UNIT IV

ANALYSIS & DESIGN OF DIGITAL FILTERS

Normalized ldeal Low-Pass Filter
H (jo) = e™ 0<|o<1

=0 lo| >1

Filter Transfer Function
H (o) = [H(o)| "
0 (0)=ArgH(jo)
1(w)= - d 6(w)/d ®= group delay
¢ = cut off frequency at which [H(joc)* =1/2
or
20 log [H(j ®)|w= we=-3db

A(w)=-10 log [H(j ®)* (=attenuation) dB
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Fig 4.1 Filter transfer function



H(jo)=[ H(jo)H (j)1"* = H{o)H(-jo)]"* =[ HE)H ()0l >
H(jo)]? = {K(0* = 2:°)(0*+220).... }{(0’+p)( o +p2°)...}

Complex poles and zeroes occur in conjugate pairs. Both the numerator and denominator
polynomials of the magnitude squared function are polynomials of w® with real coefficients, and
these polynomials are greater than zero for all w.

4.2 Butterworth Approximation

Definition of Butterworth Low-Pass Filter

IH (o) * =1/ {1 + (/) *'}; H (jog) 2= 1/2
1010g|H (j®) *|lo-oc = -3.01= -3.0 dB

Normalized

H (o) [ =1/ (1+e™); H (j1)2= 1/2

Properties of Butterworth Approximation

HG0)*= 1; [H(L)I*=1/2; [H(jeo) =0
-10log|H (j1) |*= -10 log 0.5=3.01=3.0 dB

IH (j ®) [> monotonically decreasing for ®>0. Its maximum value is at ®=0. The first (2n-1)
derivatives of an n™ order low pass Butterworth filter are zero at ©=0 maximally flat magnitude).

The high frequency roll-off of an n™ order filter is 20n dB/decade.
-10log/H(jo)|*= -log (1/ 1+®>")= -log (1/0°")=10logn"

=20nlogw dB



Transfer Function of Butterworth Approximation
H(jo)? =HS)H(-8)|sjo ={1/ 1+(0/0¢)*"} = 1/(1+(-1)"(s/0c)™")

(1+(-1)"(s/©2¢)*")=0 or s= @ ™ MHI - K=01,23.....2n-1

Stable Function
Left half plane poles are used

si= og[-Sin{(2K+1)m/2n)} Hjcos {(2K+1)n/2n)}], K=0,1,....n-1.

Transfer Function

n—l
H) =" ] 5
E=0

Butterworth Normalized Low -Pass Filter

The Butterworth polynomials (w. =1) to be used for normalized filters.

n Butterworth Polynomials

1 s+1

2 52 +1.41421s+ 1

3 (s+1)(s+ 1)

4 (s* + 0.76537s+ 1)(s* + 1.847765+ 1)

5 (s +1)(s* + 0.61803s + 1)(s* + 1.61803s + 1)

6 (s+ 051764s + 1)(s* + 1414215+ 1)(s* + 1931855+ 1)



7 (s +1)(s*+ 0.44504s5+ 1)(s* + 1.247985 + 1)(s* + 1.80194s + 1)

8 (s + 0390185+ 1)(s* + 1.111145 + 1)(s* + 1.662945+ 1)(s* + 1.961575+ 1)
9 (s +1)(s*+ 0347305+ 1)(s* + s+ 1)(s* + 1.53209s + 1)(s* + 1.87939s + 1)
10 (s +0.31287s + 1)(s* + 0907985 + 1)(s* + 1.414215+ 1)(s* + 1.78201s5 + 1)

Butterworth Filter specifications
A, = maximum passband attenuation
f, =passband edge frequency
Maximum allowable attenuation in the stopband
fr=stopband edge frequency
A=10log[1+(ep /0c)*"]
A= 10log[ 1+ (o/0c)*"]
0p=211f,
o=211f,
Solve Ay and A to find

(log[(10%*°_ 1)/(10%*4"-1)]])

(Ilog(wp/u),)|)
k=selectivity parameter= wpw, =fp/f; <1
d=discrimination factor=((10%" -1)/( 10°*4"-1))

note : a) larger values of k imply steeper roll off, b) smaller d values imply greater
difference between A, and A,

n >[log d|/|log k| (accept next higher integer to non integer n)

0= (l)p/ (loO.lAp_l)l/Zn



o= op / (10°4-1)"" = meets stopband attenuation exactly and exceeds the requirement of
passband specification shows magnitude —squared characteristics of the Butterworth low-pass

H(ja )

1

filter

Fig 4.2 magnitude —squared characteristics of the Butterworth low-pass
filter

Butterworth Filter Design
Problem 1:
Filter requirements: a) no more than 1.5 dB deviation from ideal filter at 1300 Hz ;

b) at least 35 dB for frequencies above 6000 Hz.

Solution:

Ap=1.5dB op=21x1300 rads™
A,=350B ®=21x6000 rads™
0.1A;

d=v (210%-1) )/( (v (20%M-1)) = ( (20°-1))/(  (10*°-1)) = 0.6423/56.2252

= 1.1424x107



n >[log d|/|log k| = 1.9422/0.6576 = 2.953 —>n=3
sk= -sin((2K+1)m)/(2n)) + cos ((2K+1) m)/(2n)) K=0,1,2,3...,n-1
So= -sin(m/6)+ jeos (n/6) = -1/2+j (N 3/2)

$1=-sin (3 1/6)+ jcos(3 w/6) = -1

S,=-sin (5 W/6)+Hcos(5 w/6)==-1/2-j (V 3/2)

=1/((s+1)(s* +s+1)) = normalized
oc = 0p(10°M4°-1) 2= 27 x1300(10%*°-1)°= 9416 rads™
H(s/we) = 1/(((5/9461)+1) [(5/9461)? +(s/9461) +1])
Problem 2:
For the given specification design an analog Butterworth filter.
09<H(jQ)|<1.  for 0<Q<02m
H(jQ)[<0.2, for 0.4n< Q<1
Solution:

Q =021 Q =04r

L 09— £=0.4843

Al +¢e? -

|
——=02= A =4.899
NIEYE




N=4

1

H(s)=— 2
(s"+0.76537s+1)(s” +1.8477s+1)

Cut off frequency,

Obtain transfer function by substituting s by,

5 S

Q_ 0.24n
Finally,

0.323

H(S): 2 2 2 2
(s*+0.577s4+0.0576m" )(s” +1.393s+0.05767")

Problem 3 Design an analog Butterworth filter that has a -2DB pass band attenuation at a
frequency of 20 rad/sec an at least -10 db stop band attenuation at 30 rad/sec.

Solution




1
(87 40.76537s+1)(s> +1.8477s+1)

H(s)

Q
Q= - =21.3868

¢ (loﬂ_lup _1}}/:N

Obtain the transfer function by substituting,

5 _ S
Q. 21.3868

- 0.20921x10°
(s? +16.3686s +457.394)(s> +39.5176s +457.394)

H(s)

Problem 4 Design Butterworth filter using impulse invariant method for the following
specification

0.8 < ‘H(ej”’) <l. 0<w<0.2n

‘H(ejm} <02 0.6t<®<T

Solution

=08=¢e=0.75

| +¢°

VI+ W

Ws =0.6 pirad: w =0.2 pirad . then assume T=1 sec
p

=0.2= A=4.899

5

) QPT Qp 02w

p

o, QT QO _0.611_,3



A 4.899
logl ¢ ) 18075
N > € 12 ) 5171
QO log3
log| —*
QP

For N=2 the transfer function of normalized Butterworth filter is

]
H(s)=
s2 +4/2s 41

Cut off frequency

o Q,  02n

_ _ = 0.231T
NN WA

H, (s)= H(s)‘Hi

3 0.5266
(s+0.51+30.5D)(s+0.51-0.51)

Using impulse invariant method, if

N

C
Ha (S) - Z - ’
k=1 S~ Py
N C
H(z) = "k
(2) ;l—ep“TZ_'
j0.516 10.516
H(Z) = 1_6_0_51_j0_5]z-1 - l—e_o'jl_jO'S]Z_l
By solving,
3
H(z) = 0.3022

1-1.0472" +0.362°



Problem 5: Design Butterworth filter using bilinear transformation

QSQHmﬂ)gL 0<®w<0.2m

\Hmw}g&zOﬁngmgn

Solution

Ws = 0.6 pi rad: w =0.2 pi rad. then assume T=1 sec
p

prewrapping the frequency
o, )]
Q = 2t.an7‘" =2752; Q = 2tan7" =0.6498

=0.8=¢e=0.75; L =0.2= A =4.899

| +¢g? VI+ A

—

[—
I
r

7 |
I
r

{l] (4.899}
logl —| log
N> e) 0.75 513

log(l] log(4.235)

for N=2 the transfer function is

|
Hs)=——F——
s‘+\/§s+1

cut off frequency

Q 0.27

Q =—2"r = —=0.75rad / sec
@ (0750
H,(s)=H(s)| s
0,
0.5625

s? +1.06s +0.5625



For bilinear transformation.

H(z) = H,(5)]_a(1r*)

T\ 1+z7!

0.5625(1+z")?

Ho)=— 15 3 _ .
41—z +2.12(1-22)+0.5625(1+z")

4.2 Chebyshev Filter Approximation

Definition of Chebyshev Filters (equi-ripple passband)

Co(w)=1and C;(0)=o0. H(j0)?=1/(1+ & Cy?(®)) = normalized

Cn(®) = Chebyshev polynomials =cos (ncos* @) 0<w<1
=cosh(ncos? @) w>1

& =ripple factor

If we set u=cos™ w, then C,, (®) =cos nu and thus

Co (w) =cos 0 =1, C; (®) = cos u=cos(cos™ o) = o,

C, (®) = cos 2u = 2c0s°U-1=2 @*-1

Cs (@) = cos 3u=4cos’u-3cosu = 40°-3 . etc.

Recursive Formula for Chebyshev Polynomials

From cos[(n+1)u]=2cos nu -cos[(n-1)u ], we get

Ch+1 (0)=2 oCpr(®) - Cp-1(m) n=0,1,2,3...

gives the first ten Chebyshev polynomials

Table 12.2 Chebyshev Polynomials C,(w)




2 2 0?1

3 403w

4 8 -8 0’ +1

5 16 ©-20 »° +5 ©

6 320° -480" +18w?-1

7 640’ -1120° +560° -7

8 128w%-25600° +1600* -320° +1

9 2560° -5760" +4320° -1200° +9w

10 5120™-1280% +11200° -4000* +500% -1

Properties of the Chebyshev Polynomials

1. Forany n
0<Ch(@)|<1 for0<|w|<1

Co(@)|>1  for|o|>1

2. Cy(1)=1 for any n.

3. |Cn(w)| increases monotonically for | @ |[> 1

4.C, (o) is an even (odd) polynomial if n is even (odd).
5. |Cn(0)|=0 for odd n.

6./C,, (0)|=1 for even n.

Chebyshev Magnitude Response Properties

1. |H( ®)|o=0 =1 when n is odd

=1/(N (1+&?) when n is even



2. Since Cp(1)=1 for any n

IHG 1)|= 1/(J (1+&?) foranyn.

3. |H(j »)| decreases exponentially.

Pole Location of Chebyshev Filters
H( 0)f’= 1(1+ & Ci¥(w)) = U(1+ & Ci(-)) lssjo
s=0+ ®

ok= = sin[(2K+1)(x/2n)]sinh[(1/n)sinh™*(1/ &)]

o k= cos[(2K+1)(w/2n)]cosh[(1/n)sinh*(1/ )] K=0,1,2,...

(GK/sinhzy)+( ) K/coshzy)ZI an ellipse on the ¢ - ® plane.

y=(1/n)sinh™*(1/ &)

Design Relations of Chebyshev Filters
H(G ©) = 1(L +& Co¥(o/ o) )
IH( o) [’= 1/(1 + & ChX(e0/ ®p) ) |o-op = L(1+£2)
A,=10log(1+ & %)
=+ (10°%¥-1)
A= 10log[1+ & °Cy*(wy p)]
=10log[1+ & “cosh’[ncosh™(wy wp)]]
n >(cosh™((10°**P-1)/ £))*?)/ (cosh™(wy wp))
k=wp or= fy fr d= ((10°AP-1)/ (10%14"-1)) 2
or

n> cosh™(1/d)/cosh™(1/k)

2n-1



Left-Hand Poles for the Transfer Function

se=sin[(2K+1)(w/2n)]sinh[(1/n)sinh™(1/ & )]+jcos[(2K+1)(x/2n)]cosh[(1/n)sinh (1/ &
]
n-1

H(s)= H (sk/ s-sk), nis odd

K=0

n-1

H(s)= (1/N (1+52))H (si/ s-s), nis odd

K=0

For non-normalized transfer function set s/my in place of s
H(jo)P= 1/2= 1/(1+ £ ’Cy(we)) , 3-dB cutoff

we= cosh((1/n)cosh™(1/ ¢))

Or

cosh™

cosh™

N
<l

Problem 1

Filter Requirements: a) ripple not to exceed 2 dB up to @,



b) 50 dB rejection above 5 @,

Solution

A 250dB g0 = o, =50,

& =(10"* —1)”2 - (10°-1)"* = 0.765

k=—t=—2=0.2
O,  d0,
0.765 0.765

_ _ _ -3
= (10°1A _)72 - (105 _1)1/2 =2.42x10

. cosh*(1/d) _ '”(1/ d+v1/d” —1) 2718
- o (LK) n(1/k 17K 1) 2312

2.91

Accept n=3
yzésmhlz:i.n[a iz+1j:o.361
n & n & &
Yy Ay y -y
sinhy = © =0.3689 cosh y = © tC® 10659

5, =sin (%J(o.e,ssg) + ] cos(%)(l.OGSQ) ——0.1844+ j0.9231



5, = sm( > j(o 3689)+ j cos( . j(1.0659) ——0.3689

S, =—S|n(6)(0 3689) + Jcos(56 j(l 0659)=-0.1844—j0.9231=s;’

0.3289
(s+0.3689)(s* +0.3689s +0.8861)

H(s) =

Problem 2 Design a chebyshev filter for the following specification using 1) bilinear

transformation 2) impulse invariant method.

0.8 < \H(el"”) <l. 0<wm<0.27

‘H(ej“’) <02. 0.6T<®E T

Solution

Using bilinear transformation method,

2

n

Q =2t

O 27
>

0
Q_ =2tan —P —0.6498
"

s

l

=08=¢e=0.75

p]
[ %)

| +

==0.2= 1 =4.899
|+ A7



cogh
2,564

Q| 2122

m|:.-—*
o i

=1.208

cosh’ [

ll
Find a and b:

U=¢'+4/e7+1=3

a—QPW—O.’B?ﬂ
by
bgp—[” +2“ 075

To find poles and zeros

s, =acosd, + jbsing,; k=1,2...N

where, ¢, = g J{zgh:l—lm k=1.2...N

s, =-0.2653+0.53 s, =—0.2653— j0.

0.28

H(s) = —
s° +0.5306s + 0.3516

n
'y



Using bilinear transformation

H(2) = H(s)| [,
T [1—]—:21)-
H(z) = 0.28(1+ 2'1}2

Using impulse invariant method

54128 —7.298:"1 43,2922

w, Q 06a 3
w, 2, 027
h-l 4.899
cosh™'(1/¢) _*" o7
= = = = =145=2
cosh™(1/k)  cosh™"(3)
e -2 —
L=¢g +e°+1=3
1/N =1/N
# —H _
a= QP[ > = 0.3627
' 1/N -1/N 7
b=Q, [“ SE—|=07255

¢, =135°, ¢, = 225
s; ==0.2564 + j 0513
s, =~—0.2564 - j 0.513

0.264
52 4+0.513s +0.33

H(s) =



N

C
H(z) = "k
I(Z:]“l—e"“Tz_1

P, =-0.257—{0.515
P, =—0.257+0.515

0.1967z"
H(z)= = =
1+0.5929z7 ° —1.34z

Properties of FIR filter

An FIR filter has a number of useful properties which sometimes make it preferable to aninfinite

impulse response (1IR) filter. FIR filters:

. Require no feedback. This means that any rounding errors are not compounded by
summed iterations. The same relative error occurs in each calculation. This also makes
implementation simpler.

e Are inherently stable, since the output is a sum of a finite number of finite multiples of
the input values, so can beno greater than >_ Ibil times the largest value appearing in the
input.

. Can easily be designed to be linear phase by making the coefficient sequence symmetric.
This property is sometimes desired for phase-sensitive applications, for example data

communications, crossover filters, and mastering.

The main disadvantage of FIR filters is that considerably more computation power in a general
purpose processor is required compared to an IIR filter with similar sharpness orselectivity,

especially when low frequency (relative to the sample rate) cutoffs are needed. However many


https://en.wikipedia.org/wiki/Infinite_impulse_response
https://en.wikipedia.org/wiki/Infinite_impulse_response
https://en.wikipedia.org/wiki/Infinite_impulse_response
https://en.wikipedia.org/wiki/BIBO_stability
https://en.wikipedia.org/wiki/Linear_phase
https://en.wikipedia.org/wiki/Audio_crossover
https://en.wikipedia.org/wiki/Audio_mastering
https://en.wikipedia.org/wiki/Selectivity_(electronic)

digital signal processors provide specialized hardware features to make FIR filters approximately

as efficient as I1IR for many applications.

4.3 Impulse invariance method

By impulse invariance method, the analogue impulse response h(t) is sampled to get the discreet
sample response h(n). If the analogue filter has a system function Ha (s) then the system function
of the digital filter can be achieved from the sampling theorem as

H(f):FsiHa((f—sz))

Or equivalently

H(w)=F, i H, ((0—27kF,))

k=—o0

The period of the sampling T should be small enough to avoid or minimize the effect of the
aliasing.

From the equation

We can generalize
H(z)|_.=F i H, ((s— j27kF,))
k=—0

Then the mapping is characterized by

Z:esT

We substitute by s=o+ jQ

7= eo‘TejQT



It is clear that

If o =0.The imaginary axis (s= jQ)in the s plane map into the unity circle (z = e"m) in the z-

plane.
If o <0 ,the left hand plane in the s plane map into the inside of the unity circle in the z-plane.
On the assumption that the poles of the analogue filter are distinct, we can write

NG
_Z — Py

k=1 S

p, Are the poles of the analogue filter and c, ’s are the coefficients of the partial expansion.
Consequently

N
=> ce™
k=1

If the ample the analogue impulse response, we get

N
h(n)=h, (nT)=> ce*"
k=1

So the system function of the IIR filter

We observe that the digital filter has poles at



z, =e™  k=1,2,...N

Example: Convert the analog filter with the system function

Ho(g= St0L
(s+0.1)"+9

Solution:

H. (s) 1/2 1/2

= +
s+0.1-j3 s+0.1+j3
Then the transfer function of the digital filter

1/2 N 1/2
e 0T gidT ;-1 7 1 _ o 00T oj3T ;-1

H(2)= 1

1-(e " cos3T )2‘1
. (ze—o.lT cos3T ) Z—l + e—O.ZT 272

H(Z)=1

4.4 Design procedure using impulse invariance
Determining design parameters

Using the impulse invariance design procedure, we have noted that the relation between
frequency in the continuous — time and discrete time domains is w=QT , where T is
merely a design parameter( and not necessarily sampling frequency). Leaving T as an
arbitrary constant for now, we obtain

Qp =, /T =047124]T
Q. =, /T =1099/T
At the passband edge frequency,

H(jQ)f=——— e =(1-6,)

Q
1+(p]
QC

With a few algebraic manipulations, we obtain

Q 2N
GRS
Q (1_51)




Similarly, at the stop band edge frequency, we have
1 —
————— = 0, Which produces
Q
1+ =
o)

oY 1
L) P s
O 5,

C

|H(iQ)[=

Dividing, we obtain

N Llo(k2/K) o7y,
2log(Q,/Q,)

S

Note that since

(CYAR =& , the design parameter T has no effect at all on the value of N
o 0, /T o,

that is needed. Furthermore, as expected, the value of N specify increases as either o, and o,

decreases in magnitude( which implies decreasing the ripple in the passband and / or stopband)
or as the ratio Q /Q decreases (which implies a decrease in the width of the transition band).

Since the number of poles must be an integer, we round upto N=3.

Matching the frequency response exactly at passband produces

2N
Q Q 0.4716
(Q_pj = kl()r Qc = kllfsz = =

c

( This value is slightly different from the one | gave in class.) If we were instead to match the
frequency response at stopband, we would obtain

2N
(QSJ korQ, Q, 05112
Q

c

0.4716 0.5112

In principle, any value of the critical frequency that satisfies <Q <—-

would be valid. As discussed in class, we will choose the value that meets the passband spec
exactly, Q. =0.4716/T



Because this value leaves the greatest margin for error at the stop band edge. Since the
impulse invariance procedure always incurs a certain degree of aliasing, it will be expected that
the actual response of the filter at the stop band edge will be larger than designed for. Hence,
having the stop band edge response be “Over designed” will leave more room for error to allow
for the effects of aliasing.

Prototype filter design

As noted above, the poles of a Butterworth filter lie in the left half of the s-plane on a circle
of radius Q. in complex conjugate pairs separated by an angle of ~/N radians. Since

there are three poles, this produces a filter with the system function

QS

)= (s-Qe” )(s —Q el )(s —chj(”’”’s))

Plugging in the value of O, =0.4716/T , we obtain

H(s) = ——— 0/ _
(S -Qe” )(S _QCeJ(n+7r/3) )(S _chj(ﬂ m))

H(s)~ (0.4716/TY’
~(s+0.4716/T)(s—(-0.236+0.408)/T)(s—(-0.236-0.408})/T)

Problem 1:

For the analog transfer function

H(S) :#
(s+Dis+2)

Determine H(z) using impulse invariance method.

Assume T =1 sec.

Solution

-
H(s)=———
(s+1)(s+2)

Applying partial fractions,



2 2
H(s)= -
(s+1) (s+2)

2 2

T (s—(=1)) (s—(=2))

Hu>]Z o

(s—py)— (1—enz)
Here ., py, — p,. P>
p,=-1. p,=-2: T=lsec

2 2
Hi(z)= —
l—e'z! 1—e?z"
2 2
T 1-0.3678z" 1-0.1353z"
2. -1
H(z) = 0.465z

1-0.503z ' +0.04977 *
4.5 Bilinear Transformation

Let us consider an analog filter with the system function

The system can be also described by the differential equation
dy (t)
—~+ay(t)=bx(t
I y(t)=Dbx(t)

Starting from the integral



By the trapezoidal formula at t=nT and t, =nT —T

y(nT)=(T/2)[y'(nT)+y (nT —T)]+y(nT-T)
But as
y'(nT)=-ay(nT)+bx(nT)

The integral become

(1+%jy(n)_(1_%jy(n_1):%T[x(n)ﬂ(n_l)]

Convert the equation into z domain

(1+%)Y (z)—[l—%j z7Y (z) =b7T[x (z)+z27'X (z)]

Then the transfer function

Tl1+27%

Clearly the mapping from s-plane to z-plane is
2(1-z"
S=—
T{1+z*

To investigate the characteristics of the bilinear transformation, let

Z=re’’s=c+ jow

Then the mapping formula can be expressed as

Or



2 r2—1 . 2rsin
S=— 5 + ] >
T{1+r°+2rcosew ~“1+r +2rcosw

=0+ JQ

If r<1leads to o <0 or the left hand plane in the s plane maps into the inside of the unity circle
in the z-plane .

When r=1,0 =0 and

_2 sinw
T 1+coswm

0=2n?
T 2

a):2tan‘1%

Problem 1
Convert the analog filter with the system function

s+0.1
(s +0.1)2 +16

H(s)=

Into a IIR digital filter by means of bilinear transformation. The digital filter is to have a
resonance frequency o, =7z /2

The analog filter has a resonance frequency of Q=4.This is to be mapped into @, =7/2 by

using

0=2@n?
T2

This leads to T=0.5
Thus the desired mapping is
s=4{(1-zY)/( 1+z1)}

And the resulting digital filter has the system function



0.128+0.006="" -0.122-"
1+ 0.0006="" +0.975="*
0.128+0.006="" -0.122-"*

H(z)= —
14+0975="

H(z)=

+jm/2

with poles at p; » = 0.987e
with zero at z; ,=-10.95

problem 2 Design a single pole low pass filte with 3 dB bandwidth of 0.27 using the billinear
transform to analogue filter

ff[.f]: L

F+12

The digital filter is specified to have -3dB gain at ©~0.2x. In the frequency domain of the
analogue filter

Q_ =

~ |k

tan 2 = 0.65/T
2

Thus the analogue filter has the system function

0.65/T
H(s)=—————
s+ 065/T
Now, we apply the bilinear transformation to get

0.245(1+="")

H(z)=
@) 1-0.509="
The frequency response of the digital filter

0.245(1 +e&™")
I — 0.509¢ ="

H(m) =

which applies
H(0)=1 and |H(02x)|=0.707
4.6 Design Procedure Using Bilinear Transformation

Determining Design parameters

Here we will convert from continuous time to discrete time form using the bilinear transform.



l—:_I

]+:_]

--1| ]

This produces the non-linear relationship between continuous-time frequency and discrete-time
frequency

Q = Stan{w/2)

Sl |

Converting the critical frequencies ®p ang s 10 their continuous time counterparts produces

_ 2 7 = 9
ﬂp = ?_tan{ml”f_} = 04802/T

L —

&

tan(w,/2) = 1.226/T

it

We use again the design equation

1 log(k,/ky)
V= s—2 L = 24546
Elngiﬂ_‘fﬂp}

Note that although we still need to have 3 poles, the actual fractional value of n smaller because
of the greater ratio of stopband to passband edge frequencies provided by the nonlinear
frequency warping of the bilinear transform.

We will match the specs exactly in the passband, although there is no specific need to do so
when we use the bilinear transform. The equation for the critical frequency then becomes

o - 2 _ 04806
“ k:—"’:.\' T

Prototype Filter Design
As before, the transfer function for the Butterworth filter is

ﬂj

e

His) =

flm e ms3) fla—ms3)

(s—Q.¢ )(s-Qe Ns—Qe )
0.110/7

. 096125 046205 0. 1310
r r* T

His) =




Problem 1:

Apply bilinear transformation to

Hs)=——
(s+1)(s+2)

with T = Isec and find H(z)

Solution :
Substitute,
2| 1-z2"
§=—
T|1+z"
2|
H(z)=
ts+1)(s+2)|szz{£}
T| 1+2!
2
H(z)= — —
-7 -7
— [+1 — [+2
s
Y
3 u+z')
1-1z"

Window (Filter) Descriptions

e T=1

o -1<w=<mor 0<w<2n

e DFT bin=2n/N

e Windows are even (about the origin) sequences with an odd number of points.

e The right -most point of the window will be discarded.

e N will be taken to be even, and the total points will be odd, and hence
N=2x(total points)=even

Rectangle Window



W (n)=1.0 n=N/2,.......-1,0,1,2,N/2

M2
Wiw) = z Wl ) g e
A2

To make it realizable shift the sequence by N/2 to the right. Hence we obtain
win)=1 n=01--N-1

Nl i sin %m]
=S eom w e 22°)

el 5n—

Fig 4.3
a> Rectangular window,
b> Amplitude spectrum off rectangular window

Hann window

win)= msi[%n)= %[] +1:us{%n] n=—5,~L01-F

n'[n}=5inz[[%Jn}= %ll— :ns[ ETH I:] n=01--N-1

DFT of the window is

W(w)= %D|m}+%[£}[m- 1Tﬂ:]+ D[HJ+ ETK]

{39)
S| —
L. 2
=4 "

.n['ll
5l ~

= Dirichlet Kernel -RESWER



a v ey ., h
: ! -a
wE * L q:
e ; &0
0,2 . =38
Fig4.4
a> Hann window,
b>Amplitude Spectrum of the hann window.
4.7 Hamming Window
2 : .
w(n) = u+{1—u]cm%n n=—1,-101- %
H’{m}=uD[m}+%[l—u][ﬂ[m—%J+ D(m+%” [ 1 s
0 = Dirichlet Kernel (see 7.3.5)
n . .
n‘[n}=ﬂ.54+ﬂ.¢6mswn n=—%,--10L-- 4
n
win)=10.34 - 046cos—n n=0]1-N-1
a R .
a.sf. _". '*_
0.3 .l- .i.'

i 0 3 40 50




Fig 4.5
a> Hamming window
b> Amplitude Spectrum of the hamming window.

Problem 1

Design a linear phase FIR low pass filter of order seven with cut-off frequency 1 rad/sec
using rectangular window.

The desired frequency responsce Hy ( w0 ) for the low poss FIR filier ia given by,
I' CfM-=1"

-je) = for |l <lw_|

L o S

Hd[m-} :l i 1)

i otherwise

Here M=length of filter=7(given)

-3jo
Hd(w):{e for |e] <|a| (2)
U
Il ob by tak f oo Ljel e ™
We will obtain h taking IFT of equation(2).. =
iy PY g q 2) i =57 i(n-3)

1 I jon
hd(n)zszd(w)-e' do

Here given cut-off frequency=(w,)=1.Now for the symmetric filter we can write the range of
_sin(n-3)

integration (@, ), fromh, _m o, , 10 o,

1 ¢ i
~h(m=—| e®”.eldw
m=5]

1
27

1 |:eja)(n—3):| 1
2z j(n-3) |,

1
j el Id . (4
-1




1 ej(n—S) _e—i(n—S)
ho ==
d(m) 2;;{ j(n=3) }

Now we have the trigonometric identity,

o _ -0
sing=S_—¢
2
_sin(n-3)
dn) — /- Ay
z(n-3) . for n=3

Now if n=3 then equation (4) becomes,

h, () = z(n-3)
z
Wi (n) = {i
h(n) = {2" "
sin(-3
h, (0) = h(0) =$=0-015 h, (n) :%ieo .da):%[l—(—l)] =£..-(6)
Thus we can write,
sin(n—23)
h,(n) = f(n—_g’)For n= 3, for n=3 -(7)
7
Step 3:

Here we have for rectangular window we have to make use of rectangular window of the order
7.We have for rectangular window,

1
.-.WR(n):{ for n=0 to 6,otherwise (forn=0to M-1)
0

Now h(n) is , MM =N (n)-We (n)



Thus using equation (7) we get,

o :
h(n) = 0 for n=0 to 6;otherwise ...(8)

Value of n value of h, (n) =h(n)

0 h, (0) = h(0) = w - 0.015
1 h, (1) = h(1) :Sif(—‘z) ~0.145
2 h,(2) =h(2) = 3" _ 0 268
—T
3 h,(3)=h(3) =1 -0.318
T
4 h, (4) =h(4) = 3@ _ 9 268
> h, 5) =h(s) = 1@ _ g 145
27
6 h, (6) = h(6) = " _ 0 0149
3

Problem 2

Find the magnitude and phase response function of seventh order low pass linear phase FIR filter
cut-off frequency 1 rad/sec using hanning window.

This is similar to problem(1);only difference is that here ,we have to use hanning window.

We have to obtained the equation of h,(n).Itis,

sin(n—3)

1”(” =) forn+ 3forn=3 ... (1)

T

h,(n) =

Now hanning window is defined as,

W, (h) = %{1— CoS I\fliml}

But M=7 (given)



~ W, (n) = %{1— cos (Z—Znﬂ ...(2)

Now the coefficients of FIR filter that means h(n) is obtained by using the equation,
h(n)=h,(n)-W,n) .. (3)

Making use of these equations we can obtain the values of h(n) as shown in the below table.

;/alue of sin(n 33) Wh(n)zﬂl_cos(%ﬂ h(n) =h, (n)-W, (n)

h,(n) = 7(M-3) tor n=3

T

0 0.015 0 0
1 0.145 0.25 0.03625
2 0.268 0.75 0.201
3 0.318 1 0.318
4 0.268 0.75 0.201
5 0.145 0.25 0.3625
6 0.149 0 0
Magnitude and phase:

. M-1

i
We have, Hd(a)):{l'e "o for |o| <|w,| ,otherwise
0

- |Hy (@)= {(1) for |w|<|w,|, otherwise

And /H, (@) = —a)(MT‘l) _ —a)(7—;1) — 30

Thus the magnitude and phase angle has been calculated.




