
SITX 1402 – Mobile Application Development Unit – 4 Introduction to iOS

UNIT – 4 – Introduction to iOS

1. Introduction to IOS

2. History, Versions and Features

3. MVC Controller

4. View Controller

5. Building UI

6. Event Handling

7. Application Life Cycle

8. Tab Bars

9. Storey Boards

10. Navigation Controller

11. Push Notification

12. Database Handling

13. Debugging and Deployment

14. Publishing app in Appstore

1. Introduction to IOS

Operating system is a set of programs that manage computer hardware resources and provide
common services for application software important system software in computer system. User
cannot run an application program on computer without OS. Ie. Android, Mac OS X, Microsoft
Windows.

Apples mobile operating system considered the foundation of the iPhone Originally designed
for the iPhone but now supports iPod touch, iPad, and Apple TV It is updated just like Itune for
iPods As of Oct 2011 Apple contains over 500,000 iOS applications.

2. History, Vesion and Features

Department of Information Technology

SITX 1402 – Mobile Application Development Unit – 4 Introduction to iOS

2.1 History

iPhone OS was first unveiled in Jan 2007 at the Macworld Conference and Expo
Released June 2007.In June 2010 licensed the trademark iOS (From Cisco IOS) .Now goes all
the way up to iOS 5. Originally did not allow third party applications but after Feb 2008 this
changed. With either 30% profit to apple, or free with membership fee. The following figure 1
shows the features of IOS.

 2.2 Features

 Figure 1 Features of IOS

The power of iOS can be felt with some of the following features provided as a part of the
device.

 Maps

 Siri

 Facebook and Twitter

Department of Information Technology

SITX 1402 – Mobile Application Development Unit – 4 Introduction to iOS

 Multi-Touch

 Accelerometer

 GPS

 High end processor

 Camera

 Safari

 Powerful APIs

 Game center

 In-App Purchase

 Reminders

The primary applications consists of

 Safari

 Music

 Mail

 Phone, Face time video calling

The secondary applications consists of

 Camera, Camcorder

 Photos

 Calendar

 Messaging

 WeTube

 Stocks

 Map

 Clock

Department of Information Technology

SITX 1402 – Mobile Application Development Unit – 4 Introduction to iOS

New Features such as

 Over 200 new features including better security

 Full Twitter integration

 New Apple iCloud enable users to synch data automatically wirelessly with no USB
connection to Itunes

2.3 Environmental Setup

iOS - Xcode Installation

Step 1 − Download the latest version of Xcode from(https://developer.apple.com/downloads/)

Step 2 − Double click the Xcode dmg file.

Step 3 − We will find a device mounted and opened.

Step 4 − There will be two items in the window that's displayed namely, Xcode application and

the Application folder's shortcut.

Step 5 − Drag the Xcode to application and it will be copied to our applications.

Step 6 − Now Xcode will be available as a part of other applications from which we can select

and run.

We also have another option of downloading Xcode from the Mac App store and then install

following the step-by-step procedure given on the screen.

Department of Information Technology

https://developer.apple.com/downloads/

SITX 1402 – Mobile Application Development Unit – 4 Introduction to iOS

Interface Builder
Interface builder is the tool that enables easy creation of UI interface. We have a rich set

of UI elements that is developed for use. We just have to drag and drop into our UI view. We'll

learn about adding UI elements, creating outlets and actions for the UI elements in the

upcoming pages.

Step 1 : First, launch Xcode. If we’ve installed Xcode via Mac App Store, we should be able to

locate Xcode in the LaunchPad. Just click on the Xcode icon to start it up.

Step 2: Once launched, Xcode displays a welcome dialog. From here, choose “Create a new

Xcode project” to start a new project:

Department of Information Technology

SITX 1402 – Mobile Application Development Unit – 4 Introduction to iOS

Step 3: Xcode shows we various project template for selection. For our first app, choose “Single

View Application” and click “Next”.

Department of Information Technology

SITX 1402 – Mobile Application Development Unit – 4 Introduction to iOS

We can simply fill in the options as follows:

• Product Name: HelloWorld – This is the name of our app.

• Company Identifier: com.appcoda – It’s actually the domain name written the other

way round. If we have a domain, we can use our own domain name. Otherwise, we may

use mine or just fill in “edu.self”.

• Class Prefix: HelloWorld – Xcode uses the class prefix to name the class automatically.

In future, we may choose our own prefix or even leave it blank. But for this tutorial, let’s

keep it simple and use “HelloWorld”.

• Device Family: iPhone – Just use “iPhone” for this project.

• Use Storyboards: [unchecked] – Do not select this option. We do not need Storyboards

for this simple project.

• Use Automatic Reference Counting: [checked] – By default, this should be enabled.

Just leave it as it is.

• Include Unit Tests: [unchecked] – Leave this box unchecked. For now, we do not need

the unit test class.

Step 4: Click “Next” to continue. Xcode then asks we where we saves the “Hello.

Department of Information Technology

SITX 1402 – Mobile Application Development Unit – 4 Introduction to iOS

Step 5: Xcode Workspace :

On the left pane, it’s the project navigator. We can find all our files under this area.

Step 6: The center part of the workspace is the editor area. We do all the editing stuffs (such

as edit project setting, class file, user interface, etc) in this area depending on the type of file

selected.

Department of Information Technology

SITX 1402 – Mobile Application Development Unit – 4 Introduction to iOS

The rightmost pane is the utility area. This area displays the properties of the file and allows

we to access Quick Help. If Xcode doesn’t show this area, we can select the rightmost view

button in the toolbar to enable it.

Step 7: Add the Hello World button to our app. Go back to the Project Navigator and select

“HelloWorldViewController.xib”.

The editor changes to an Interface Builder and displays an empty view of our app like below.

Department of Information Technology

SITX 1402 – Mobile Application Development Unit – 4 Introduction to iOS

Step 8: In the lower part of the utility area, it shows the Object library. From here, we can

choose any of the UI Controls, drag-and-drop it into the view. For the Hello World app, let’s

pick the “Round Rect Button” and drag it into the view. Try to place the button at the center

of the view. To edit the label of the button, double-click it and name it “Hello World”.

Step 9: Coding the Hello World Button

In the Project Navigator, select the “HelloWorldViewController.h”. The editor area now displays

the source code of the selected file. Add the following line of code before the “@endline.

Department of Information Technology

SITX 1402 – Mobile Application Development Unit – 4 Introduction to iOS

-(IBAction)showMessage;

Step 10: Next, select the “HelloWordViewController.m” and insert the following code before

the “@endline”.

- (IBAction)showMessage
{
 UIAlertView *helloWorldAlert = [[UIAlertView alloc]
 initWithTitle:@"My First App" message:@"Hello, World!" delegate:nil
cancelButtonTitle:@"OK" otherButtonTitles:nil];

 // Display the Hello World Message
 [helloWorldAlert show];
}

Department of Information Technology

SITX 1402 – Mobile Application Development Unit – 4 Introduction to iOS

Step 11: Connecting Hello World Button with the Action

we’ll need to establish a connection between the “Hello World” button and the
“showMessage” action we’ve just added. Select the “HelloWorldViewController.xib” file to go
back to the Interface Builder. Press and hold the Control key on our keyboard, click the “Hello
World” button and drag to the “File’s Owner”. Our screen should look like this:

Department of Information Technology

SITX 1402 – Mobile Application Development Unit – 4 Introduction to iOS

Step 12: Test Our App
 Just hit the “Run” button. If everything is correct, our app should run properly in the Simulator.

An iOS simulator actually consists of two types of devices, namely iPhone and iPad with their

different versions. iPhone versions include iPhone (normal), iPhone Retina, iPhone 5. iPad has

iPad and iPad Retina. We can simulate location in an iOS simulator for playing around with

latitude and longitude effects of the app. We can also simulate memory warning and in-call

status in the simulator. We can use the simulator for most purposes, however we cannot test

device features like accelerometer.

3 Model-View-Controller

The Model-View-Controller design pattern (MVC) is quite old. Variations of it have been

around at least since the early days of Smalltalk. It is a high-level pattern in that it concerns itself

with the global architecture of an application and classifies objects according to the general roles

they play in an application. It is also a compound pattern in that it comprises several, more

elemental patterns. The MVC design pattern considers there to be three types of objects: model

objects, view objects, and controller objects. The MVC pattern defines the roles that these types

of objects play in the application and their lines of communication.

3.1 Model Object

Model objects represent special knowledge and expertise. They hold an application’s data

and define the logic that manipulates that data. A well-designed MVC application has all its

important data encapsulated in model objects. Any data that is part of the persistent state of the

application (whether that persistent state is stored in files or databases) should reside in the

model objects once the data is loaded into the application. Because they represent knowledge and

expertise related to a specific problem domain, they tend to be reusable.

3.2 View Objects

A view object knows how to display, and might allow users to edit, the data from the

application’s model. The view should not be responsible for storing the data it is displaying. A

view object can be in charge of displaying just one part of a model object, or a whole model

Department of Information Technology

SITX 1402 – Mobile Application Development Unit – 4 Introduction to iOS

object, or even many different model objects. Views come in many different varieties.View

objects tend to be reusable and configurable, and they provide consistency between applications.

A view should ensure it is displaying the model correctly.

3.3 Controller Objects

A controller object acts as the intermediary between the application's view objects and its

model objects. Controllers are often in charge of making sure the views have access to the model

objects they need to display and act as the conduit through which views learn about changes to

the model. Controller objects can also perform set-up and coordinating tasks for an application

and manage the life cycles of other objects.

Model-View-Controller is a design pattern that is composed of several more basic design

patterns. These basic patterns work together to define the functional separation and paths of

communication that are characteristic of an MVC application. MVC is made up of the

Composite, Strategy, and Observer patterns.

• Composite—The view objects in an application are actually a composite of nested views

that work together in a coordinated fashion (that is, the view hierarchy). These display

components range from a window to compound views, such as a table view, to individual

views, such as buttons. User input and display can take place at any level of the composite

structure.

• Strategy—A controller object implements the strategy for one or more view objects. The

view object confines itself to maintaining its visual aspects, and it delegates to the controller

all decisions about the application-specific meaning of the interface behavior.

• Observer—A model object keeps interested objects in an application—usually view

objects—advised of changes in its state.

 A controller object receives the event and interprets it in an application-specific way—

that is, it applies a strategy. This strategy can be to request (via message) a model object to

change its state or to request a view object (at some level of the composite structure) to change

its behavior or appearance. The model object, in turn, notifies all objects who have registered as

Department of Information Technology

SITX 1402 – Mobile Application Development Unit – 4 Introduction to iOS

observers when its state changes; if the observer is a view object, it may update its appearance

accordingly. The following figure 2 shows the MVC design patterns.

Figure 2 MVC Design Patterns

A user needs to interact with an app interface in the simplest way possible. Design the

interface with the user in mind, and make it efficient, clear, and straightforward. Storyboards let

we design and implement our interface in a graphical environment. We see exactly what we're

building while we’re building it, get immediate feedback about what’s working and what’s not,

and make instantly visible changes to our interface.

They are the building blocks for constructing our user interface and presenting our

content in a clear, elegant, and useful way. As we develop more complex apps, we'll create

interfaces with more scenes and more views. The following figure 3 shows the MVC

architecture.

.

Figure 3. MVC Architecture

Department of Information Technology

SITX 1402 – Mobile Application Development Unit – 4 Introduction to iOS

One can merge the MVC roles played by an object, making an object, for example, fulfill

both the controller and view roles—in which case, it would be called a view controller.

A model controller is a controller that concerns itself mostly with the model layer. It “owns” the

model; its primary responsibilities are to manage the model and communicate with view objects.

Action methods that apply to the model as a whole are typically implemented in a model

controller. The document architecture provides a number of these methods for we; for example,

an NSDocument object (which is a central part of the document architecture) automatically

handles action methods related to saving files.

A view controller is a controller that concerns itself mostly with the view layer. It “owns” the

interface (the views); its primary responsibilities are to manage the interface and communicate

with the model. Action methods concerned with data displayed in a view are typically

implemented in a view controller. An NSWindowControllerobject (also part of the document

architecture) is an example of a view controller.

A coordinating controller is typically an NSWindowController or NSDocumentControllerobject

(available only in AppKit), or an instance of a custom subclass ofNSObject. Its role in an

application is to oversee—or coordinate—the functioning of the entire application or of part of

the application, such as the objects unarchived from a nib file. A coordinating controller provides

services such as:

• Responding to delegation messages and observing notifications

• Responding to action messages

• Managing the life cycle of owned objects (for example, releasing them at the proper time)

• Establishing connections between objects and performing other set-up tasks

4 View Controller

A view controller is a controller that concerns itself mostly with the view layer. It “owns” the

interface (the views); its primary responsibilities are to manage the interface and communicate

with the model. Action methods concerned with data displayed in a view are typically

Department of Information Technology

https://developer.apple.com/library/ios/documentation/Cocoa/Reference/Foundation/Classes/NSObject_Class/index.html#//apple_ref/occ/cl/NSObject

SITX 1402 – Mobile Application Development Unit – 4 Introduction to iOS

implemented in a view controller. An NSWindowControllerobject (also part of the document

architecture) is an example of a view controller.

Views not only display themselves onscreen and react to user input, they can serve as

containers for other views. As a result, views in an app are arranged in a hierarchical structure

called the view hierarchy. The view hierarchy defines the lawet of views relative to other views.

Within that hierarchy, views enclosed within a view are called sub views, and the parent view

that encloses a view is referred to as its super view. Even though a view can have multiple sub

views, it can have only one super view.

At the top of the view hierarchy is the window object. Represented by an instance of

the UIWindow class, a window object is the basic container into which we add our view objects

for display onscreen. By itself, a window doesn’t display any content.

To display content, we add a content view object (with its hierarchy of sub views) to the

window. For a content view and its sub views to be visible to the user, the content view must be

inserted into a window’s view hierarchy. When we use a storyboard, this placement is configured

automatically for we. When an app launches, the application object loads the storyboard, creates

instances of the relevant view controller classes, un archives the content view hierarchies for

each view controller, and then adds the content view of the initial view controller into the

window.

4.1 Types of Views

 A UIKit view object is an instance of the UIView class or one of its subclasses. The

UIKit framework provides many types of views to help present and organize data. Although each

view has its own specific function, UIKit views can be grouped into these general categories.

View

category Purpose Examples of views

Content

Display a particular type of content, such as an image or

text.
Image view, label

Department of Information Technology

https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIView_Class/index.html#//apple_ref/occ/cl/UIView

SITX 1402 – Mobile Application Development Unit – 4 Introduction to iOS

View

category Purpose Examples of views

Collections

Display collections or groups of views. Collection view, table view

Controls
Perform actions or display information. Button, slider, switch

Bars

Navigate, or perform actions. Toolbar, navigation bar, tab bar

Input

Receive user input text. Search bar, text view

Containers

Serve as containers for other views. View, scroll view

4.2 Use Storyboards to Lay Out Views

Storyboards provide a direct, visual way to work with views and build our interface and

composed of scenes, and each scene has an associated view hierarchy. We drag a view out of the

object library and place it in a storyboard scene to add it automatically to that scene’s view

hierarchy. The view’s location within that hierarchy is determined by where we place it. After

we add a view to our scene, we can resize, manipulate, configure, and move it on the canvas.

The canvas also shows an outline view of the objects in our interface. The outline view which

appears on the left side of the canvas—lets we see a hierarchical representation of the objects in

our storyboard. The following figure 4 shows the view controller.

Department of Information Technology

SITX 1402 – Mobile Application Development Unit – 4 Introduction to iOS

Figure 4 View Controller

The view hierarchy that we create graphically in a storyboard scene is effectively a set of

archived Objective-C objects. At runtime, these objects are un archived. The result is a hierarchy

of instances of the relevant classes configured with the properties we’ve set visually using the

various inspectors in the utility area.

 When we need to adjust our interface for specific device sizes or orientations, we make

the changes to specific size classes. A size class is a high-level way to describe the horizontal or

vertical space that’s available in a display environment, such as iPhone in portrait or iPad in

landscape. There are two types of size classes: regular and compact. A display environment is

characterized by a pair of size classes, one that the horizontal space and one that describes the

vertical space. We can view and edit our interface for different combinations of regular and

compact size classes using the size class control on the canvas. The following figure 5 and 6

show the inspector pane and auto lawet icons.

Department of Information Technology

SITX 1402 – Mobile Application Development Unit – 4 Introduction to iOS

Figure 5 Inspection Pane

Use the Auto Lawet icons in the bottom-right area of our canvas to add various types of

constraints to views on our canvas, resolve lawet issues, and determine constraint resizing

behavior.

• Align. Create alignment constraints, such as centering a view in its container, or aligning

the left edges of two views.

• Pin. Create spacing constraints, such as defining the height of a view, or specifying its

horizontal distance from another view.

• Resolve Auto Lawet Issues. Resolve lawet issues by adding or resetting constraints

based on suggestions.

• Resizing Behavior. Specify how resizing affects constraints.

Department of Information Technology

SITX 1402 – Mobile Application Development Unit – 4 Introduction to iOS

Figure 6 Auto Lawet Icons

5 Building UI

UI elements are the visual elements that we can see in our applications. Some of these

elements respond to user interactions such as buttons, text fields and others are informative

such as images, labels.

5.1 Use of Text Field

A text field is a UI element that enables the app to get user input. A UITextfield is shown

below.

Important Properties of Text Field

 Placeholder text which is shown when there is no user input

Department of Information Technology

SITX 1402 – Mobile Application Development Unit – 4 Introduction to iOS

 Normal text

 Auto correction type

 Key board type

 Return key type

 Clear button mode

 Alignment

 Delegate

Input Type
Description

UIKeyboardTypeASCIICapable
Keyboard includes all standard ASCII
characters.

UIKeyboardTypeNumbersAndPunctuation
Keyboard display numbers and punctuations
once it's shown.

UIKeyboardTypeURL
Keyboard is optimized for URL entry.

UIKeyboardTypeNumberPad
Keyboard is used for PIN input and shows a
numeric keyboard.

UIKeyboardTypePhonePad
Keyboard is optimized for entering phone
numbers.

UIKeyboardTypeNamePhonePad
Keyboard is used for entering name or phone
number.

UIKeyboardTypeEmailAddress
Keyboard is optimized for entering email
address.

UIKeyboardTypeDecimalPad
Keyboard is used for entering decimal
numbers.

5.2 Buttons

Buttons are used for handling user actions. It intercepts the touch events and sends

message to the target object.

Department of Information Technology

SITX 1402 – Mobile Application Development Unit – 4 Introduction to iOS

5.2.1 Buttons Types

 UIButtonTypeCustom

 UIButtonTypeRoundedRect

 UIButtonTypeDetailDisclosure

 UIButtonTypeInfoLight

 UIButtonTypeInfoDark

 UIButtonTypeContactAdd

5.2.2 Code

-(void)addDifferentTypesOfButton

{

// A rounded Rect button created by using class method

UIButton *roundRectButton = [UIButton buttonWithType: UIButtonTypeRoundedRect];

[roundRectButton setFrame:CGRectMake(60, 50, 200, 40)]; // sets title for the button

 [roundRectButton setTitle:@"Rounded Rect Button" forState: UIControlStateNormal];

[self.view addSubview:roundRectButton];

 5.3 Labels

 Labels are used for displaying static content, which consists of a single line or multiple

lines.

5.3.1 Important Properties

 textAlignment

 textColor

Department of Information Technology

SITX 1402 – Mobile Application Development Unit – 4 Introduction to iOS

 text

 numberOflines

 lineBreakMode

5.3.2 - (void)addLabel

{

 UILabel *aLabel = [[UILabel alloc]initWithFrame: CGRectMake(20, 200, 280, 80)];

aLabel.numberOfLines = 0;

aLabel.textColor = [UIColor blueColor];

aLabel.backgroundColor = [UIColor clearColor]; aLabel.textAlignment =

UITextAlignmentCenter;

 aLabel.text = @"This is a sample text\n of multiple lines. here number of lines is not

limited.";

 [self.view addSubview:aLabel];

 }

- (void)viewDidLoad

 {

 [super viewDidLoad];

 [self addLabel];

 }

Department of Information Technology

SITX 1402 – Mobile Application Development Unit – 4 Introduction to iOS

5.4 Toolbar

If we want to manipulate something based on our current view we can use toolbar. Example

would be the email app with an inbox item having options to delete, make favourite, reply and so

on. It is shown below.

5.5 Status Bar

 Status bar displays the key information of device like −

 Device model or network provider

 Network strength

 Battery information

 Time

Status bar is shown below.

Department of Information Technology

SITX 1402 – Mobile Application Development Unit – 4 Introduction to iOS

5.5.1 Add a Custom Method hideStatusbar to our Class

 It hides the status bar animated and also resize our view to occupy the statusbar space.

-(void)hideStatusbar

{

 [[UIApplication sharedApplication] setStatusBarHidden:YES

withAnimation:UIStatusBarAnimationFade];

 [UIView beginAnimations:@"Statusbar hide" context:nil];

 [UIView setAnimationDuration:0.5];

 [self.view setFrame:CGRectMake(0, 0, 320, 480)];

 [UIView commitAnimations];

}

5.6 Tab Bar

 It's generally used to switch between various subtasks, views or models within the same

view.

 Example for tab bar is shown below.

Important Properties

 backgroundImage

 items

 selectedItem

Department of Information Technology

SITX 1402 – Mobile Application Development Unit – 4 Introduction to iOS

5.7 Image View

 Image view is used for displaying a single image or animated sequence of images.

Important Properties

 image

 highlightedImage

 userInteractionEnabled

 animationImages

 animationRepeatCount

Important Methods

- (id)initWithImage:(UIImage *)image - (id)initWithImage:(UIImage *)image

highlightedImage: (UIImage *)highlightedImage

- (void)startAnimating

- (void)stopAnimating

Add a Custom Method addImageView

-(void)addImageView

{

 UIImageView *imgview = [[UIImageView alloc] initWithFrame:CGRectMake(10, 10, 300,

400)];

[imgview setImage:[UIImage imageNamed:@"AppleUSA1.jpg"]];

[imgview setContentMode:UIViewContentModeScaleAspectFit];

Department of Information Technology

SITX 1402 – Mobile Application Development Unit – 4 Introduction to iOS

[self.view addSubview:imgview];

}

5.8 Scroll View

Scroll View is used for displaying content more than the size of the screen. It can contain all

of the other UI elements like image views, labels, text views and even another scroll view

itself.

Important Properties

 contentSize

 contentInset

 contentOffset

 delegate

5.8.1 Code

-(void)addScrollView

{

 myScrollView = [[UIScrollView alloc]initWithFrame: CGRectMake(20, 20, 280, 420)];

myScrollView.accessibilityActivationPoint = CGPointMake(100, 100);

 imgView = [[UIImageView alloc]initWithImage: [UIImage

imageNamed:@"AppleUSA.jpg"]];

 [myScrollView addSubview:imgView];

myScrollView.minimumZoomScale = 0.5; myScrollView.maximumZoomScale = 3;

 myScrollView.contentSize = CGSizeMake(imgView.frame.size.width,

imgView.frame.size.height);

Department of Information Technology

SITX 1402 – Mobile Application Development Unit – 4 Introduction to iOS

myScrollView.delegate = self; [self.view addSubview:myScrollView];

 }

5.9 Table View

 It is used for displaying a vertically scrollable view which consists of a number of cells
(generally reusable cells). It has special features like headers, footers, rows, and section.

Important Properties

 Delegate

 Data source

 Row height

 Section footer height

 Section header height

 Separator color

 Table header view

 Table footer view

5.9.1 Code

Department of Information Technology

SITX 1402 – Mobile Application Development Unit – 4 Introduction to iOS

- @interface ViewController ()

- @end

- @implementation ViewController

- (void)viewDidLoad

- {

- [super viewDidLoad]; // table view data is being set here

- myData = [[NSMutableArray alloc]initWithObjects:

- @"Data 1 in array",

- @"Data 2 in array",

- @"Data 3 in array",

- @"Data 4 in array",

- @"Data 5 in array",

- @"Data 5 in array",

- @"Data 6 in array",

- @"Data 7 in array",

- @"Data 8 in array",

- @"Data 9 in array", nil];

5.10 View Transitions

 View Transitions are effective ways of adding one view on another view with a proper
transition animation effect.

Update ViewController.xib as follows −

Department of Information Technology

SITX 1402 – Mobile Application Development Unit – 4 Introduction to iOS

5.10 Pickers

 Pickers consist of a rotating scrollable view, which is used for picking a value from the list
of items.

Important Properties

 delegate

 dataSource

Important Methods

 - (void)reloadAllComponents - (void)reloadComponent:(NSInteger)component -
(NSInteger)selectedRowInComponent:(NSInteger)component

 - (void)selectRow:(NSInteger)row inComponent:(NSInteger)comonent animated:
(BOOL)animated

Department of Information Technology

SITX 1402 – Mobile Application Development Unit – 4 Introduction to iOS

5.12 Switches

 Switches are used to toggle between on and off states.

Important Properties

 onImage

 offImage

 on

Important Method

- (void)setOn:(BOOL)on animated:(BOOL)animated

-(IBAction)switched:(id)sender

{

 NSLog(@"Switch current state %@", mySwitch.on ? @"On" : @"Off");

}

 -(void)addSwitch

{

 mySwitch = [[UISwitch alloc] init];

 [self.view addSubview:mySwitch];

mySwitch.center = CGPointMake(150, 200);

Department of Information Technology

SITX 1402 – Mobile Application Development Unit – 4 Introduction to iOS

[mySwitch addTarget:self action:@selector(switched:)
forControlEvents:UIControlEventValueChanged];

 }

5.13 Sliders

 Sliders are used to choose a single value from a range of values.

Important Properties

 Continuous

 Maximum Value

 Minimum Value

 Value

Important Method

 - (void)setValue:(float)value animated:(BOOL)animated

5.13.1 Code

-(IBAction)sliderChanged:
(id)sender

{

 NSLog(@"SliderValue %f",mySlider.value);

 }

 -(void)addSlider

{

 mySlider = [[UISlider alloc] initWithFrame:CGRectMake(50, 200, 200, 23)]; [self.view
addSubview:mySlider];

 mySlider.minimumValue = 10.0;

 mySlider.maximumValue = 99.0;

 mySlider.continuous = NO;

Department of Information Technology

SITX 1402 – Mobile Application Development Unit – 4 Introduction to iOS

[mySlider addTarget:self action:@selector(sliderChanged:)
forControlEvents:UIControlEventValueChanged];

 }

5.14 Alerts

 Alerts are used to give important information to user. Only after selecting the option in
the alert view, we can proceed further using the app.

Important Properties

 Alert View Style

 Cancel Button Index

 Delegate message

 Number Of Buttons

 Title

5.14 .1 Code

(NSInteger)addButtonWithTitle:(NSString *)title

 - (NSString *)buttonTitleAtIndex:(NSInteger)buttonIndex

 - (void)dismissWithClickedButtonIndex: (NSInteger)buttonIndex animated:
(BOOL)animated

- (id)initWithTitle:(NSString *)title message: (NSString *)message delegate:(id)delegate
cancelButtonTitle:(NSString *)cancelButtonTitle otherButtonTitles:
(NSString*)otherButtonTitles, ...

Department of Information Technology

SITX 1402 – Mobile Application Development Unit – 4 Introduction to iOS

- - (void)show

6 Event Handling

users manipulate their iOS devices in a number of ways, such as touching the screen or

shaking the device. iOS interprets when and how a user is manipulating the hardware and passes

this information to our app. The more our app responds to actions in natural and intuitive ways,

the more compelling the experience is for the user.

Events are objects sent to an app to inform it of user actions. In iOS, events can take

many forms: Multi-Touch events, motion events, and events for controlling multimedia. This last

type of event is known as a remote control event because it can originate from an external

accessory.

iOS apps recognize combinations of touches and respond to them in ways that are

intuitive to users, such as zooming in on content in response to a pinching gesture and scrolling

through content in response to a flicking gesture. In fact, some gestures are so common that they

are built in to UIKit. For example, UIControlsubclasses, such as UIButton and UISlider, respond

to specific gestures—a tap for a button and a drag for a slider. When weconfigure these controls,

they send anaction message to a target object when that touch occurs. Wecan also employ the

target-action mechanism on views by using gesture recognizers. When weattach a gesture

Department of Information Technology

https://developer.apple.com/library/ios/documentation/UIKit/Reference/UISlider_Class/index.html#//apple_ref/occ/cl/UISlider
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIButton_Class/index.html#//apple_ref/occ/cl/UIButton
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIControl_Class/index.html#//apple_ref/occ/cl/UIControl

SITX 1402 – Mobile Application Development Unit – 4 Introduction to iOS

recognizer to a view, the entire view acts like a control—responding to whatever gesture

wespecify.

Gesture recognizers provide a higher-level abstraction for complex event handling logic.

Gesture recognizers are the preferred way to implement touch-event handling in our app because

gesture recognizers are powerful, reusable, and adaptable. Wecan use one of the built-in gesture

recognizers and customize its behavior. Or wecan create our own gesture recognizer to recognize

a new gesture.

 6.1 Gesture Recognizers

When iOS recognizes an event, it passes the event to the initial object that seems most

relevant for handling that event, such as the view where a touch occurred. If the initial object

cannot handle the event, iOS continues to pass the event to objects with greater scope until it

finds an object with enough context to handle the event. This sequence of objects is known as

a responder chain, and as iOS passes events along the chain, it also transfers the responsibility of

responding to the event. This design pattern makes event handling cooperative and dynamic.

6.2 Multitouch Events

Depending on our app, UIKit controls and gesture recognizers might be sufficient for all

of our app’s touch event handling. Even if our app has custom views, wecan use gesture

recognizers. As a rule of thumb, wewrite our own custom touch-event handling when our app’s

response to touch is tightly coupled with the view itself, such as drawing under a touch. In these

cases, weare responsible for the low-level event handling. Weimplement the touch methods, and

within these methods, weanalyze raw touch events and respond appropriately.

6.3 Motion Events

Motion events provide information about the device’s location, orientation, and

movement. By reacting to motion events, wecan add subtle, yet powerful features to our app.

Accelerometer and gyroscope data allow weto detect tilting, rotating, and shaking.

Motion events come in different forms, and wecan handle them using different frameworks.

When users shake the device, UIKit delivers a UIEvent object to an app. If wewant our app to

Department of Information Technology

https://developer.apple.com/library/ios/documentation/EventHandling/Conceptual/EventHandlingiPhoneOS/GestureRecognizer_basics/GestureRecognizer_basics.html#//apple_ref/doc/uid/TP40009541-CH2-SW2

SITX 1402 – Mobile Application Development Unit – 4 Introduction to iOS

receive high-rate, continuous accelerometer and gyroscope data, use the Core Motion

framework.

6.4 Remote Control Events

IOS controls and external accessories send remote control events to an app. These events

allow users to control audio and video, such as adjusting the volume through a headset. Handle

multimedia remote control events to make our app responsive to these types of commands.

The following figure shows the architecture of the main run loop and how user events result in

actions taken by our app. As the user interacts with a device, events related to those interactions

are generated by the system and delivered to the app via a special port set up by UIKit. Events

are queued internally by the app and dispatched one-by-one to the main run loop for execution.

The UIApplication object is the first object to receive the event and make the decision about

what needs to be done. A touch event is usually dispatched to the main window object, which in

turn dispatches it to the view in which the touch occurred. Other events might take slightly

different paths through various app objects.

Department of Information Technology

SITX 1402 – Mobile Application Development Unit – 4 Introduction to iOS

Figure 7 Event handling

Event Delivered to Descripton

Touch
The view object in which the

event occurred

Views are responder objects.

Any touch events not handled

by the view are forwarded

down the responder chain for

processing.

Remote control

Shake motion events
First responder object

Remote control events are for

controlling media playback

and are generated by

headphones and other

accessories.

Accelerometer

Magnetometer

Gyroscope

The object wedesignate

Events related to the

accelerometer, magnetometer,

and gyroscope hardware are

delivered to the object

wedesignate.

Location The object wedesignate

Weregister to receive location

events using the Core Location

framework.

Redraw
The view that needs the

update

Redraw events do not involve

an event object but are simply

calls to the view to draw itself.

Touch
The view object in which the

event occurred

Views are responder objects.

Any touch events not handled

by the view are forwarded

down the responder chain for

processing.

Some events, such as touch and remote control events, are handled by our

app’s responder objects. Responder objects are everywhere in our app. Most events target a

Department of Information Technology

SITX 1402 – Mobile Application Development Unit – 4 Introduction to iOS

specific responder object but can be passed to other responder objects (via the responder chain) if

needed to handle an event. For example, a view that does not handle an event can pass the event

to its superview or to a view controller.

Touch events occurring in controls (such as buttons) are handled differently than touch

events occurring in many other types of views. There are typically only a limited number of

interactions possible with a control, and so those interactions are repackaged into action

messages and delivered to an appropriate target object. Thistarget-action design pattern makes it

easy to use controls to trigger the execution of custom code in our app.

7 App Life Cycle

Apps are a sophisticated interplay between our custom code and the system frameworks. The

system frameworks provide the basic infrastructure that all apps need to run, and weprovide the

code required to customize that infrastructure and give the app the look and feel wewant. To do

that effectively, it helps to understand a little bit about the iOS infrastructure and how it works.

The system moves our app from state to state in response to actions happening

throughout the system. For example, when the user presses the Home button, a phone call comes

in, or any of several other interruptions occurs, the currently running apps change state in

response.

State Description

Not running The app has not been launched or was running but was terminated by the system.

Inactive

The app is running in the foreground but is currently not receiving events. (It may

be executing other code though.) An app usually stays in this state only briefly as it

transitions to a different state.

Active
The app is running in the foreground and is receiving events. This is the normal

mode for foreground apps.

Department of Information Technology

SITX 1402 – Mobile Application Development Unit – 4 Introduction to iOS

Background

The app is in the background and executing code. Most apps enter this state briefly

on their way to being suspended. However, an app that requests extra execution

time may remain in this state for a period of time. In addition, an app being

launched directly into the background enters this state instead of the inactive state.

Suspended

The app is in the background but is not executing code. The system moves apps to

this state automatically and does not notify them before doing so. While

suspended, an app remains in memory but does not execute any code.

When a low-memory condition occurs, the system may purge suspended apps

without notice to make more space for the foreground app.

Figure 8 App Life Cycle

Tab bar Controllers

A tab bar controller is a container view controller that weuse to divide our app into two

or more distinct modes of operation. A tab bar controller is an instance of the

UITabBarController class. The tab bar has multiple tabs, each represented by a child view

controller. Selecting a tab causes the tab bar controller to display the associated view controller’s

view on the screen. The following figure shows several modes of the Clock app along with the

relationships between the corresponding view controllers. Each mode has a content view

Department of Information Technology

SITX 1402 – Mobile Application Development Unit – 4 Introduction to iOS

controller to manage the main content area. In the case of the Clock app, the Clock and Alarm

view controllers both display a navigation-style interface to accommodate some additional

controls along the top of the screen. The other modes use content view controllers to present a

single screen.

Figure 9 Tab bar Controller

Navigation Controllers

A navigation controller presents data that is organized hierarchically and is an instance of

the UINavigationController class. The methods of this class provide support for managing a

Department of Information Technology

SITX 1402 – Mobile Application Development Unit – 4 Introduction to iOS

stack-based collection of content view controllers. This stack represents the path taken by the

user through the hierarchical data, with the bottom of the stack reflecting the starting point and

the top of the stack reflecting the user’s current position in the data.

The figure 10 shows screens from the Contacts app, which uses a navigation controller to

present contact information to the user. The navigation bar at the top of each page is owned by

the navigation controller. The rest of each screen displayed to the user is managed by a content

view controller that presents the information at that specific level of the data hierarchy. As the

user interacts with controls in the interface, those controls tell the navigation controller to display

the next view controller in the sequence or dismiss the current view controller.

8 Story Board

Department of Information Technology

SITX 1402 – Mobile Application Development Unit – 4 Introduction to iOS

A Storyboard is a visual representation of the appearance and flow of our application. When

we implement our app using storyboards, we use Interface Builder to organize our app’s view

controllers and any associated views. The following figure shows an example interface lawet

from Interface Builder. The visual lawet of Interface Builder allows weto understand the flow

through app at a glance. The resulting storyboard is stored as a file in project. When webuild our

project, the storyboards in our project are processed and copied into the app bundle, where they

are loaded by our app at runtime. The figure 11 shows the details of story board.

Figure 11 Story Board

Often, iOS can automatically instantiate the view controllers in our storyboard at the

moment they are needed. Similarly, the view hierarchy associated with each controller is

automatically loaded when it needs to be displayed. Both view controllers and views are

instantiated with the same attributes weconfigured in Interface Builder. Because most of this

Department of Information Technology

SITX 1402 – Mobile Application Development Unit – 4 Introduction to iOS

behavior is automated for we, it greatly simplifies the work required to use view controllers in

our app.

A scene represents an onscreen content area that is managed by a view controller. Wecan

think of a scene as a view controller and its associated view hierarchy.

Wecreate relationships between scenes in the same storyboard. Relationships are expressed

visually in a storyboard as a connection arrow from one scene to another. Interface Builder

usually infers the details of a new relationship automatically when wemake a connection

between two objects. Two important kinds of relationships exist:

• Containment represents a parent-child relationship between two scenes. View

controllers contained in other view controllers are instantiated when their parent controller is

instantiated. For example, the first connection from a navigation controller to another scene

defines the first view controller pushed onto the navigation stack. This controller is

automatically instantiated when the navigation controller is instantiated.

An advantage to using containment relationships in a storyboard is that Interface Builder can

adjust the appearance of the child view controller to reflect the presence of its ancestors. This

allows Interface Builder to display the content view controller as it appears in our final app.

• A segue represents a visual transition from one scene to another. At runtime, segues can

be triggered by various actions. When a segue is triggered, it causes a new view controller to

be instantiated and transitioned onscreen.

Although a segue is always from one view controller to another, sometimes a third object can

be involved in the process. This object actually triggers the segue. For example, if wemake a

connection from a button in the source view controller’s view hierarchy to the destination

view controller, when the user taps the button, the segue is triggered. When a segue is made

directly from the source view controller to the destination view controller, it usually

represents a segue weintend to trigger programatically.

Different kinds of segues provide the common transitions needed between two different view

controllers:

Department of Information Technology

SITX 1402 – Mobile Application Development Unit – 4 Introduction to iOS

• A push segue pushes the destination view controller onto a navigation controller’s

stack.

• A modal segue presents the destination view controller.

• A popover segue displays the destination view controller in a popover.

• A custom segue allows weto design our own transition to display the destination

view controller.

9 Push Notification

Apple Push Notification service (APNs) is the centerpiece of the remote notifications

feature. It is a robust and highly efficient service for propagating information to iOS (and,

indirectly, watchOS), tvOS, and OS X devices. Each device establishes an accredited and

encrypted IP connection with APNs and receives notifications over this persistent

connection. If a notification for an app arrives when that app is not running, the device alerts

the user that the app has data waiting for it.

Weprovide our own server to generate the remote notifications for our users. This server,

known as the provider, gathers data for our users and decides when a notification needs to be

sent. For each notification, the provider generates the notification payload and attaches that

payload to an HTTP/2 request, which it then sends to APNs using a persistent and secure

channel using the HTTP/2 multiplex protocol. Upon receipt of our request, APNs handles the

delivery of our notification payload to our app on the user’s device.

11.1 The Path of a Remote Notification

Apple Push Notification service transports and routes remote notifications for our apps

from our provider to each user’s device. The following figure shows the path each

notification takes. When our provider determines that a notification is needed, wesend the

notification and a device token to the APNs servers. The APNs servers handle the routing of

that notification to the correct user device, and the operating system handles the deliver of the

notification to our client app.

Department of Information Technology

SITX 1402 – Mobile Application Development Unit – 4 Introduction to iOS

Figure 12 Pushing a remote notification from a provider to a client app

The device token weprovide to the server is analogous to a phone number; it contains

information that enables APNs to locate the device on which our client app is installed. APNs

also uses it to authenticate the routing of a notification. The device token is provided to weby

our client app, which receives the token after registering itself with the remote notification

service.

The notification payload is a JSON dictionary containing the data wewant sent to the

device. The payload contains information about how wewant to notify the user, such as using

an alert, badge or sound. It can also contain custom data that wedefine.

` The following figure 13 shows a more realistic depiction of the virtual network APNs

makes possible among providers and devices. The device-facing and provider-facing sides of

APNs both have multiple points of connection; on the provider-facing side, these are called

gateways. There are typically multiple providers, each making one or more persistent and

secure connections with APNs through these gateways. And these providers are sending

notifications through APNs to many devices on which their client apps are installed.

Department of Information Technology

SITX 1402 – Mobile Application Development Unit – 4 Introduction to iOS

Figure 13 Pushing remote notifications from multiple providers to multiple devices

11.2 Quality of Service

Apple Push Notification service includes a default Quality of Service (QoS) component that

performs a store-and-forward function. If APNs attempts to deliver a notification but the

device is offline, the notification is stored for a limited period of time, and delivered to the

device when it becomes available. Only one recent notification for a particular app is stored.

If multiple notifications are sent while the device is offline, the new notification causes the

prior notification to be discarded. This behavior of keeping only the newest notification is

referred to as coalescing notifications. If the device remains offline for a long time, any

notifications that were being stored for it are discarded.

11.3 Security Architecture

To ensure secure communication, APNs regulates the entry points between providers and

devices using two different levels of trust: connection trust and token trust.

Connection trust establishes certainty that APNs is connected to an authorized provider for

whom Apple has agreed to deliver notifications. APNs also uses connection trust with the

Department of Information Technology

SITX 1402 – Mobile Application Development Unit – 4 Introduction to iOS

device to ensure the legitimacy of that device. Connection trust with the device is handled

automatically by APNs but wemust take steps to ensure connection trust exists between our

provider and APNs.

Token trust ensures that notifications are routed only between legitimate start and end points.

Token trust involves the use of a device token, which is an opaque identifier assigned to a

specific app on a specific device. Each app instance receives its unique token when it

registers with APNs and must share this token with its provider. Thereafter, the token must

accompany each notification sent by our provider. Providing the token ensures that the

notification is delivered only to the app/device combination for which it is intended.

11.4 Provider-to-APNs Connection Trust

Each provider must have a unique provider certificate and private cryptographic key,

which are used to validate the provider’s connection with APNs. The provider certificate (which

is provisioned by Apple) identifies the topics supported by the provider. (A topic is the bundle

ID associated with one of our apps.)

Our provider establishes connection trust with APNs through TLS peer-to-peer

authentication. After the TLS connection is initiated, weget the server certificate from APNs and

validate that certificate on our end. Then wesend our provider certificate to APNs, which

validates that certificate on its end. After this procedure is complete, a secure TLS connection is

established; APNs is now satisfied that the connection has been made by a legitimate provider.

12. Data Base

The database that can be used by apps in iOS (and also used by iOS) is called SQLite,

and it’s a relational database. It is contained in a C-library that is embedded to the app that is

about to use it. Note that it does not consist of a separate service or daemon running on the

background and attached to the app. On the contrary, the app runs it as an integral part of it.

Nowadays, SQLite lives its third version, so it’s also commonly referred as SQLite 3.

SQLite is not as powerful as other DMBSs, such as MySQL or SQL Server, as it does not

include all of their features. However, its greatness lies mostly to these factors:

Department of Information Technology

SITX 1402 – Mobile Application Development Unit – 4 Introduction to iOS

• It’s lightweight.

• It contains an embedded SQL engine, so almost all of our SQL knowledge can be

applied.

• It works as part of the app itself, and it doesn’t require extra active services.

• It’s very reliable.

• It’s fast.

• It’s fully supported by Apple, as it’s used in both iOS and Mac OS.

• It has continuous support by developers in the whole world and new features are always

added to it.

SQLite is an embedded implementation of SQL. SQL stands for Structured Query

Language and is a standard language to work with relational databases. SQLite can be embedded

inside any application, so there is no need for a separate process running the database instance. It

follows the principals of a Relational Database Management System (RDBMS). Inside a

RDBMS data is stored inside tables and the relationship between this data is also stored inside

tables.

A good example for this is the relationship between a person and his address. A person has

typically some properties like first name, last name, birthdate and much more. An address has

properties like street name, street number, etc... But there is also a relationship between them, a

person can have several addresses. In the database this is achieved by adding a foreign key to the

address object. This foreign key points to the primary key of the person it belongs to. This has

also as advantage that when a person is deleted a warning is given about an associated address.

So it becomes possible to also delete the address if needed.

Department of Information Technology

http://www.apptite.be/images/tutorials/sqlite/personaddressrelation.png

SITX 1402 – Mobile Application Development Unit – 4 Introduction to iOS

The Core SQLite functions

Lets first start with a list of the most used SQLite functions and describe their purpose:

• sqlite3_open(): This function creates and opens an empty database with the specified

filename argument. If the database already exists it will only open the database. Upon

return the second argument will contain a handle to the database instance.

• sqlite3_close(): This function should be used to close a previously opened SQLite

database connection. It will free all system resources associated with the database

connection.

• sqlite3_prepare_v2(): To execute an SQL statement it first needs to be compiled into

byte-code and that is exactly what this function is doing. It basically transforms an SQL

statement written in a string to an executable piece of code.

• sqlite3_step(): Calling this function will execute a previously prepared SQL statement.

• sqlite3_finalize(): This function deletes a previously prepared SQL statement from

memory.

• sqlite3_exec(): Combines the functionality of sqlite3_prepare_v2(), sqlite3_step() and

sqlite3_finalize() into a single function call.

• sqlite3_column_<type>(): This routine returns information about a single column of

the current result row of a query. Typical values for <type> are text and int. It is

important to note that the column indexes are zero based.

Setting up the project

1. Create a new project and choose Single View Application.

Department of Information Technology

SITX 1402 – Mobile Application Development Unit – 4 Introduction to iOS

2. Name the application "SQLiteTutorial" and make sure to uncheck all options.

3. Now add the SQLite framework called "libsqlite3.dylib". To do so select the SQLiteTutorial

project inside the navigation area and then select the SQLiteTutorial target inside the editor area.

Scroll to the section called "Linked Frameworks and Libraries" and click the add button. Filter

Department of Information Technology

http://www.apptite.be/images/tutorials/sqlite/singleview.png
http://www.apptite.be/images/tutorials/sqlite/projectname.png

SITX 1402 – Mobile Application Development Unit – 4 Introduction to iOS

the frameworks by typing "sqlite". Select "libsqlite3.dylib" and press add. Wewill also notice a

framework called "ibsqlite3.0.dylib" this is the physical library, "ibsqlite3.dylib" is just a

symbolic link to the latest version.

4. Add a new file to the project. Choose the Cocoa Touch Objective-C template and call this new

file "DataController".

5. Open the header file "DataController.h" and add an import for "sqlite3.h" and a data member

to store a handle to the database:

1. #import <Foundation/Foundation.h>

2. #import <sqlite3.h>

3.

4. @interface DataController : NSObject

5. {

Department of Information Technology

http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSObject_Class/
http://www.apptite.be/images/tutorials/sqlite/adddylib.png

SITX 1402 – Mobile Application Development Unit – 4 Introduction to iOS

6. sqlite3 *databaseHandle;

7. }

8.

9. -(void)initDatabase;

10.

11. @end

6. Now it is time to start adding some entities. Again choose for the Cocoa Touch Objective-C

template and call the first entity Address. The Address entity will be holding a street name and a

street number.

1. #import <Foundation/Foundation.h>

2. @interface Address : NSObject

3. {

4. NSString *streetName;

5. NSNumber *streetNumber;

6. }

7.

8. @property (nonatomic,

retain) NSString* streetName;

9. @property (nonatomic,

retain) NSNumber* streetNumber;

10.

11. -(id)initWithStreetName:(NSString*)aStreetName

12. andStreetNumber:(NSNumber*)streetNumber;

13.

14. @end

1. #import "Address.h"

Department of Information Technology

http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSNumber_Class/
http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSString_Class/
http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSNumber_Class/
http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSString_Class/
http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSNumber_Class/
http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSString_Class/
http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSObject_Class/

SITX 1402 – Mobile Application Development Unit – 4 Introduction to iOS

2.

3. @implementation Address

4.

5. @synthesize streetName;

6. @synthesize streetNumber;

7.

8. // Custom initializer

9. -(id)initWithStreetName:(NSString*)aStreetName

10. andStreetNumber:(NSNumber*)aStreetNumber

11. {

12. self = [super init];

13. if(self) {

14. self.streetName = aStreetName;

15. self.streetNumber = aStreetNumber;

16. }

17. return self;

18. }

19.

20. // Cleanup all contained properties

21. - (void)dealloc {

22. [self.streetName release];

23. [self.streetNumber release];

24. [super dealloc];

25. }

26.

27. @end

Department of Information Technology

http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSNumber_Class/
http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSString_Class/

SITX 1402 – Mobile Application Development Unit – 4 Introduction to iOS

7. The next entity to add will be the Person entity. It will contain a first name, last name and

birthday. The Person class will also contain an Address object, this will be reflected in the

SQLite database by using a foreign key inside the address table, but that will become more clear

when creating the database. Again a custom initializer was added for convenience and a dealloc

method will clean up the object:

1. #import <Foundation/Foundation.h>

2. #import "Address.h"

3. @interface Person : NSObject

4. {

5. NSString *firstName;

6. NSString *lastName;

7. NSDate *birthday;

8. Address *address;

9. }

10.

11. @property (nonatomic, retain) NSString* firstName;

12. @property (nonatomic, retain) NSString* lastName;

13. @property (nonatomic, retain) NSDate* birthday;

14. @property (nonatomic, retain) Address* address;

15.

16. -(id)initWithFirstName:(NSString*)aFirstName

17. andLastName:(NSString*)aLastName

18. andBirthday:(NSDate*)aBirthday

19. andAddress:(Address*)anAddress;

20.

21. @end

Department of Information Technology

http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSDate_Class/
http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSString_Class/
http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSString_Class/
http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSDate_Class/
http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSString_Class/
http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSString_Class/
http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSDate_Class/
http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSString_Class/
http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSString_Class/
http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSObject_Class/

SITX 1402 – Mobile Application Development Unit – 4 Introduction to iOS

1. #import "Person.h"

2.

3. @implementation Person

4.

5. @synthesize firstName;

6. @synthesize lastName;

7. @synthesize birthday;

8. @synthesize address;

9.

10. // Custom initializer

11. -(id)initWithFirstName:(NSString*)aFirstName

12. andLastName:(NSString*)aLastName

13. andBirthday:(NSDate*)aBirthday

14. andAddress:(Address*)anAddress

15. {

16. self = [super init];

17. if(self) {

18. self.firstName = aFirstName;

19. self.lastName = aLastName;

20. self.birthday = aBirthday;

21. self.address = anAddress;

22. }

23. return self;

24. }

25.

26. // Cleanup all contained objects

27. - (void)dealloc {

Department of Information Technology

http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSDate_Class/
http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSString_Class/
http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSString_Class/

SITX 1402 – Mobile Application Development Unit – 4 Introduction to iOS

28. [self.firstName release];

29. [self.lastName release];

30. [self.birthday release];

31. [self.address release];

32. [super dealloc];

33. }

34.

35. @end

Now that are basic building blocks are in-place it is time to start working with the SQLite

database.

Creating an SQLite database

The SQLite database for this sample application will be stored inside the Documents folder of

the application sandbox and will be called "sqlite.db". To do this add the method "initDatabase"

to the DataController.

1. // Method to open a database, the database will be created if it doesn't exist

2. -(void)initDatabase

3. {

4. // Create a string containing the full path to the sqlite.db inside the documents folder

5. NSArray *paths = NSSearchPathForDirectoriesInDomains(NSDocumentDirectory,

NSUserDomainMask,YES);

6. NSString *documentsDirectory = [paths objectAtIndex:0];

7. NSString *databasePath = [documentsDirectory

stringByAppendingPathComponent:@"sqlite.db"];

8.

9. // Check to see if the database file already exists

Department of Information Technology

http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSString_Class/
http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSString_Class/
http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSArray_Class/

SITX 1402 – Mobile Application Development Unit – 4 Introduction to iOS

10. bool

databaseAlreadyExists = [[NSFileManager defaultManager] fileExistsAtPath:databasePat

h];

11.

12. // Open the database and store the handle as a data member

13. if (sqlite3_open([databasePath UTF8String], &databaseHandle) == SQLITE_OK)

14. {

15. // Create the database if it doesn't yet exists in the file system

16. if (!databaseAlreadyExists)

17. {

18. // Create the PERSON table

19. const char *sqlStatement = "CREATE TABLE IF NOT EXISTS PERSON (ID

INTEGER PRIMARY KEY AUTOINCREMENT, FIRSTNAME TEXT, LASTNAME

TEXT, BIRTHDAY DATE)";

20. char *error;

21. if (sqlite3_exec(databaseHandle,

sqlStatement, NULL, NULL, &error) == SQLITE_OK)

22. {

23. // Create the ADDRESS table with foreign key to the PERSON table

24. sqlStatement = "CREATE TABLE IF NOT EXISTS ADDRESS (ID INTEGER

PRIMARY KEY AUTOINCREMENT, STREETNAME TEXT, STREETNUMBER

INT, PERSONID INT, FOREIGN KEY(PERSONID) REFERENCES PERSON(ID))";

25. if (sqlite3_exec(databaseHandle,

sqlStatement, NULL, NULL, &error) == SQLITE_OK)

26. {

27. NSLog(@"Database and tables created.");

28. }

29. else

Department of Information Technology

http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSFileManager_Class/

SITX 1402 – Mobile Application Development Unit – 4 Introduction to iOS

30. {

31. NSLog(@"Error: %s", error);

32. }

33. }

34. else

35. {

36. NSLog(@"Error: %s", error);

37. }

38. }

39. }

40. }

Lets highlight some points inside this method:

1. A full path is created that points to sqlite.db inside the documents folder of the

application. In case when running inside the simulator this will be inside the

folder ~Library/Application Support/iPhone Simulator

2. Check if the database file already exists inside the file system.

3. Open a connection to the database and store the databaseHandle for later use.

4. If the database did not exist inside the file system then the tables will be created.

5. The table PERSON is created with a auto-incrementing primary key.

6. The table ADDRESS is also created with an auto-incrementing primary key and a foreign

key constraint set to the ID of the PERSON table and will be called PERSONID.

It is also important to close the database connection once the DataController gets released. To do

this simply override the "dealloc" method of the class DataController:

1. // Close the database connection when the DataController is disposed

2. - (void)dealloc {

3. sqlite3_close(databaseHandle);

Department of Information Technology

SITX 1402 – Mobile Application Development Unit – 4 Introduction to iOS

4. [super dealloc];

5. }

To verify this piece of code update the method "viewDidLoad" from the file "ViewController.m"

so that it looks like:

1. - (void)viewDidLoad

2. {

3. [super viewDidLoad];

4.

5. // Create datacontroller and initialize database

6. DataController *dataController = [[DataController alloc]init];

7. [dataController initDatabase];

8. [dataController release];

9. }

There is also an easy trick to verify if the database was correctly created. Open the terminal and

launch sqlite3 with the full path to the "sqlite.db". Once sqlite3 is started execute the command

.schema and see the tables and their columns:

Last login: Fri Feb 10 19:34:52 on ttys001

Blackwing:~ lucwollants$ sqlite3 /Users/lucwollants/Library/Application\ Support/iPhone\

Simulator/5.0/Applications/D2BC14F2-F260-40C8-A57D-D6A7F337B612/Documents/sqlite.db

SQLite version 3.7.5

Enter ".help" for instructions

Enter SQL statements terminated with a ";"

sqlite> .schema

Department of Information Technology

SITX 1402 – Mobile Application Development Unit – 4 Introduction to iOS

CREATE TABLE ADDRESS (ID INTEGER PRIMARY KEY AUTOINCREMENT,

STREETNAME TEXT, STREETNUMBER INT, PERSONID INT, FOREIGN

KEY(PERSONID) REFERENCES PERSON(ID));

CREATE TABLE PERSON (ID INTEGER PRIMARY KEY AUTOINCREMENT,

FIRSTNAME TEXT, LASTNAME TEXT, BIRTHDAY DATE);

sqlite>

Storing values inside the SQLite database

Next part to implement is a method to insert a Person and his associated Address inside the

database. To do so a new method called "insertPerson" needs to be created inside the

DataController:

1. // Method to store a person and his associated address

2. -(void)insertPerson:(Person*)person

3. {

4. // Create insert statement for the person

5. NSString *insertStatement = [NSString stringWithFormat:@"INSERT INTO

PERSON (FIRSTNAME, LASTNAME, BIRTHDAY) VALUES

(\"%@\", \"%@\", \"%@\")", person.firstName, person.lastName, person.birthday];

6.

7. char *error;

8. if (sqlite3_exec(databaseHandle, [insertStatement

UTF8String], NULL, NULL, &error) ==SQLITE_OK)

9. {

10. int personID = sqlite3_last_insert_rowid(databaseHandle);

11.

12. // Create insert statement for the address

13. insertStatement = [NSString stringWithFormat:@"INSERT INTO ADDRESS

(STREETNAME, STREETNUMBER, PERSONID) VALUES

Department of Information Technology

http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSString_Class/
http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSString_Class/
http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSString_Class/

SITX 1402 – Mobile Application Development Unit – 4 Introduction to iOS

(\"%@\", \"%@\", \"%d\")", person.address.streetName, person.address.streetNumber,

personID];

14. if (sqlite3_exec(databaseHandle, [insertStatement

UTF8String], NULL, NULL, &error) ==SQLITE_OK)

15. {

16. NSLog(@"Person inserted.");

17. }

18. else

19. {

20. NSLog(@"Error: %s", error);

21. }

22. }

23. else

24. {

25. NSLog(@"Error: %s", error);

26. }

27. }

Lets discuss the previous code snippet:

1. Create an insert statement for the person object.

2. Execute the insert statement for the person by calling "sqlite3_exec".

3. Get the ID of the last inserted row by calling "sqlite3_last_insert_rowid". This ID needs

to be pasted as the foreign key for the address object.

4. Create the insert statement for the address object. Note that the foreign key is also passed

in.

5. Execute the insert statement for the address by calling "sqlite3_exec".

Again it is possible to test the new code by updating the method "viewDidLoad":

Department of Information Technology

SITX 1402 – Mobile Application Development Unit – 4 Introduction to iOS

1. // Create address and person objects

2. Address *address = [[Address alloc]initWithStreetName:@"Infinite

Loop" andStreetNumber:[NSNumbernumberWithInt:1]];

3. NSDateFormatter *dateFormatter = [[NSDateFormatter alloc] init];

4. [dateFormatter setDateFormat:@"yyyy-MM-dd"];

5. NSDate *birthday = [dateFormatter dateFromString: @"1955-02-24"];

6. Person *person = [[Person

alloc]initWithFirstName:@"Steve" andLastName:@"Jobs"andBirthday:birthday

andAddress:address];

7.

8. // Insert the person

9. [dataController insertPerson:person];

10.

11. // Cleanup

12. [dateFormatter release];

13. [address release];

14. [person release];

15. [DataController release];

Testing the result of this action can be done again from the command line with sqlite3 Terminal

command:

Enter SQL statements terminated with a ";"

sqlite> SELECT * FROM ADDRESS;

1|Infinite Loop|1|

sqlite> SELECT * FROM PERSON;

1|Steve|Jobs|1955-02-23 23:00:00 +0000

Department of Information Technology

http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSDate_Class/
http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSDateFormatter_Class/
http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSDateFormatter_Class/
http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSNumber_Class/

SITX 1402 – Mobile Application Development Unit – 4 Introduction to iOS

Retrieving values from the SQLite database

Now it is time to programmatically retrieve values from the database. This can be done by

using the "sqlite3_step" function. The DataController implementation file needs to be updated

with a method called "getAddressByPersonID" and "getPersons". The method

"getAddressByPersonID" is a helper method to get an address associated with a person. The

method "getPersons" returns an array of all persons inside the database.

1. // Get an array of all persons stored inside the database

2. -(NSArray*)getPersons

3. {

4. // Allocate a persons array

5. NSMutableArray *persons = [[NSMutableArray alloc]init];

6.

7. // Create the query statement to get all persons

8. NSString *queryStatement = [NSString stringWithFormat:@"SELECT ID,

FIRSTNAME, LASTNAME, BIRTHDAY FROM PERSON"];

9.

10. // Prepare the query for execution

11. sqlite3_stmt *statement;

12. if (sqlite3_prepare_v2(databaseHandle, [queryStatement UTF8String], -

1, &statement, NULL) ==SQLITE_OK)

13. {

14. // Iterate over all returned rows

15. while (sqlite3_step(statement) == SQLITE_ROW) {

16.

17. // Get associated address of the current person row

18. int personID = sqlite3_column_int(statement, 0);

19. Address *address = [self getAddressByPersonID:personID];

Department of Information Technology

http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSString_Class/
http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSString_Class/
http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSMutableArray_Class/
http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSMutableArray_Class/
http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSArray_Class/

SITX 1402 – Mobile Application Development Unit – 4 Introduction to iOS

20.

21. // Convert the birthday column to an NSDate

22. NSDateFormatter *dateFormatter = [[NSDateFormatter alloc]init];

23. dateFormatter.dateFormat = @"yyyy-MM-dd HH:mm:ss Z";

24. NSString *birthdayAsString = [NSString stringWithUTF8String:

(char*)sqlite3_column_text(statement, 3)];

25. NSDate *birthday = [dateFormatter dateFromString: birthdayAsString];

26. [dateFormatter release];

27.

28. // Create a new person and add it to the array

29. Person *person = [[Person alloc]initWithFirstName:

[NSString stringWithUTF8String:(char*)sqlite3_column_text(statement, 1)]

30. andLastName:[NSString stringWithUTF8String:

(char*)sqlite3_column_text(statement, 2)]

31. andBirthday:birthday

32. andAddress:address];

33. [persons addObject:person];

34.

35. // Release the person because the array takes ownership

36. [person release];

37. }

38. sqlite3_finalize(statement);

39. }

40. // Return the persons array an mark for autorelease

41. return [persons autorelease];

42. }

Department of Information Technology

http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSString_Class/
http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSString_Class/
http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSDate_Class/
http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSString_Class/
http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSString_Class/
http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSDateFormatter_Class/
http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSDateFormatter_Class/

SITX 1402 – Mobile Application Development Unit – 4 Introduction to iOS

12. Debug and deploy application

1. Join the Apple iOS Developer Program.

Wecan log in using our existing Apple ID or create an Apple ID. The Apple Developer

Registration guides wethrough the necessary steps.

2. Register the Unique Device Identifier (UDID) of the device.

This step is applicable only if weare deploying our application to an iOS device and not the

Apple App Store. If wewant to deploy our application on several iOS devices, register the

UDID of each device.

3. Obtain the UDID of our iOS device

• Connect the iOS device to our development computer and launch iTunes. The

connected iOS device appears under the Devices section in iTunes.

• Click the device name to display a summary of the iOS device.

• In the Summary tab, click Serial Number to display the 40-character UDID of

the iOS device.

4. Register the UDID of our device

• Log in to the iOS Provisioning Portal using our Apple ID and register the device’s

UDID.

• Generate a Certificate Signing Request (CSR) file (*.certSigningRequest).We generate

a CSR to obtain a iOS developer/distribution certificate. We can generate a CSR by using

Keychain Access on Mac or Open SSL on Windows. When we generate a CSR we only

provide our user name and email address; we don’t provide any information about our

application or device.

• Generating a CSR creates a public key and a private key as well as a *.cert Signing

Request file. The public key is included in the CSR, and the private key is used to sign the

request. For more information on generating a CSR, see Generating a certificate signing

request. Generate an iOS developer certificate or an iOS distribution certificate (*.cer), as

required.

Department of Information Technology

http://www.adobe.com/go/learn_ioscsr_en
http://www.adobe.com/go/learn_ioscsr_en
http://developer.apple.com/devcenter/ios
http://developer.apple.com/programs/register/

SITX 1402 – Mobile Application Development Unit – 4 Introduction to iOS

5. Generate an iOS developer certificate

 Log in to the iOS Provisioning Portal using our Apple ID, and select the Development

tab.

• Click Request Certificate and browse to the CSR file that wegenerated and

saved on our computer (step 3).

• Select the CSR file and click Submit.

• On the Certificates page, click Download.

• Save the downloaded file (*.developer_identity.cer).

6. Generate an iOS distribution certificate

• Log in to the iOS Provisioning Portal using our Apple ID, and select the

Distribution tab

• Click Request Certificate and browse to the CSR file that wegenerated and

saved on our computer (step 3).

• Select the CSR file and click Submit.

• On the Certificates page, click Download.

• Save the downloaded file (*.distribution_identity.cer).

1 Convert the iOS developer certificate or the iOS distribution certificate to a P12 file

format (*.p12).

6. Generate the Application ID by following these steps:

• Log in to the iOS Provisioning Portal using our Apple ID.

• Go to the App IDs page, and click New App ID.

• In the Manage tab, enter a description for our application, generate a new

Bundle Seed ID, and enter a Bundle Identifier.

• Every application has a unique Application ID, which wespecify in the

application descriptor XML file. An Application ID consists of a ten-character "Bundle Seed

ID" that Apple provides and a "Bundle Identifier" suffix that wespecify. The Bundle Identifier

wespecify must match the application ID in the application descriptor file. For example, if our

Department of Information Technology

http://developer.apple.com/devcenter/ios
http://developer.apple.com/devcenter/ios
http://developer.apple.com/devcenter/ios

SITX 1402 – Mobile Application Development Unit – 4 Introduction to iOS

Application ID is com.myDomain.*, the ID in the application descriptor file must start with

com.myDomain.

• Generate a Developer Provisioning Profile file or a Distribution Provisioning

Profile File (*.mobileprovision).

7. Generate a Developer Provisioning Profile

• Log in to the iOS Provisioning Portal using our Apple ID.

• Go to Certificate > Provisioning, and click New Profile.

• Enter a profile name, select the iOS developer certificate, the App ID, and the UDIDs

on which wewant to install the application.

• Click Submit.

• Download the generated Developer Provisioning Profile file (*.mobileprovision)and

save it on our computer.

8. Generate a Distribution Provisioning Profile

• Log in to the iOS Provisioning Portal using our Apple ID.

• Go to Certificate > Provisioning, and click New Profile.

• Enter a profile name, select the iOS distribution certificate and the App ID. If

wewant to test the application before deployment, specify the UDIDs of the devices on which

wewant to test.

• Click Submit.

• Download the generated Provisioning Profile file (*.mobileprovision)and save

it on our computer.

Files to select when wetest, debug, or install an iOS application

To run, debug, or install an application for testing on an iOS device, weselect the following files

in the Run/Debug Configurations dialog box:

 iOS developer certificate in P12 format (step 5)

 Application descriptor XML file that contains the Application ID (step 6)

Department of Information Technology

http://developer.apple.com/devcenter/ios
http://developer.apple.com/devcenter/ios

SITX 1402 – Mobile Application Development Unit – 4 Introduction to iOS

 Developer Provisioning Profile (step 7)

For more information, see Debug an application on an Apple iOS deviceand Install an

application on an Apple iOS device.

Files to select when wedeploy an application to the Apple App Store

To deploy an application to the Apple App Store, select the Package Type in the Export Release

Build dialog box as Final Release Package For Apple App Store, and select the following files:

 iOS distribution certificate in P12 format (step 5)

 Application descriptor XML file that contains the Application ID (step 6).

Note: Wecan’t use a wildcard Application ID while submitting an application to the Apple

App Store.

 Distribution Provisioning Profile

14 Publishing App in App Store

The App Store review process is a black box for the most part, that doesn't mean that

wecan't prepare ourself and our application for Apple's review process. Apple provides

guidelines to help westay within the sometimes invisible boundaries of what is and isn't allowed

in the App Store.

14.1 Testing

An application isn't necessarily ready when we've written the last line of code or

implemented the final feature of the application's specification.The family of iOS devices has

grown substantially over the past years and it is important to test our application on as many iOS

devices as wecan lay our hands on. The iOS Simulator is a great tool, but it runs on our Mac,

which has more memory and processing power than the phone in our pocket. Apple's Review

Process isn't airtight, but it is very capable of identifying problems that might affect our

application's user experience. If our application crashes from time to time or it becomes slow

after ten minutes of use, then wehave some work to do before submitting it to the App Store.

Even if Apple's review team doesn't spot the problem, our users will. If the people using our

Department of Information Technology

http://help.adobe.com/en_US/flashbuilder/using/WSe4e4b720da9dedb5-708ff844136ba66f601-7ff4.html
http://help.adobe.com/en_US/flashbuilder/using/WSe4e4b720da9dedb5-708ff844136ba66f601-7ff4.html
http://help.adobe.com/en_US/flashbuilder/using/WSe4e4b720da9dedb5-708ff844136ba66f601-7ff6.html

SITX 1402 – Mobile Application Development Unit – 4 Introduction to iOS

application are not pleased, they will leave bad reviews on the App Store, which may harm sales

or inhibit downloads.

14.2 Rules and Guidelines

Our application ...

• doesn't crash.

• shouldn't use private API's.

• shouldn't replicate the functionality of native applications.

• should use In App Purchase for in-app (financial) transactions.

• shouldn't use the camera or microphone without the user's knowledge.

• only uses artwork that we have the copyright of or we have permission to use.

14.2.1 App ID

Every application needs an App ID or application identifier. There are two types of

application identifiers, (1) an explicit App ID and (2) a wildcard App ID. A wildcard App ID

can be used for building and installing multiple applications. Despite the convenience of a

wildcard App ID, an explicit App ID is required if our application uses iCloud or makes use of

other iOS features, such as Game Center, Apple Push Notifications, or In App Purchase.

14.2.2 Distribution Certificate

To submit an application to the App Store, we need to create an iOS provisioning profile

for distribution. To create such a provisioning profile, we first need to create a distribution

certificate. The process for creating a distribution certificate is very similar to creating a

development certificate. If we have tested our application on a physical device, then we are

probably already familiar with the creation of a development certificate.

14.2.3 Provisioning Profile

Once we've created an App ID and a distribution certificate, we can create an iOS

provisioning profile for distributing our application through the App Store. Keep in mind that we

cannot use the same provisioning profile that we use for ad hoc distribution. We need to create a

Department of Information Technology

SITX 1402 – Mobile Application Development Unit – 4 Introduction to iOS

separate provisioning profile for App Store distribution. If we use a wildcard App ID for our

project, then we can use the same provisioning profile for multiple applications.

14.2.4 Build Settings

With the App ID, distribution certificate, and provisioning profile in place, it is time to

configure our target's build settings in Xcode. This means selecting the target from the list of

targets in Xcode's Project Navigator, opening the Build Settings tab at the top, and updating

the settings in the Code Signing section to match the distribution provisioning profile we created

earlier. Newly added provisioning profiles are sometimes not immediately visible in the Code

Signing section of the build settings. Quitting and relaunching Xcode remedies this issue.

14.2.5 Deployment Target

Each target in an Xcode project, has a deployment target, which indicates the minimum

version of the operating system that the application can run on. It is up to we to set the

deployment target, but keep in mind that modifying the deployment target is not something we

can do without consequences once our application is in the App Store. If we increase the

deployment target for an update of our application, then users who already purchased our

application but don't meet the new deployment target, cannot run the update.

14.3 Assets

14.3.1 Icons

 We need to make sure that our application ships with the correct sizes of the artwork.

• iTunes Artwork: 1024px x 1024px (required)

• iPad/iPad Mini: 72px x 72px and 114px x 114px (required)

• iPhone/iPod Touch: 57px x 57px and 114px x 114px (required)

• Search Icon: 29px x 29px and 58px x 58px (optional)

• Settings Application: 50px x 50px and 100px x 100px (optional)

Department of Information Technology

SITX 1402 – Mobile Application Development Unit – 4 Introduction to iOS

14.3.2 Screenshots

Each application can have up to five screenshots and wemust provide at least one. If we

are developing a universal application, then weneed to provide separate screenshots for

iPhone/iPod Touch and iPad/iPad Mini. In addition, wecan optionally include separate

screenshots for the 3.5" and the 4" screen sizes of the iPhone/iPod Touch. This is quite a bit of

work and we want to make sure that the screenshots show our application from its best side.

14.3.3 Metadata

Before we submit our application, it is a good idea to have our application's metadata at hand.

This includes (1) our application's name, (2) the version number, (3) the primary (and an optional

secondary) category, (4) a concise description, (5) keywords, and (6) a support URL.

14.4. Submission Preparation

1. The submission process has become much easier since the release of Xcode 4. We can

now validate and submit an application using Xcode, for example. First, however, we

need to create our application in iTunes Connect.

2. The App Name, which needs to be unique, is the name of our application as it will

appear in the App Store. This can be different than the name that is displayed below our

application icon on the home screen, but it is recommended to choose the same name.

3. The SKU Number is a unique string that identifies our application. I usually use the

application's bundle identifier. The last piece of information is the Bundle IDof our

application. This means selecting the (wildcard or explicit) App ID that wecreated earlier

from the drop down menu.

4. Specifying Price and Availability

Department of Information Technology

SITX 1402 – Mobile Application Development Unit – 4 Introduction to iOS

5. Once our application's metadata is submitted, we will be presented with a summary of

our application. Under Versions, we should see the version that we submitted a moment

ago.

6. To submit our application, we need to create an archive of our application. We can only

create an archive by building our application on a physical device.. Select the archive

from the list and click the Distribute button on the right. From the options we are

presented with, select Submit to the iOS App Store. After entering our iOS developer

account credentials and selecting the Application and Code Signing Identity, the

application binary is uploaded to Apple's servers. During this process, our application is

also validated. If an error occurs during the validation, the submission process will fail.

The validation process is very useful as it will tell we if there is something wrong with

our application binary that would otherwise result in a rejection by the App Store review

team.

Department of Information Technology

	iOS - Xcode Installation
	Interface Builder
	Step 9: Coding the Hello World Button
	Step 11: Connecting Hello World Button with the Action
	Step 12: Test Our App
	Tab bar Controllers
	Navigation Controllers

	11.1 The Path of a Remote Notification
	Figure 13 Pushing remote notifications from multiple providers to multiple devices
	11.2 Quality of Service
	11.3 Security Architecture
	11.4 Provider-to-APNs Connection Trust

	The Core SQLite functions
	Setting up the project
	Creating an SQLite database
	Storing values inside the SQLite database
	Retrieving values from the SQLite database
	Files to select when wetest, debug, or install an iOS application
	Files to select when wedeploy an application to the Apple App Store
	14.2 Rules and Guidelines
	14.2.1 App ID
	14.2.2 Distribution Certificate
	14.2.3 Provisioning Profile
	14.2.4 Build Settings
	14.2.5 Deployment Target

	14.3 Assets
	14.3.1 Icons
	14.3.2 Screenshots
	14.3.3 Metadata

