a device that's outside of your subnet.

6. In the Authentication Mode list, choose None if your device doesn't require you to log

onto it by using your Windows credentials.

7. Choose the Select button, and then choose the Launch Windows App Certification

Kit button.

If the remote tools are running on that device, Visual Studio connects to it and then performs the

validation tests.

Sideload your app package

With Universal Windows app packages, you cannot simply install an app to your device like

Desktop apps for example. Typically, you download these apps from the Store and that is how

they are installed on your device. But you can sideload apps to your device without submitting

them to the Store. This lets you install them and test them out using the app package (.appx) that

you have created. If you have an app that you don’t want to sell in the Store, like a line-of-

business (LOB) app, you can sideload that app so that other users in your company can use it.

To sideload your app package to a Windows 10 device, follow these steps:

 Enable your device

 To install your app to a desktop, laptop, or tablet, follow the steps in the section below.

To install an app to a Windows 10 Mobile device, use the WinAppDeployCmd.exe.

After you have sideloaded your app to test it, you can upload your package to sell your app in the

Store, or you can sideload your app to any Windows 10 device.

Install an app to a desktop, laptop, or tablet

1. Copy the folders for the version that you want to install to the target device.

If you’ve created an app bundle, then you will have a folder based on the version number and an

_test folder. For example these two folders (where the version to install is 1.0.2):

o C:\Projects\MyApp\MyApp\AppPackages\MyApp_1.0.2.0

o C:\Projects\MyApp\MyApp\AppPackages\MyApp_1.0.2.0_Test

If you don’t have an app bundle, then you can just copy the folder for the correct architecture and

the corresponding test folder. For example these two folders:

o C:\Projects\MyApp\MyApp\AppPackages\MyApp_1.0.2.0_x64

o C:\Projects\MyApp\MyApp\AppPackages\MyApp_1.0.2.0_x64_Test

2. On the target device, open the test folder. For

example:C:\Projects\MyApp\MyApp\AppPackages\MyApp_1.0.2.0_Test.

3. Right-click the Add-AppDevPackage.ps1 file, then choose Run with PowerShell and

follow the prompts.

https://msdn.microsoft.com/en-us/library/windows/apps/hh694081.aspx
javascript:void(0)
https://msdn.microsoft.com/library/windows/apps/xaml/dn706236.aspx
https://msdn.microsoft.com/library/windows/apps/xaml/mt203806.aspx
https://msdn.microsoft.com/library/windows/apps/hh694062.aspx
https://msdn.microsoft.com/library/windows/apps/hh694062.aspx

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

128

When the app package has been installed, you will see this message in your PowerShell window:

Your app was successfully installed.

4. Click the Start button and then type the name of your app to launch it.

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

129

Design basics

These articles introduce you to designing a Universal Windows Platform (UWP) app, a

type of Windows app built using the Windows Runtime APIs.

A Universal Windows Platform (UWP) app can run on any Windows-based device, from your

phone to your tablet or PC. You can even create UWP apps that run on compact devices, such as

wearables or household appliances.

When you design a UWP, you create a user interface that suits a variety of devices with

different display sizes. To make that easier, we give you a set of universal controls that

automatically work well on all devices. The platform does the work behind the scenes to ensure

that text and visuals scale between devices and are always legible.

You can use the same code and design for all devices, and you can also tailor the user

interface for specific screen sizes. For example, you can design an interface that works great for

tablets and PCs and create a customized experience for mobile devices, while still reusing most

of your code.

Looking for Windows 8.1 design guidance? You can get it as a PDF: Download the Windows

8.1 guidelines.

Before you begin

Intro to UWP apps for designers

This article describes the features and benefits of the Universal Windows Platform from a design

perspective. Find out what the platform gives you for free and the tools it offers.

https://go.microsoft.com/fwlink/p/?linkid=258743
https://go.microsoft.com/fwlink/p/?linkid=258743
https://msdn.microsoft.com/library/windows/apps/dn958439.aspx

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

130

Device primer

Get to know the devices that your app can run on

UI basics for Universal Windows Platform (UWP) apps

A modern user interface is a complex thing, made up of text, shapes, colors, and

animations which are ultimately made up out of individual pixels of the screen of the device

you're using. When you start designing a user interface, the sheer number of choices can be

overwhelming.

To make things simpler, let's define the anatomy of an app from a design perspective. Let's say

that an app is made up of screens and pages. Each page has a user interface, made up of three

types of UI elements: navigation, commanding, and content elements.

https://msdn.microsoft.com/library/windows/apps/dn958437.aspx

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

131

Anatomy of an app

Navigation elements

Navigation elements help users choose

the content they want to display.

Examples of navigation elements

includetabs and pivots, hyperlinks,

and nav panes.

Navigation elements are covered in detail

in the Navigation design basics article.

Command elements

Command elements initiate actions, such

as manipulating, saving, or sharing

content. Examples of command elements

include button and the command bar.

Command elements can also include

keyboard shortcuts that aren't actually

visible on the screen.

Command elements are covered in detail

in the Command design basics article.

Content elements

Content elements display the app's

content. For a painting app, the content

might be a drawing; for a news app, the

content might be a news article.

Content elements are covered in detail in

the Content design basics article.

At a minimum, an app has a splash screen and a home page that defines the user

interface. A typical app will have multiple pages and screens, and navigation, command, and

content elements might change from page to page.

The following figure shows a hypothetical app structure with an assortment of pages, each of

which has a different assortment of navigation, command, and content elements:

https://msdn.microsoft.com/en-gb/library/windows/apps/dn997788.aspx
https://msdn.microsoft.com/en-gb/library/windows/apps/hh700379.aspx
https://msdn.microsoft.com/en-gb/library/windows/apps/dn997766.aspx
https://msdn.microsoft.com/en-gb/library/windows/apps/dn958438.aspx
https://msdn.microsoft.com/en-gb/library/windows/apps/hh465470.aspx
https://msdn.microsoft.com/en-gb/library/windows/apps/hh465302.aspx
https://msdn.microsoft.com/en-gb/library/windows/apps/dn958433.aspx
https://msdn.microsoft.com/en-gb/library/windows/apps/dn958434.aspx

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

132

Let's take a look at some common UI patterns for combining navigation, command, and content

elements.

Build UWP apps with Visual Studio

• Get started with Universal Windows apps

• Add universal controls that adapt to your Windows 10 devices

• Preview your pages on different devices

• Run your app and debug your code

• Add platform-specific code

• Handle different orientations or screen dimensions

• Create a device-specific view for a page

• Port existing apps

• Release notes for Visual Studio 2015

• Q&A

• Related topics

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

133

The Universal Windows app experience has improved significantly for Windows 10 from the

Windows 8.1 experience. This topic explains how you create Universal Windows apps for

Windows 10 devices and covers some of the differences.

With the introduction of the single, unified Windows 10 core and the Universal Windows

Platform (UWP), one app package can run across all platforms. You now build one Universal

Windows app that runs on all Windows 10 devices. Run your app on a Windows 10 phone, a

Windows 10 desktop, or Xbox. It’s the same app package! You can design your pages so they

render properly no matter what device is used to view them.

If you want to get a sense of what’s possible, have a look at this UWP guide. Then, go ahead and

build your first truly universal Windows app.

Get started with Universal Windows apps

First download and do a custom install of Microsoft Visual Studio. Make sure that the Universal

Windows App Development Tools are selected from the optional features list. Without these

tools, you won't be able to create your Windows 10 universal apps.

http://go.microsoft.com/fwlink/?LinkId=526389
http://go.microsoft.com/fwlink/?LinkId=517106

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

134

When you develop apps or test an app on a Windows 10 device, you must enable that device for

development. You no longer need a developer license with Windows 10. Follow the steps here to

enable your device.

Now you are ready! Choose the template based on the language that you want to use: C#, Visual

Basic, C++ or JavaScript. (In this topic, we are using a C# template.) Next create a Blank App

(Universal Windows) project.

https://msdn.microsoft.com/en-us/library/windows/apps/dn706236.aspx

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

135

When you've done that, notice that only one project appears in Solution Explorer. That's

because your app is now truly adaptive and you only need one project to build it.

The project contains one page but you can add others. Each page renders on all devices that your

project targets so you don't have to create multiple versions of them. If you want to optimize the

experience of a page for a specific device, you most certainly can. We'll discuss that shortly.

Add universal controls that adapt to your Windows 10 devices

The UWP introduces some new controls, such as the RelativePanel and SplitView controls, that

adapt their appearance for different types of devices, layouts, and device orientations.

Learn more about adaptive controls.

Preview your pages on different devices

https://msdn.microsoft.com/library/windows/apps/xaml/hh465351.aspx

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

136

You can see how a page renders on different devices without having to run your app on each

device. Choose a device from a drop-down list at the top of your designer. The dimensions of the

page that appears in your designer change with each selection. You can also choose to view your

page in landscape or portrait mode.

Run your app and debug your code

To run your app, choose a device target from the drop-down list next to the Local

Machine button on the Standardtoolbar.

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

137

To see how your app appears on a tablet or desktop, run it locally, on a remote machine, or in a

simulator. The simulator helps you simulate common touch and rotation events.

To see how your app appears on a different Windows device, choose an emulator or attach a

device directly to your computer. To run the app with any of the emulators, you need to install

Visual Studio on a physical machine. The physical machine must run Windows 8.1 (x64)

Professional edition or higher, and have a processor that supports Client Hyper-V and Second

Level Address Translation (SLAT). The emulators cannot run when Visual Studio is installed on

a virtual machine.

Learn more about how to run your app in each of these device targets.

Learn more about how to debug and test your app in Visual Studio

Add platform-specific code

Most of your code will run on both PCs and mobile devices. Most likely, you won't have to do

anything to make that happen. That's because most APIs have been converged into a single

Universal Windows SDK. You can find that SDK in your list of project references in Solution

Explorer.

However, sometimes, you'll have to write code that runs only on a specific device family. To do

that, open the Reference Manager dialog box, and then choose one of the Extension SDKs for

the Universal Windows Platform (UWP) depending on the device families that your code needs

to target. (Over time there may be more extension SDKs added for other device families.)

You'll have to make sure that an API is available on the running device before you use it. For

example, this code assigns an event handler to

the Windows.Phone.UI.Input.HardwareButtons.CameraPressed event. The code compiles if

your project contains a reference to the Windows Mobile Extensions for the UWP SDK.

C#

Windows.Phone.UI.Input.HardwareButtons.CameraPressed +=

HardwareButtons_CameraPressed;

http://go.microsoft.com/fwlink/?LinkId=526330
http://go.microsoft.com/fwlink/?LinkId=526331

SIT-1402 – Mobile Application Development Unit-V Windows Mobile App Development

138

But what happens when a user runs this app on a PC without a camera button? The app would

crash because a PC does not have a back button.

To address this issue, use

the Windows.Foundation.Metadata.ApiInformation.IsTypePresent method to determine

whether a type named Windows.Phone.UI.Input.HardwareButtons is available on the running

device. If it is, then the app is running on a mobile device, and the code will execute without

crashing the app. The following code does that.

C#

// Note: Cache the value instead of querying it more than once.

 bool isHardwareButtonsAPIPresent =

Windows.Foundation.Metadata.ApiInformation.IsTypePresent("Windows.Phone.UI.Input.Hard

wareButtons");

 if (isHardwareButtonsAPIPresent)

 {

 Windows.Phone.UI.Input.HardwareButtons.CameraPressed +=

 HardwareButtons_CameraPressed;

 }

Use this pattern throughout your app to add device-specific functionality to your app experience.

Handle different orientations or screen dimensions

Use adaptive triggers in your XAML to specify how controls should appear based on things like

the orientation of the device. You can only add adaptive triggers using Blend and not Microsoft

Visual Studio 2015.

Learn how to add adaptive triggers.

Create a device-specific view for a page

Sometimes you need more than adaptive controls and design states to achieve a tailored

experience. No problem there. You can create device-specific views for your pages. they're not

separate pages because they share the same code behind file.

https://msdn.microsoft.com/en-us/library/windows/apps/mt210475.aspx

	1.2 The Hardware
	1.3 The Windows Runtime
	1.5 The Development Tools
	1.6 The Emulator
	2.1 The Launching Event
	2.2 Running
	2.3 The OnNavigatedFrom Method
	2.5 Dormant
	2.6 Tombstoned
	2.7 The Activated Event
	2.9 The Closing Event
	3. UI Design Guidelines for Windows Phone 8

	3.1 App bar and command bar
	3.3 Check boxes
	3.4 Calendar view
	Customizing the calendar view's appearance

	3.5 Date picker
	3.6 Time picker
	3.7 Dialogs
	3.8 Hyperlinks
	3.9 Images
	3.10Radio buttons
	3.11 Text box
	3.12 Password box
	Password character
	Headers and placeholder text
	3.13 Auto-suggest box
	3.14 Labels
	3.15 Toggle switches
	3.16 Tooltips
	4. Events
	4.1 Windows Phone events

	4.2 Button.Click: an introduction to using Windows Phone events
	4.3 Defining an event handler
	4.4 The sender parameter and event data
	4.5 Adding event handlers in managed code
	4.6 Routed events
	4.7 The OriginalSource property of RoutedEventArgs
	4.8 The Handled property

	4.8 Input event handlers in controls
	4.9 Registering handlers for already-handled routed events

	4.10 User-initiated events
	4.11 Removing event handlers
	Local Storage
	Working With Folders
	Working With File
	How to Create a File
	How to Read a File
	Manage Settings
	Debugging the Local Storage

	Storing Techniques
	Serialization and Deserialization
	Serialization
	Deserialization
	Using Databases: SQL CE
	How to Define the Database
	Working With the Database: The DataContext
	Creating the Database
	Working With the Data
	Updating the Schema
	SQL Server Compact Toolbox: An Easier Way to Work With SQL CE

	Using Databases: SQLite
	Sqlite-net
	SQLite Wrapper for Windows Phone

	NETWORK COMMUNICATION
	Sockets for Windows Phone 8
	Sockets Support on Windows Phone
	Terminology
	Custom HTTP headers
	Special characters
	Tile and toast notification payloads
	Toast notification payloads
	Toast notification payload HTTP headers
	Toast notification batching intervals
	Tile notification batching intervals
	Sending push notifications to secondary Tiles
	Raw Tile notification payload

	Background agents for Windows Phone 8
	Background Agent Lifecycle
	Using maps and Locations
	Step 1: Create a new project in Visual Studio
	Step 2: Modify your start page
	What's in the files?
	App.xaml and App.xaml.cs
	MainPage.xaml
	Modify the start page

	Step 3: Start the app
	Start the app on a Desktop device
	Start the app on a mobile device emulator

	Step 4: Create an event handler
	Using events that work for touch, mouse, and pen input

	Step 5: Adapt the UI to different window sizes
	Summary

	Adding controls and handling events (XAML)
	Adding a control
	Setting the name of a control
	Setting control properties
	Creating an event handler
	New controls

	Displaying text (XAML)
	TextBlock
	Summary and next steps

	Adding text input and editing controls (XAML)
	Choosing a text control
	TextBox
	PasswordBox
	RichEditBox
	Using the touch keyboard
	Summary

	Packaging Universal Windows apps
	Before packaging your app
	Configure an app package
	Configure a package with the manifest designer

	Create an app package
	To create your app package
	Validate your app package on a remote Windows 10 device

	Sideload your app package
	Install an app to a desktop, laptop, or tablet

	Design basics
	These articles introduce you to designing a Universal Windows Platform (UWP) app, a type of Windows app built using the Windows Runtime APIs.
	Before you begin
	Intro to UWP apps for designers
	Device primer

	UI basics for Universal Windows Platform (UWP) apps
	Anatomy of an app

	Build UWP apps with Visual Studio
	Get started with Universal Windows apps
	Add universal controls that adapt to your Windows 10 devices
	Preview your pages on different devices
	Run your app and debug your code
	Add platform-specific code
	Handle different orientations or screen dimensions
	Create a device-specific view for a page

