
UNIT IV 

ANALYSIS & DESIGN OF DIGITAL FILTERS 

 

Normalized Ideal Low-Pass Filter 

      H (jω) = e
-jω       

        0≤|ω|≤1 

                = 0                    |ω| >1 

 

Filter Transfer Function 

  H (jω) =  |H(jω)| e
jθ(ω)

 

θ (ω)=ArgH(jω) 

τ(ω)= - d θ(ω)/d ω= group delay 

ωc = cut off frequency at which  |H(jωc)|
2 

=1/2 

or  

20 log |H(j ω)|ω= ωc= -3db 

A(ω)= -10 log |H(j ω)|
2  

(=attenuation) dB 

  

 

 

 

 

 

 



 

 

 

Fig 4.1 Filter transfer function 
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Complex poles and zeroes occur in conjugate pairs. Both the numerator and denominator 

polynomials of the magnitude squared function are polynomials of ω
2 

with real coefficients, and 

these polynomials are greater than zero for all ω.
  

 

4.2 Butterworth Approximation 

Definition of Butterworth Low-Pass Filter 

|H (jω)
 2 

=1/ {1 + (ω/ωc)
 2n

};             |H (jωc)
 2

= 1/2 

10log|H (jω)
 2

||ω=ωc = -3.01≅ -3.0 dB 

Normalized 

|H (jω) |
2 

= 1/ (1+ω
2n

);            |H (j1)
2 

= 1/2 

 

Properties of Butterworth Approximation 

 

|H(j0)|
2
= 1;  |H(j1)|

2
=1/2; |H(j∞)|

2
=0 

-10log|H (j1) |
2
= -10 log 0.5=3.01≅3.0 dB 

|H (j ω) |
2
 monotonically decreasing for ω≥0. Its maximum value is at ω=0. The first (2n-1) 

derivatives of an n
th 

order low pass Butterworth filter are zero at ω=0 maximally flat magnitude). 

The high frequency roll-off of an n
th

 order filter is 20n dB/decade. 

-10log|H(jω)|
2
= -log (1/ 1+ω

2n
)≅ -log (1/ω

2n
)=10logω

2n 

                                             
=20nlogω dB 

 

 

 

 



 

Transfer Function of Butterworth Approximation 

|H(jω)|
2 

=H(s)H(-s)|s=jω ={1/ 1+(ω/ωc)
2n

} = 1/(1+(-1)
n
(s/ωc)

2n
) 

(1+(-1)
n
(s/ωc)

2n
)=0 or sk= ωc e

jπ(1-n+2K)/2n
,    K=0,1,2,3….,2n-1 

 

Stable Function 

Left half plane poles are used 

sk= ωc[-sin{(2K+1)π/2n)}+jcos{(2K+1)π/2n)}],   K=0,1,….n-1. 

 

Butterworth Normalized Low -Pass Filter  

The Butterworth polynomials (ωc =1) to be used for normalized filters. 

 

n             Butterworth Polynomials 

--------------------------------------------------------------------------------------------------------------------- 

1               

2               

3              ) ( ) 

4                 

5  

6  



7  

8  

9  

10             

   

Butterworth Filter specifications 

     Ap = maximum passband attenuation 

        fp =passband edge frequency 

Maximum allowable attenuation in the stopband 

        fr=stopband edge frequency   

       Ap=10log[1+(ωp /ωc)
2n

]   

     Ar= 10log[1+ (ωr/ωc)
2n

]  

     ωp=2 fp 

      ωr=2 fr 

Solve Ap and Ar to find 

       (|log[(10
0.1Ap

- 1)/(10
0.1Ar

-1)]|) 

n=    ------------------------------------ 

                  (|log(ωp/ωr)|) 

k=selectivity parameter= ωp/ωr =fp/fr <1 

d=discrimination factor=((10
0.1Ap 

-1)/( 10
0.1Ar 

-1)) 

note : a) larger values of k imply steeper roll off,  b) smaller d values imply greater 

difference between Ap  and Ar 

n ≥|log d|/|log k|        (accept next higher integer to non integer   n)   

 

ωc= ωp / (10
0.1Ap

-1)
1/2n  



ωc= ωp / (10
0.1Ar

-1)
1/2n

   = meets stopband attenuation exactly and exceeds the requirement of 

passband specification shows magnitude –squared characteristics of the Butterworth low-pass 

filter  

                                   Fig 4.2 magnitude –squared characteristics of the Butterworth low-pass 

filter 

Butterworth Filter Design 

Problem 1: 

Filter requirements: a) no more than 1.5 dB deviation from ideal filter at 1300 Hz ; 

                               b) at least 35 dB for frequencies above 6000 Hz. 

 

Solution:  

 Ap=1.5dB                                              ωp= 2πx1300 rads
-1 

Ap=35dB                                                ωr=2πx6000 rads
-1

   

0.1Ar 

d= (10
0.1Ap

-1) )/( ( (10
0.1Ar

-1)) = ( (10
0.15

-1))/( (10
3.5

-1)) =  0.6423/56.2252 

    =  1.1424x10
-2 



n ≥|log d|/|log k| = 1.9422/0.6576 = 2.953               n = 3 

sk= -sin((2K+1)π)/(2n)) + j cos ((2K+1) π)/(2n))                  K=0,1,2,3…,n-1 

s0= -sin(π/6)+ jcos (π/6) = -1/2+j ( 3/2) 

s1= -sin (3 π/6)+ jcos(3 π/6) = -1 

s2=-sin (5 π/6)+jcos(5 π/6)= = -1/2-j ( 3/2) 

 

 

=1/((s+1)(s
2 

+s+1)) = normalized 

ωc = ωp(10
0.1Ap

-1)
-1/2n

= 2π x1300(10
0.15

-1)
-1/6

= 9416 rads
-1

 

H(s/ωc) = 1/(((s/9461)+1) [(s/9461)
2
 +(s/9461) +1]) 

Problem 2:  

For the given specification design an analog Butterworth filter. 

 

Solution: 

 

 

 



 

N=4 

 

Cut off frequency,  

 

Obtain transfer function by substituting s by, 

 

Finally,  

 

 

Problem 3  Design an analog Butterworth filter that has a -2DB pass band attenuation at a 

frequency of 20 rad/sec an at least -10 db stop band attenuation at 30 rad/sec. 

Solution ,  

 



 

 

Obtain the transfer function by substituting,  

 

 

 

Problem 4 Design Butterworth filter using impulse invariant method for the following 

specification 

 

Solution  

 

 

Ws  = 0.6 pi rad:  w
p  

=0.2 pi rad . then assume T= 1 sec 

 



 

For N=2 the transfer function of normalized Butterworth filter is 

 

Cut off frequency 

 

 

 

Using impulse invariant method, if 

 

 

 

By solving,  

 

 



Problem 5:  Design Butterworth filter using bilinear transformation  

 

Solution  

Ws = 0.6 pi rad:  w
p  

=0.2 pi rad. then assume T= 1 sec 

prewrapping the frequency 

 

 

 

 

 for N=2 the transfer function is 

 

cut off frequency 

 

 

 



For bilinear transformation. 

 

 

4.2 Chebyshev Filter Approximation 

Definition of Chebyshev Filters (equi-ripple passband) 

C0 (ω) = 1 and  C1 (ω) = ω. |H(j ω)|
2 

= 1/(1+  Cn
2
 (ω)) = normalized 

Cn(ω) = Chebyshev polynomials =cos (n cos
-1

 ω
 
)     0 ≤ ω ≤ 1 

           = cosh(n cos
-1

 ω )    ω>1 

  = ripple factor 

If we set u=cos
-1

 ω, then Cn (ω) =cos nu and thus 

C0 (ω) =cos 0 =1, C1 (ω) = cos u=cos(cos
-1 

ω) = ω, 

 C2 (ω) = cos 2u = 2cos
2
u-1= 2 ω

2
-1 

C3 (ω) = cos 3u=4cos
3
u-3cosu = 4ω

3
-3 ω. etc. 

Recursive Formula for Chebyshev Polynomials  

From cos[(n+1)u]=2cos nu -cos[(n-1)u ], we get   

Cn+1 (ω)=2 ωCn(ω) - Cn-1(ω)        n =0,1,2,3…  

gives the first ten Chebyshev polynomials 

Table 12.2 Chebyshev Polynomials Cn(ω)      

------------------------------------------------------------------------------------ 

n Chebyshev Polynomials Cn(ω)  

-------------------------------------------------------------------------------------- 

0                      1 

1 ω 



2                    2 ω
2
-1 

3                    4 ω
3
-3 ω 

4 8 ω
4
-8 ω

2
 +1 

5                    16 ω
5
-20 ω

3
 +5 ω 

6                   32ω
6
 -48ω

4
 +18ω

2
-1  

7                    64ω
7
 -112ω

5
 +56ω

3
 -7ω 

8                   128ω
8
-256ω

6
 +160ω

4
 -32ω

2
 +1 

9                    256ω
9
 -576ω

7
 +432ω

5
 -120ω

3
 +9ω 

10                  512ω
10

-128ω
8
 +1120ω

6
 -400ω

4
 +50ω

2
 -1                  

--------------------------------------------------------------------------------------------------------------------------------------- 

 

Properties of the Chebyshev Polynomials 

1. For any n  

           0 ≤|Cn (ω)| ≤ 1   for 0 ≤ | ω | ≤ 1 

           |Cn(ω)| > 1         for | ω | > 1  

 

2. Cn(1)= 1 for any n.  

3. |Cn(ω)| increases monotonically for | ω |> 1 

4.Cn (ω)  is an even (odd) polynomial if n is even (odd). 

5. |Cn(0)|=0 for odd n. 

6.|Cn (0)|=1 for even n. 

 

Chebyshev Magnitude Response Properties 

1. |H(j ω)|ω=0 =1 when n is odd 

     =1/( (1+ 2
)) when n is even 



2. Since Cn(1)=1 for any n  

             |H(j 1)|= 1/( (1+ 2
))   for any n. 

3.  |H(j ω)| decreases exponentially. 

 

Pole Location of Chebyshev Filters 

|H(j ω)|
2
= 1/(1+ Cn

2
(ω)) =   1/(1+ Cn

2
(-js)) |s=jω 

s= σ +j ω 

σK=  sin[(2K+1)(π/2n)]sinh[(1/n)sinh
-1

(1/ )] 

ω K= cos[(2K+1)(π/2n)]cosh[(1/n)sinh
-1

(1/ )]     K=0,1,2,… 2n-1 

(σK/sinh
2
y)+( ω K/cosh

2
y)=1  an ellipse on the σ - ω plane. 

y=(1/n)sinh
-1

(1/ ) 

 

Design Relations of Chebyshev Filters 

|H(j ω) |
2
= 1/(1 + Cn

2
(ω/ ωp) ) 

|H(j ω) |
2
= 1/(1 + Cn

2
(ω/ ωp) ) |ω= ωp = 1/(1+ 2

) 

Ap=10log(1+ 2
)  

 = (10
0.1Ap

-1) 

Ar = 10log[1+ 2
Cn

2
(ωr/ ωp)] 

      =10log[1+ 2
cosh

2
[ncosh

-1
(ωr/ ωp)]] 

n ≥(cosh
-1

((10
0.1Ap

-1)/  ))
1/2

)/ (cosh
-1

(ωr/ ωp)) 

k=ωp/ ωr = fp/ fr  ,                           d= ((10
0.1Ap

-1)/ (10
0.1Ar

-1))
1/2 

or 

n≥ cosh
-1

(1/d)/cosh
-1

(1/k) 

 

 



Left-Hand Poles for the Transfer Function    

sk=sin[(2K+1)(π/2n)]sinh[(1/n)sinh
-1

(1/ )]+jcos[(2K+1)(π/2n)]cosh[(1/n)sinh
-1

(1/                             

)] 

 

            n-1 

H(s)= -   (sk/ s-sk),   n is odd 

            K=0 

 

                                  n-1 

H(s)= (1/ (1+ 2
))   (sk/ s-sk),   n is odd 

                                 K=0 

 

For non-normalized transfer function set s/ωp in place of s 

|H(jω)|
2
= 1/2= 1/(1+ 2

Cn(ωc))    , 3-dB cutoff 

ωc= cosh((1/n)cosh
-1

(1/ )) 

 

Or 

1

1

1
cosh

1
cosh

d
n

k





 
 
 
 
 
 

 

 

Problem 1 

Filter Requirements: a) ripple not to exceed 2 dB up to p  



b) 50 dB rejection above 5 p  

Solution 

2pA dB at p   

50rA dB at 5r p     

   
1/2 1/20.1 0.210 1 10 1 0.765pA

       

0.2
5

p p

r p

k
 

 
  

 

 
3

1/20.1 1/2 5

0.765 0.765
2.42 10

(10 1) 10 1
rA

d    
 

 

 

 

 
 

2
1

1
2

ln 1/ 1/ 1cosh 1/ 2.718
2.91

cosh 1/ 2.312ln 1/ 1/ 1

d dd
n

k k k





 
   

   

Accept n=3 

1

2

1 1 1 1 1
sinh ln 1 0.361y

n n  


 

      
 

 

sinh 0.3689
2

y ye e
y


  cosh 1.0659

2

y ye e
y


   

   0 sin 0.3689 cos 1.0659 0.1844 0.9231
6 6

s j j
    

       
   

 



   1 sin 0.3689 cos 1.0659 0.3689
2 2

s j
    

      
   

 

    *

2 0

5
sin 0.3689 cos 1.0659 0.1844 0.9231

6 6
s j j s

    
         

   
 

  2

0.3289
( )

0.3689 0.3689 0.8861
H s

s s s


  
 

 

Problem 2 Design a chebyshev filter for the following specification using 1) bilinear 

transformation 2) impulse invariant method.  

 

Solution  

 Using bilinear transformation method, 

            

 

 

 



 

Find a and b: 

 

 

 

To find poles and zeros 

 

 

 

 

,   

 

 



Using bilinear transformation 

 

 

Using impulse invariant method 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Properties of FIR filter 

An FIR filter has a number of useful properties which sometimes make it preferable to aninfinite 

impulse response (IIR) filter. FIR filters: 

 Require no feedback. This means that any rounding errors are not compounded by 

summed iterations. The same relative error occurs in each calculation. This also makes 

implementation simpler. 

 

 Are inherently stable, since the output is a sum of a finite number of finite multiples of 

the input values, so can beno greater than  times the largest value appearing in the 

input. 

 Can easily be designed to be linear phase by making the coefficient sequence symmetric. 

This property is sometimes desired for phase-sensitive applications, for example data 

communications, crossover filters, and mastering. 

The main disadvantage of FIR filters is that considerably more computation power in a general 

purpose processor is required compared to an IIR filter with similar sharpness orselectivity, 

especially when low frequency (relative to the sample rate) cutoffs are needed. However many 

https://en.wikipedia.org/wiki/Infinite_impulse_response
https://en.wikipedia.org/wiki/Infinite_impulse_response
https://en.wikipedia.org/wiki/Infinite_impulse_response
https://en.wikipedia.org/wiki/BIBO_stability
https://en.wikipedia.org/wiki/Linear_phase
https://en.wikipedia.org/wiki/Audio_crossover
https://en.wikipedia.org/wiki/Audio_mastering
https://en.wikipedia.org/wiki/Selectivity_(electronic)


digital signal processors provide specialized hardware features to make FIR filters approximately 

as efficient as IIR for many applications. 

 

4.3 Impulse invariance method 

 

By impulse invariance method, the analogue impulse response h(t) is sampled to get the discreet 

sample response h(n). If the analogue filter has a system function Ha (s) then the system function 

of the digital filter can be achieved from the sampling theorem as 

    s a s

k

H f F H f kF




   

Or equivalently 

    2s a s

k

H F H kF  




   

The period of the sampling T should be small enough to avoid or minimize the effect of the 

aliasing. 

 

From the equation 

    2s a s

k

H F H kF  




   

We can generalize 

    | 2sT s a sz e
k

H z F H s j kF





   

Then the mapping is characterized by 

sTz e  

We substitute by  s j    

T j Tz e e   



It is clear that 

If  0  .The imaginary axis  s j  in the s plane map into the unity circle  j Tz e   in the z-

plane. 

 

If 0  ,the left hand plane in the s plane map into the inside of the unity circle in the z-plane. 

 

On the assumption that the poles of the analogue filter are distinct, we can write 

 
1

N
k

a s
k k

c
H

s p




  

 

kp Are the poles of the analogue filter and kc ’s are the coefficients of the partial expansion. 

Consequently 

 
1

k

N
p t

a k

k

h t c e


  

If the ample the analogue impulse response, we get 

   
1

k

N
p nT

a k

k

h n h nT c e


   

So the system function of the IIR filter 

   
0

n

a

n

H z h n z






  

 1

1 0

k

N
n

p T

k

k n

C e z




 

   

For  0kp   

  1
1 1 k

N
k

p T
k

c
H z

e z




  

We observe that the digital filter has poles at 



kp T

kz e      k=1, 2,….N 

Example: Convert the analog filter with the system function 

 
2

0.1
( )

0.1 9
a

s
H s

s




 
 

Solution: 

 
1/ 2 1/ 2

0.1 3 0.1 3
aH s

s j s j
 

   
 

Then the transfer function of the digital filter 

  0.1 3 1 0.1 3 1

1/ 2 1/ 2

1 1T j T T j T
H z

e e z e e z   
 

 
 

 
 

0.1 1

0.1 1 0.2 2

1 cos3
( )

1 2 cos3

T

T T

e T z
H z

e T z e z

 

   




 
 

4.4 Design procedure using impulse invariance 

Determining design parameters 

        Using the impulse invariance design procedure, we have noted that the relation between 

frequency in the continuous – time and discrete time domains is T  , where T is 

merely a design parameter( and not necessarily sampling frequency). Leaving T as an 

arbitrary constant for now, we obtain  

/ 0.47124 /p p T T    

/ 1.0996 /s s T T    

       At the passband edge frequency, 

   
22

12

1
| | 1

1

N

p

c

H j    
 

  
 

 

With a few algebraic manipulations, we obtain  

  
 

2

12

1

1
1

1

N

p

c

k


 
   

  
 



Similarly, at the stop band edge frequency, we have 

  2 2

22

1
| |

1

N

s

c

H j   
 

  
 

which produces 

2

22

2

1
1

N

s

c

k


 
   

 
 

Dividing, we obtain 

 
 

2

1

2

2

/

/

N

p c

N

s c

k

k

 


 
or 

 

 
log 2 / 11

2.7144
2 log /s p

k k
N  

 
 

  Note that since 
/

/

s s s

p p p

T

T

 

 


 


, the design parameter T has no effect at all on the value of N 

that is needed. Furthermore, as expected, the value of N specify increases as either 1  and 2  

decreases in magnitude( which implies decreasing the ripple in the passband and / or stopband) 

or as the ratio /s p   decreases ( which implies a decrease in the width of the transition band). 

        Since the number of poles must be an integer, we round upto N=3. 

        Matching the frequency response exactly at passband produces 

2

1

N

p

c

k
 

 
 

or
1/2

1

0.4716p

c Nk T


    

( This value is slightly different from the one I gave in class.) If we were instead to match the 

frequency response at stopband, we would obtain  

2

2

N

s

c

k
 

 
 

or
1/2

2

0.5112s
c Nk T


    

               In principle, any value of the critical frequency that satisfies 
0.4716 0.5112

c
T T

    

would be valid. As discussed in class, we will choose the value that meets the passband spec 

exactly, 0.4716 /c T   



             Because this value leaves the greatest margin for error at the stop band edge. Since the 

impulse invariance procedure always incurs a certain degree of aliasing, it will be expected that 

the actual response of the filter at the stop band edge will be larger than designed for. Hence, 

having the stop band edge response be “Over designed” will leave more room for error to allow 

for the effects of aliasing. 

Prototype filter design 

         As noted above, the poles of a Butterworth filter lie in the left half of the s-plane on a circle 

of radius 
c in complex conjugate pairs separated by an angle of / N  radians. Since 

there are three poles, this produces a filter with the system function 

       

3

/3 /3
( ) c

j jj

c c c

H s
s e s e s e

     




  
 

        Plugging in the value of 0.4716 /c T  , we obtain  

       

3

/3 /3
( ) c

j jj

c c c

H s
s e s e s e

     




  
 

 
 

       

3
0.4716 /

0.4716 / 0.236 0.408 / 0.236 0.408 /

T
H s

s T s j T s j T


      
 

Problem 1: 

 

 

Solution 

 

 



 

 

 

 

 

 

 

 

 

4.5 Bilinear Transformation 

         Let us consider an analog filter with the system function  

 
b

H s
s a




 

The system can be also described by the differential equation 

  
 

   
dy t

ay t bx t
dx

   

Starting from the integral 

       
0

0

t

t
y t y d y t    



By the trapezoidal formula at t=nT and 0t nT T   

          / 2 [ ]y nT T y nT y nT T y nT T       

But as 

      y nT ay nT bx nT     

The integral become 

       1 1 1 1
2 2 2

aT aT bT
y n y n x n x n

   
            

   
 

Convert the equation into z domain 

       1 11 1
2 2 2

aY aT bT
Y z z Y z X z z X z    

          
   

 

Then the transfer function 

 
1

1

2 1

1

b
H z

z
a

T z






 

 
 

 

Clearly the mapping from s-plane to z-plane is 

  
1

1

2 1

1

z
s

T z





 
  

 
 

To investigate the characteristics of the bilinear transformation, let 

  
jz re  s j    

Then the mapping formula can be expressed as 

  
2 1

1

z
s

T z





 

  
2 1

1

j

j

re

T re









 

Or 



2

2 2

2 1 2 sin

1 2 cos 1 2 cos

r r
s j

T r r r r



 

 
  

    
 

j    

If r<1 leads to 0   or the left hand plane in the s plane maps into the inside of the unity circle 

in the z-plane . 

When r=1, 0   and 

2 sin

1 cosT




 


 

2
tan

2T


   

12 tan
2

T
  
  

Problem 1 

Convert the analog filter with the system function 

   
 

2

0.1

0.1 16

s
H s

s




 
 

Into a IIR digital filter by means of bilinear transformation. The digital filter is to have a 

resonance frequency / 2r   

The analog filter has a resonance frequency of 4 .This is to be mapped into / 2r   by 

using 

  
2

tan
2T


   

 This leads to T=0.5 

Thus the desired mapping is 

s=4{(1-z
-1

)/( 1+z
-1

)} 

And the resulting digital filter has the system function 



 

with poles at p1,2 = 0.987e
±jπ/2

  

with zero at z1,2 = -10.95 

 problem 2 Design a single pole low pass filte with 3 dB bandwidth of 0.2π using the billinear 

transform to analogue filter 

 

The digital filter is specified to have -3dB gain at ωc=0.2π. In the frequency domain of the 

analogue filter 

 

Thus the analogue filter has the system function 

 

Now, we apply the bilinear transformation to get 

 

The frequency response of the digital filter  

 

which applies  

 

4.6 Design Procedure Using Bilinear Transformation 

Determining Design parameters 

Here we will convert from continuous time to discrete time form using the bilinear transform. 



 

This produces the non-linear relationship between continuous-time frequency and discrete-time 

frequency   

 

Converting the critical frequencies ωp and ωs to their continuous time counterparts produces 

 

We use again the design equation  

 

Note that although we still need to have 3 poles, the actual fractional value of n smaller because 

of the greater ratio of stopband to passband edge frequencies provided by the nonlinear 

frequency warping of the bilinear transform.  

 

We will match the specs exactly in the passband, although there is no specific need to do so 

when we use the bilinear transform. The equation for the critical frequency then becomes 

  

Prototype Filter Design 

As before, the transfer function for the Butterworth filter is 

  

 



Problem 1: 

 

 

Solution : 

Substitute, 

 

 

 

 

 

Window (Filter) Descriptions 

 T=1 

 -π≤ω≤π or  0≤ω≤2π 

 DFT bin=2π/N 

 Windows are even (about the origin) sequences with an odd number of points. 

 The right -most point of the window will be discarded. 

 N will be taken to be even, and the total points will be odd, and hence 

N=2x(total points)=even 

 

 

Rectangle Window 



 

W (n) =1.0       n=-N/2,…….,-1,0,1,2,N/2 

 
To make it realizable shift the sequence by N/2 to the right. Hence we obtain 

 
 

 
Fig 4.3 

a> Rectangular window,  

b> Amplitude spectrum off rectangular window  

 

Hann window 

 

 
DFT of the window is 

 



 
Fig 4.4  

a> Hann window, 

b>Amplitude Spectrum of the hann window. 

 

 

 

4.7 Hamming Window 

 

 

 

 

 
 



Fig 4.5 

a> Hamming window 

b> Amplitude Spectrum of the hamming window. 

 

 

Problem 1  

Design a linear phase FIR low pass filter of order seven with cut-off frequency 1 rad/sec 

using rectangular window. 

 

Here M=length of filter=7(given) 

 
3 j

d

e
H






 


for c                                                                  ....(2) 

We will obtain  
( )d nh  by taking IFT of equation(2)

( 3) ( 3)

( )

1

2 ( 3)

j n j n

d n

e e
h

j n

   
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d dh n H e d







 




 
 

Here given cut-off frequency= ( )c =1.Now for the symmetric filter we can write the range of 

integration ( )c , from
( )

sin( 3)

( 3)
d n

n
h

n





 1c   to 1c   

1

3

1

1
( )

2

j j n
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





  
 

                  = 

1

( 3)

1

1

2

j ne d 






 .          ...(4) 
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1

2 ( 3)

j ne

j n









 
  
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( 3) ( 3)

( )

1

2 ( 3)

j n j n

d n

e e
h

j n

   
   

   

Now we have the trigonometric identity, 

sin
2

j je e

j

 



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( )

sin( 3)

( 3)
d n

n
h

n




         .....for n 3 

Now if n=3 then equation (4) becomes, 

sin( 3)

( 3)
( )

1

1
( )

( )
( )

0

sin( 3)
(0) (0) 0.015

3

d
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d

d

n

n
h n

W n
o

h n
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
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1 1 1
( ) 1 ( 1)

2 2
dh n e d

  


      ...(6) 

Thus we can write, 

sin( 3)

( 3)
( )

1
d

n

n
h n






 

 



For n 3, for n=3                                           ...(7) 

Step 3: 

Here we have for rectangular window we have to make use of rectangular window of the order 

7.We have for rectangular window, 

1
( )RW n

o


  


for  n=0 to 6,otherwise         (for n=0 to  M-1) 

Now h(n) is , 
( ) ( ) ( )d Rh n h n W n 

 



Thus using equation (7) we get, 

( )
( )

0

dh n
h n


 


for n=0 to 6;otherwise                              ....(8) 

Value of n 
Value of 

( ) ( )dh n h n
 

0 sin( 3)
(0) (0) 0.015

3
dh h




  

  
1 sin( 2)

(1) (1) 0.145
2

dh h



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  
2 sin( 1)

(2) (2) 0.268dh h



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  
3 1

(3) (3) 0.318dh h

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4 sin(1)
(4) (4) 0.268dh h


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5 sin(2)

(5) (5) 0.145
2

dh h

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6 sin(3)
(6) (6) 0.0149

3
dh h


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Problem 2  

Find the magnitude and phase response function of seventh order low pass linear phase FIR filter  

cut-off frequency 1 rad/sec using hanning window. 

This is similar to problem(1);only difference is that here ,we have to use hanning window. 

We have to obtained the equation of  ( )dh n .It is, 

sin( 3)

( 3)
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1
d

n

n
h n






 

 



for n 3,for n=3        .....(1) 

Now hanning window is defined as, 

1 2
( ) 1 cos

2 1
h

n
W h

M

 
   

 

But M=7 (given) 



1 2
( ) 1 cos

2 6
h

n
W n

  
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  
                      ....(2) 

Now the coefficients of FIR filter that means h(n) is obtained by using the equation, 

( ) ( ) ( )d hh n h n W n                                      .....(3) 

Making use of these equations we can obtain the values of h(n) as shown in the below table. 

Value of 

n 
sin( 3)
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n

n
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for  n 3 

1 2
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2 6
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n
W n

  
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  
 

( ) ( ) ( )d hh n h n W n   

0 0.015 0 0 

1 0.145 0.25 0.03625 

2 0.268 0.75 0.201 

3 0.318 1 0.318 

4 0.268 0.75 0.201 

5 0.145 0.25 0.3625 

6 0.149 0 0 

Magnitude and phase: 

We have, 
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  for  c  , otherwise 

And 
1 7 1

( ) ( ) ( ) 3
2 2

d

M
H    

 
        

Thus the magnitude and phase angle has been calculated. 


