
Unit – III – Objective C

Unit – III Objective-C Programming
1. Introduction to Objective-C

2. Data Types and Expressions

3. Decision Making and Looping

4. Objects and Classes

5. Property

6. Messaging

7. Category

8. Extensions

9. Fast Enumeration – NSArray and NSDictionary

10. Methods and Selectors

11. Static and Dynamic Objects

12. Exception Handling

13. Memory Management

14. Required Tools – Xcode, iOS Simulator,

Instruments, ARC and Frameworks
2 SIT1402 - Mobile Application Development

1. Introduction

• Objective-C is a general-purpose, object-oriented

programming language that adds Smalltalk-style

messaging to the C programming language.

• This is the main programming language used by

Apple for the OS X and iOS operating systems and

their respective APIs, Cocoa and Cocoa Touch.

• Initially, Objective-C was developed by NeXT for

its NeXTSTEP OS from whom it was taken over by

Apple for its iOS and Mac OS X.

3 SIT1402 - Mobile Application Development

1.1 Objective-C Program Structure

• Preprocessor Commands

• Interface

• Implementation

• Method

• Variables

• Statements & Expressions

• Comments

4 SIT1402 - Mobile Application Development

Example

#import <Foundation/Foundation.h>

@interface SampleClass:NSObject

- (void)sampleMethod;

@end

@implementation SampleClass

- (void)sampleMethod {

 NSLog(@"Hello, World! \n");

}

@end

5 SIT1402 - Mobile Application Development

Eǆaŵple ;ĐoŶ…Ϳ

int main() {

 /* my first program in Objective-C */

 SampleClass *sampleClass = [[SampleClass

alloc]init];

 [sampleClass sampleMethod];

 return 0;

}

6 SIT1402 - Mobile Application Development

1.2 Various parts of the program

• The first line of the program #import
<Foundation/Foundation.h> is a preprocessor
command, which tells a Objective-C compiler to
include Foundation.h file before going to actual
compilation.

• The next line @interface SampleClass:NSObject shows
how to create an interface. It inherits NSObject, which
is the base class of all objects.

• The next line - (void)sampleMethod; shows how to
declare a method.

• The next line @end marks the end of an interface.

7 SIT1402 - Mobile Application Development

Various parts of the prograŵ ;ĐoŶ…Ϳ

• The next line @implementation
SampleClass shows how to implement the
interface SampleClass.

• The next line - (void)sampleMethod{} shows
the implementation of the sampleMethod.

• The next line @end marks the end of an
implementation.

• The next line int main() is the main function
where program execution begins.

8 SIT1402 - Mobile Application Development

Various parts of the prograŵ ;ĐoŶ…Ϳ

• The next line /*...*/ will be ignored by the
compiler and it has been put to add additional
comments in the program. So such lines are
called comments in the program.

• The next line NSLog(...) is another function
available in Objective-C which causes the
message "Hello, World!" to be displayed on the
screen.

• The next line return 0; terminates main() function
and returns the value 0.

9 SIT1402 - Mobile Application Development

1.3 Token

• A Objective-C program consists of various

tokens and a token is either,

– a keyword

– an identifier

– a constant

– a string literal, or a symbol.

• The semicolon is a statement terminator.

10 SIT1402 - Mobile Application Development

TokeŶ ;ĐoŶ…Ϳ
NSLog(@"Hello, World! \n");

(or)

NSLog

(

@

"Hello, World! \n"

)

;

11 SIT1402 - Mobile Application Development

2. Data types classified

• Basic Types
– They are arithmetic types and consist of the two types: (a)

integer types and (b) floating-point types.

• Enumerated types
– They are again arithmetic types and they are used to

define variables that can only be assigned certain discrete
integer values throughout the program.

• The void type
– The type specifier void indicates that no value is available.

• Derived types
– They include (a) Pointer types, (b) Array types, (c)

Structure types, (d) Union types and (e) Function types.

12 SIT1402 - Mobile Application Development

2.1 Data types

• Integer Types

– char - 1 byte

– unsigned char - 1 byte

– signed char - 1 byte

– int - 2 or 4 bytes

– unsigned int - 2 or 4 bytes

– short - 2 bytes

– unsigned short - 2 bytes

– long - 4 bytes

– unsigned long - 4 bytes

13 SIT1402 - Mobile Application Development

Data tǇpes ;ĐoŶ…Ϳ

• Floating-Point Types

– float - 4 byte

– double - 8 byte

– long double - 10 byte

• The void Type

– Function returns as void

– Function arguments as void

14 SIT1402 - Mobile Application Development

2.2 Variables

• A variable is nothing but a name given to a

storage area that our programs can manipulate.

• Each variable in Objective-C has a specific type,

which determines the size and layout of the

variable's memory,

– the range of values that can be stored within that

memory

– the set of operations that can be applied to the

variable.

15 SIT1402 - Mobile Application Development

2.3 Basic variable types

• char

– Typically a single octet (one byte). This is an integer type.

• int

– The most natural size of integer for the machine.

• float

– A single-precision floating point value.

• double

– A double-precision floating point value.

• void

– Represents the absence of type.

16 SIT1402 - Mobile Application Development

Example

#import <Foundation/Foundation.h>

// Variable declaration:

extern int a, b;

extern int c;

extern float f;

17 SIT1402 - Mobile Application Development

Eǆaŵple ;ĐoŶ…Ϳ
int main () {

 /* variable definition: */

 int a, b; int c; float f;

 /* actual initialization */

 a = 10; b = 20; c = a + b;

 NSLog(@"value of c : %d \n", c);

 f = 70.0/3.0;

 NSLog(@"value of f : %f \n", f);

 return 0;

}

18 SIT1402 - Mobile Application Development

2.4 Constants

• The constants refer to fixed values that the
program may not alter during its execution.

• Constants can be of any of the basic data
types like

– integer constant

– floating constant

– character constant

– string literal

– enumeration constant

19 SIT1402 - Mobile Application Development

2.5 Operators

• Arithmetic Operators

• Relational Operators

• Logical Operators

• Bitwise Operators

• Assignment Operators

• Misc Operators
– sizeof()

– & operator

– * operator

– ?: operator

20 SIT1402 - Mobile Application Development

3 Decision Making - Branching

• Decision making structures require that the

programmer specify one or more conditions

to be evaluated or tested by the program,

along with a statement or statements to be

executed if the condition is determined to be

true, and optionally, other statements to be

executed if the condition is determined to be

false.

21 SIT1402 - Mobile Application Development

Diagram

22 SIT1402 - Mobile Application Development

3.1 Types of decision making

statements

• If statement

 if(boolean_expression) {

 /* statement(s) will execute if the boolean expression is true */

}

• If else statement

if(boolean_expression) {

 /* statement(s) will execute if the boolean expression is true */

}

else {

 /* statement(s) will execute if the boolean expression is false */

}
23 SIT1402 - Mobile Application Development

BraŶĐhiŶg ;ĐoŶ…Ϳ

• Nested if statement

if(boolean_expression 1) {

 /* Executes when the boolean expression 1 is
true */

 if(boolean_expression 2) {

 /* Executes when the boolean expression 2 is
true */

}

}

24 SIT1402 - Mobile Application Development

BraŶĐhiŶg ;ĐoŶ…Ϳ
• Switch statement

switch(expression){

 case constant-expression :

 statement(s);

 break;

 /* you can have any number of case statements */

 default :

 /* optional */

 statement(s);

 break;

}

25 SIT1402 - Mobile Application Development

3.2 Decision making - Looping

• A looping statement allows us to execute a

statement or group of statements multiple

times.

26 SIT1402 - Mobile Application Development

Looping statement

• While loop

 while(condition) {

 statement(s);

 }

• For loop

 for (init; condition;
increment) {

 statement(s);

}

• Do while loop

 do {

 statement(s);

 }while(condition);

27 SIT1402 - Mobile Application Development

4. Classes & Objects

• The main purpose of Objective-C programming

language is to add object orientation to the C

programming language.

• Classes are the central feature of Objective-C that

support object-oriented programming and are often

called user-defined types.

• A class is used to specify the form of an object and it

combines data representation and methods for

manipulating that data into one neat package.

• The data and methods within a class are called

members of the class.
28 SIT1402 - Mobile Application Development

4.1 Objective-C characteristics

• The class is defined in two different sections

namely @interface and @implementation.

• Almost everything is in form of objects.

• Objects receive messages and objects are often

referred as receivers.

• Objects contain instance variables.

• Objects and instance variables have scope.

• Classes hide an object's implementation.

• Properties are used to provide access to class

instance variables in other classes.
29 SIT1402 - Mobile Application Development

4.2 Class Definitions

• Define a blueprint for a data type.

– Define what the class name means?

– What an object of the class will consist?

– What operations can be performed on such an object?

• A class definition starts with the keyword

@interface followed by the interface(class) name;

and the class body, enclosed by a pair of curly braces.

• In Objective-C, all classes are derived from the base

class called NSObject. It is the super class of all

Objective-C classes. It provides basic methods like

memory allocation and initialization.
30 SIT1402 - Mobile Application Development

Example

@interface Box:NSObject {

 //Instance variables

 double length; // Length of a box

 double breadth; // Breadth of a box

 }

 // Property

 @property(nonatomic, readwrite) double height;

@end

31 SIT1402 - Mobile Application Development

4.3 Allocating and initializing

Objects
• A class provides the blueprints for objects, so

basically an object is created from a class.

• We declare objects of a class with exactly the same

sort of declaration that we declare variables of basic

types.

• Example

 Box box1 = [[Box alloc]init]; // Create box1 object of type Box

 Box box2 = [[Box alloc]init]; // Create box2 object of type Box

32 SIT1402 - Mobile Application Development

4.4 Accessing the Data Members

• The properties of objects of a class can be accessed

using the direct member access operator (.)

• Example

#import <Foundation/Foundation.h>

@interface Box:NSObject {

 double length;

 double breadth;

 double height; }

 @property(nonatomic, readwrite) double height;

 -(double) volume;

@end 33 SIT1402 - Mobile Application Development

Accessing the Data Members

;ĐoŶ…Ϳ
@implementation Box

 @synthesize height;

 -(id)init {

 self = [super init];

 length = 1.0;

 breadth = 1.0;

 return self; }

 -(double) volume { return length*breadth*height; }

@end

34 SIT1402 - Mobile Application Development

Accessing the Data Members

;ĐoŶ…Ϳ
int main() {

 Box *box1 = [[Box alloc]init];

 Box *box2 = [[Box alloc]init];

 double volume = 0.0;

 box1.height = 5.0;

 box2.height = 10.0;

 volume = [box1 volume];

 NSLog(@"Volume of Box1 : %f", volume);

 volume = [box2 volume];

 NSLog(@"Volume of Box2 : %f", volume);

 return 0; }
35 SIT1402 - Mobile Application Development

4.5 Function

• A function is a group of statements that

together perform a task.

• A function declaration tells the compiler about

a function's name, return type, and

parameters.

• A function definition provides the actual body

of the function.

• Call the function as method

36 SIT1402 - Mobile Application Development

4.6 Defining a Method

• Syntax:

- (return_type) method_name:(argumentType1

)argumentName1 joiningArgument2:(

argumentType2)argumentName2 ...

joiningArgumentN:(argumentTypeN

)argumentNameN {

 body of the function

}

37 SIT1402 - Mobile Application Development

Example

/* function returning the max between two numbers */

- (int) max:(int) num1 Num2:(int) num2 {

 int result;

 if (num1 > num2) {

 result = num1;

 }

 else {

 result = num2;

 }

 return result;

}

38 SIT1402 - Mobile Application Development

4.7 Method Declaration

• Syntax:

- (return_type) function_name:(argumentType1

)argumentName1 joiningArgument2:(

argumentType2)argumentName2 ...

joiningArgumentN:(argumentTypeN

)argumentNameN;

• Example

 -(int) max:(int)num1 andNum2:(int)num2;

39 SIT1402 - Mobile Application Development

Example

#import <Foundation/Foundation.h>

@interface SampleClass:NSObject

 /* method declaration */

 - (int)max:(int)num1 andNum2:(int)num2;

@end

40 SIT1402 - Mobile Application Development

Eǆaŵple ;ĐoŶ…Ϳ
@implementation SampleClass

/* method returning the max between two numbers */

- (int)max:(int)num1 andNum2:(int)num2{

 /* local variable declaration */

 int result;

 if (num1 > num2)

 result = num1;

 else

 result = num2;

 return result;

}

@end

41 SIT1402 - Mobile Application Development

Eǆaŵple ;ĐoŶ…Ϳ
int main () {

 /* local variable definition */

 int a = 100;

 int b = 200;

 int ret;

 SampleClass *sampleClass = [[SampleClass alloc]init];

 /* calling a method to get max value */

 ret = [sampleClass max:a andNum2:b];

 NSLog(@"Max value is : %d\n", ret);

 return 0;

}

42 SIT1402 - Mobile Application Development

4.8 Log Handling

• NSLog method

– To print logs, we use the NSLog method

– Syntax:

 N“Log;@͟“triŶg͟Ϳ;
– Example

#import <Foundation/Foundation.h>

int main() {

 NSLog(@"Hello, World! \n");

 return 0;

} 43 SIT1402 - Mobile Application Development

Example

• DebugLog Method

– To print logs in a live build.

#import <Foundation/Foundation.h>

#if DEBUG == 0

 #define DebugLog(...)

#elif DEBUG == 1

 #define DebugLog(...) NSLog(__VA_ARGS__)

#endif

44 SIT1402 - Mobile Application Development

Eǆaŵple ;ĐoŶ…Ϳ

int main() {

 DebugLog(@"Debug log, our custom addition gets \

printed during debug only");

 NSLog(@"NSLog gets printed always");

 return 0;

}

45 SIT1402 - Mobile Application Development

Output

• We compile and run the program in debug

mode, the output is,

– Debug log, our custom addition gets printed

during debug only

– NSLog gets printed always

• We compile and run the program in release

mode, the output is,

– NSLog gets printed always

46 SIT1402 - Mobile Application Development

5. Property

• To ensure that the instance variable of the class can

be accessed outside the class.

• The various parts are the property declaration are as

follows

– Properties begin with @property, which is a keyword

– Access specifiers (atomic, nonatomic, readwrite, readonly,

strong, weak)

– This is followed by the data-type of the variable.

– Finally, we have the property name terminated by a

semicolon.

– We can add synthesize statement in the implementation

class.
47 SIT1402 - Mobile Application Development

Property (con...)
• Properties let other objects inspect or change its

state

• A well-designed object-oriented program, it’s not

possible to directly access the internal state of an

object

• Accessor methods are used

– Setters

– Getters

48 SIT1402 - Mobile Application Development

6. Messaging
• In Objective-C, messages areŶ’t ďouŶd to method

implementations until runtime.

• The compiler converts a message expression,

 [receiver message] into a call on a messaging

function, objc_msgSend.

• This function takes the receiver and the name of the

method mentioned in the message—that is, the method

selector—as its two principal parameters:

 objc_msgSend(receiver, selector)

• Any arguments passed in the message are also handed

to objc_msgSend:

 objc_msgSend(receiver, selector, arg1, arg2, ...)

49 SIT1402 - Mobile Application Development

Messaging (con...)

• The messaging function does everything necessary

for dynamic binding:

– It first finds the procedure (method implementation) that

the selector refers to. Since the same method can be

implemented differently by separate classes, the precise

procedure that it finds depends on the class of the

receiver.

– It then calls the procedure, passing it the receiving object

(a pointer to its data), along with any arguments that were

specified for the method.

– Finally, it passes on the return value of the procedure as its

own return value.

50 SIT1402 - Mobile Application Development

Messaging

Framework

51 SIT1402 - Mobile Application Development

Messaging (con...)

• When a message is sent to an object, the messaging

fuŶĐtioŶ folloǁs the oďjeĐt’s isa pointer to the class

structure where it looks up the method selector in

the dispatch table.

• If it ĐaŶ’t fiŶd the seleĐtor here, objc_msgSend

follows the pointer to the superclass and tries to find

the selector in its dispatch table.

• Successive failures cause objc_msgSend to climb the

class hierarchy until it reaches the NSObject class.

• Once it locates the selector, the function calls the

method entered in the table and passes it the

reĐeiǀiŶg oďjeĐt’s data struĐture.
52 SIT1402 - Mobile Application Development

Messaging (con...)
• To speed the messaging process, the runtime system

caches the selectors and addresses of methods as they

are used.

• There’s a separate cache for each class, and it can contain

selectors for inherited methods as well as for methods

defined in the class.

• Before searching the dispatch tables, the messaging

routine first ĐheĐks the ĐaĐhe of the reĐeiǀiŶg oďjeĐt’s
class.

• If the method selector is in the cache, messaging is only

slightly slower than a function call.

• Caches grow dynamically to accommodate new

messages as the program runs.
53 SIT1402 - Mobile Application Development

7. Categories

• To extend an existing class by adding behavior that is

useful only in certain situations.

• If you need to add a method to an existing class, the

easiest way is to use a category.

• To declare a category uses the @interface keyword.

• Syntax

 @interface ClassName (CategoryName)

 @end

54 SIT1402 - Mobile Application Development

7.1 Characteristics of category

• A category can be declared for any class, even if you

don't have the original implementation source code.

• Any methods that you declare in a category will be

available to all instances of the original class, as well

as any subclasses of the original class.

• At runtime, there's no difference between a method

added by a category and one that is implemented by

the original class.

55 SIT1402 - Mobile Application Development

Person.h

@interface Person : NSObject

 @property (readonly) NSMutableArray* friends;

 @property (copy) NSString* name;

 - (void)sayHello;

 - (void)sayGoodbye;

 @end

56 SIT1402 - Mobile Application Development

Person.m
#import "Person.h"

 @implementation Person

 @synthesize name = _name;

 @synthesize friends = _friends;

 -(id)init{

 self = [super init];

 if(self){

 _friends = [[NSMutableArray alloc] init];

 }

 return self;

 }

 - (void)sayHello {

 NSLog(@"Hello, says %@.", _name);

 }

 - (void)sayGoodbye {

 NSLog(@"Goodbye, says %@.", _name);

 }

@end

57 SIT1402 - Mobile Application Development

Person+Relations.h

#import <Foundation/Foundation.h>

#import "Person.h"

 @interface Person (Relations)

 - (void)addFriend:(Person *)aFriend;

 - (void)removeFriend:(Person *)aFriend;

 - (void)sayHelloToFriends;

 @end

58 SIT1402 - Mobile Application Development

Person+Relations.m
#import "Person+Relations.h"

 @implementation Person (Relations)

 - (void)addFriend:(Person *)aFriend {

 [[self friends] addObject:aFriend];

 }

 - (void)removeFriend:(Person *)aFriend {

 [[self friends] removeObject:aFriend];

 }

 - (void)sayHelloToFriends {

 for (Person *friend in [self friends]) {

 NSLog(@"Hello there, %@!", [friend name]);

 }}

 @end 59 SIT1402 - Mobile Application Development

main.m
#import <Foundation/Foundation.h>

#import "Person.h"

#import "Person+Relations.h"

 int main(int argc, const char * argv[]) {

 @autoreleasepool {

 Person *joe = [[Person alloc] init];

 joe.name = @"Joe";

 Person *bill = [[Person alloc] init];

 bill.name = @"Bill";

 Person *mary = [[Person alloc] init];

 mary.name = @"Mary";

 [joe sayHello];

 [joe addFriend:bill];

 [joe addFriend:mary];

 [joe sayHelloToFriends];

 }

 return 0;

}

60 SIT1402 - Mobile Application Development

8. Extensions
• A class extension is similar to a category, but it can only be

added to a class for which you have the source code at

compile time.

• The methods declared by a class extension are implemented

in the implementation block for the original class.

• Extensions are actually categories without the category name.

It's often referred as anonymous categories.

• The syntax to declare a extension uses the @interface

keyword.

• Syntax

 @interface ClassName ()

 @end
61 SIT1402 - Mobile Application Development

8.1 Characteristics of extensions

• An extension cannot be declared for any class,

only for the classes that we have original

implementation of source code.

• An extension is adding private methods and

private variables that are only specific to the

class.

• Any method or variable declared inside the

extensions is not accessible even to the

inherited classes.

62 SIT1402 - Mobile Application Development

Example

@interface SampleClass : NSObject {

 NSString *name;

 }

 - (void)setInternalID;

 - (NSString *)getExternalID;

@end

@interface SampleClass() {

 NSString *internalID;

 }

@end 63 SIT1402 - Mobile Application Development

Eǆaŵple ;ĐoŶ…Ϳ

@implementation SampleClass

 - (void)setInternalID {

 internalID = [NSString stringWithFormat:

@"UNIQUEINTERNALKEY%dUNIQUEINTERNALKEY",arc4r

andom()%100];

 }

 - (NSString *)getExternalID {

 return [internalID stringByReplacingOccurrencesOfString:

@"UNIQUEINTERNALKEY" withString:@""];

}

@end
64 SIT1402 - Mobile Application Development

Difference between Category &

Extension
Category Extension

Categories to define additional

methods of an existing class—even

one whose source code is unavailable

to you

A class extension is similar to a

category, but it can only be added to

a class for which you have the source

code

Category have category name Extension dont have name

It helps to add some more

functionality to existing class, but

only functions

It helps to add some more

functionality to existing class, but

only properties and instance variables

It come with its own .h and .m file It comes with .m file only

@interface MyClass (Category Name)

 // method declarations

@end

@interface MyClass ()

 // method declarations

@end

65 SIT1402 - Mobile Application Development

9. Fast Enumeration-NSArray

• NSArray is general-purpose array type.

• It represents an ordered collection of objects.

• Like NSSet, NSArray is immutable, so you cannot

dynamically add or remove items.

• Immutable arrays can be defined as literals

using the @[] syntax.

66 SIT1402 - Mobile Application Development

Fast Enumeration-NSArray (con...)

• Eg.

NSArray *germanMakes = @[@"Mercedes-Benz",

@"BMW", @"Porsche", @"Opel", @"Volkswagen",

@"Audi"];

NSArray *ukMakes = [NSArray

arrayWithObjects:@"Aston Martin", @"Lotus",

@"Jaguar", @"Bentley", nil];

NSLog(@"First german make: %@", germanMakes[0]);

NSLog(@"First U.K. make: %@", [ukMakes

objectAtIndex:0]);

67 SIT1402 - Mobile Application Development

Fast Enumeration-NSArray (con...)

• Fast-enumeration is the most efficient way to

iterate over an NSArray, and its contents are

guaranteed to appear in the correct order.

• Eg.

NSArray *germanMakes = @[@"Mercedes-

Benz", @"BMW", @"Porsche", @"Opel",

@"Volkswagen", @"Audi"];

68 SIT1402 - Mobile Application Development

Fast Enumeration-NSArray (con...)

// With fast-enumeration

for (NSString *item in germanMakes)

{

 NSLog(@"%@", item);

}

// With a traditional for loop

for (int i=0; i<[germanMakes count]; i++)

{

 NSLog(@"%d: %@", i, germanMakes[i]);

} 69 SIT1402 - Mobile Application Development

Fast Enumeration-NSArray (con...)

• There are several advantages to using fast

enumeration:

– The enumeration is considerably more efficient

than, for The syntax is concise

– Enumeration is ͞safe͟—the enumerator has a

mutation guard so that if you attempt to modify

the collection during enumeration, an exception is

raised

70 SIT1402 - Mobile Application Development

Fast Enumeration-NSDictionary
• The NSDictionary class represents an unordered collection of

objects

• They associate each value with a key, which acts like a label

for the value. This is useful for modeling relationships

between pairs of objects

• NSDictionary is immutable, but the NSMutableDictionary data

structure lets you dynamically add and remove entries as

necessary.

• Immutable dictionaries can be defined using the

literal @{} syntax.

• Factory methods

– dictionaryWithObjectsAndKeys:

– dictionaryWithObjects:forKeys:

71 SIT1402 - Mobile Application Development

Fast Enumeration-NSDictionary

(con...)
• Eg.

// Literal syntax

NSDictionary *inventory = @{

@"Mercedes-Benz SLK250" : [NSNumber

numberWithInt:13],

@"Mercedes-Benz E350" : [NSNumber

numberWithInt:22],

@"BMW M3 Coupe" : [NSNumber numberWithInt:19],

@"BMW X6" : [NSNumber numberWithInt:16], };

72 SIT1402 - Mobile Application Development

Fast Enumeration-NSDictionary

(con...)
Eg.

// Values and keys as arguments

inventory = [NSDictionary

dictionaryWithObjectsAndKeys:

[NSNumber numberWithInt:13], @"Mercedes-Benz

SLK250",

[NSNumber numberWithInt:22], @"Mercedes-Benz

E350",

[NSNumber numberWithInt:19], @"BMW M3 Coupe",

[NSNumber numberWithInt:16], @"BMW X6", nil];

73 SIT1402 - Mobile Application Development

Fast Enumeration-NSDictionary

(con...)
• Eg.

// Values and keys as arrays

NSArray *models = @[@"Mercedes-Benz SLK250",

@"Mercedes-Benz E350", @"BMW M3 Coupe",

@"BMW X6"];

NSArray *stock = @[[NSNumber numberWithInt:13],

[NSNumber numberWithInt:22], [NSNumber

numberWithInt:19], [NSNumber

numberWithInt:16]];

inventory = [NSDictionary dictionaryWithObjects:stock

forKeys:models]; NSLog(@"%@", inventory);
74 SIT1402 - Mobile Application Development

Fast Enumeration-NSDictionary
• Fast-enumeration is the most efficient way to

enumerate a dictionary, and it loops through

the keys (not the values).

• NSDictionary also defines a count method, which

returns the number of entries in the collection.

• Eg.

NSLog(@"We currently have %ld models available",

[inventory count]);

for (id key in inventory) {

 NSLog(@"There are %@ %@'s in stock",

inventory[key], key); }

75 SIT1402 - Mobile Application Development

10. Methods and Selectors

• A selector refers to the name used to select a

method to execute for an object

• It is used to identify a method

– Compiler writes each method name into a table

– Pairs the name with a unique identifier that represents the

method at runtime

– The runtime system makes sure each identifier is unique

– No two selectors are the same, and all methods with the

same name have the same selector

76 SIT1402 - Mobile Application Development

11. Static Class

• A class is a blue print for the members like,

static variable and static methods.

• A static variable are declared using the

modifier static.

• Syntax

 static <data_type> <variable_name>;

• Eg.

 static int number;

77 SIT1402 - Mobile Application Development

Static Class (con...)

• For static method which is also known as class

method, you can use the + sign instead of

the – sign when declaring the method.

• Syntax

 + (data_type)method_name;

• Eg.

 + (int)getNumber;

78 SIT1402 - Mobile Application Development

11.1 Dynamic Objects

• Dynamic binding is determining the method to

invoke at runtime instead of at compile time.

Dynamic binding is also referred to as late binding.

• In Objective-C, all methods are resolved dynamically

at runtime.

• The exact code executed is determined by both the

method name (the selector) and the receiving object.

• Dynamic binding enables polymorphism.

79 SIT1402 - Mobile Application Development

Dynamic Objects (con...)

• Eg.

– Consider a collection of objects including

Rectangle and Square.

– Each object has its own implementation of a

printArea method.

– The actual code that should be executed by the

expression [anObject printArea] is determined at

runtime.

– In this, printArea method is dynamically selected

in runtime.

80 SIT1402 - Mobile Application Development

Example
#import <Foundation/Foundation.h>

@interface Square:NSObject
{

 float area;

}

- (void)calculateAreaOfSide:(CGFloat)side;

- (void)printArea;

@end

@implementation Square

- (void)calculateAreaOfSide:(CGFloat)side

{

 area = side * side;

}

- (void)printArea

{

 NSLog(@"The area of square is %f",area);

}

@end

 81 SIT1402 - Mobile Application Development

Example (con...)
@interface Rectangle:NSObject

{

 float area;

}

- (void)calculateAreaOfLength:(CGFloat)length andBreadth:(CGFloat)breadth;

- (void)printArea;

@end

@implementation Rectangle

- (void)calculateAreaOfLength:(CGFloat)length andBreadth:(CGFloat)breadth

{

 area = length * breadth;

}

- (void)printArea

{

 NSLog(@"The area of Rectangle is %f",area);

}

@end

82 SIT1402 - Mobile Application Development

Example (con...)

int main()

{

 Square *square = [[Square alloc]init];

 [square calculateAreaOfSide:10.0];

 Rectangle *rectangle = [[Rectangle alloc]init];

 [rectangle calculateAreaOfLength:10.0 andBreadth:5.0];

 NSArray *shapes = [[NSArray alloc]initWithObjects: square,

rectangle,nil];

 id object1 = [shapes objectAtIndex:0];

 [object1 printArea];

 id object2 = [shapes objectAtIndex:1];

 [object2 printArea];

 return 0;

}

83 SIT1402 - Mobile Application Development

12. Exception Handling

• An exception is a special condition that interrupts

the normal flow of program execution

• There are a variety of reasons why an exception

may be generated, by hardware as well as

software

• Exception handling is made available in Objective-

C with foundation class NSException

84 SIT1402 - Mobile Application Development

Exception Handling (con...)

• Objective-C exception support four compiler

directives:

– @try - This block tries to execute a set of

statements

– @catch - This block tries to catch the exception in

try block

– @throw - throw exceptions if you find yourself in

a situation that indicates a programming error,

and want to stop the application from running

85 SIT1402 - Mobile Application Development

Exception Handling (con...)

– @finally - This block contains set of statements that always

execute

• Eg. division by zero, underflow or overflow, calling

undefined instructions

#import <Foundation/Foundation.h>

int main(){

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

NSMutableArray *array = [[NSMutableArray alloc]init];

@try {

NSString *string = [array objectAtIndex:10];

}
86 SIT1402 - Mobile Application Development

Exception Handling (con...)

@catch (NSException *exception) {

NSLog(@"%@ ",exception.name);

NSLog(@"Reason: %@ ",exception.reason);

}

@finally {

NSLog(@"@finaly Always Executes");

}

[pool drain];

return 0;

}
87 SIT1402 - Mobile Application Development

13. Memory Management
• Objects reside in memory, and especially on mobile devices

this is a scarce resource

• To make sure that programs don’t take up any more space

than they need

• The goal of any memory management system is to reduce the

memory footprint of a program by controlling the lifetime of

all its objects. iOS and OS X applications accomplish this

through object ownership, which makes sure objects exist as

long as they have to, but no longer

• Many languages accomplish this through garbage collection,

but Objective-C uses object ownership

88 SIT1402 - Mobile Application Development

13.1 Manual Retain Release

environment
• alloc - Create an object and claim ownership of it.

• retain - Claim ownership of an existing object

• copy - Copy an object and claim ownership of it.

• release - Relinquish ownership of an object and

destroy it immediately.

• autorelease - Relinquish ownership of an object but

defer its destruction.

89 SIT1402 - Mobile Application Development

Manual Retain Release

environment (con...)
• Manually controlling object ownership might seem

like a daunting task, ďut it’s aĐtuallǇ ǀerǇ easǇ.
• All you have to do is claim ownership of any object

you need and remember to relinquish ownership

ǁheŶ Ǉou’re doŶe ǁith it.
• When you forget to balance these calls, one of two

things can happen.

– If you forget to release an object, its underlying memory is

never freed, resulting in a memory leak.

90 SIT1402 - Mobile Application Development

Manual Retain Release

environment (con...)
– “ŵall leaks ǁoŶ’t haǀe a ǀisiďle effeĐt oŶ Ǉour

program, but if you eat up enough memory, your

program will eventually crash.

– On the other hand, if you try to release an object

too ŵaŶǇ tiŵes, Ǉou’ll haǀe ǁhat’s Đalled
a dangling pointer.

– WheŶ Ǉou trǇ to aĐĐess the daŶgliŶg poiŶter, Ǉou’ll
be requesting an invalid memory address, and

your program will most likely crash.

91 SIT1402 - Mobile Application Development

Manual Retain Release

environment (con...)

92 SIT1402 - Mobile Application Development

13.2 The alloc Method
• Using the alloc ŵethod to Đreate oďjeĐts. But, it’s Ŷot just

alloĐatiŶg ŵeŵorǇ for the oďjeĐt, it’s also setting its reference

count to 1.

• Eg.

 #import <Foundation/Foundation.h>

 int main(int argc, const char * argv[]) {

 @autoreleasepool {

 NSMutableArray *inventory = [[NSMutableArray alloc] init];

 [inventory addObject:@"Honda Civic"];

 NSLog(@"%@", inventory);

 }

 return 0;}

93 SIT1402 - Mobile Application Development

13.3 The release Method

• The release method relinquishes ownership of

an object by decrementing its reference

count.

• So, we can get rid of our memory leak by

adding the following line after the NSLog()

• Eg.

 [inventory release];

94 SIT1402 - Mobile Application Development

13.4 The Retain Method

• The retain method claims ownership of an

existing object.

• It’s like telliŶg the operatiŶg sǇsteŵ, ͞Hey! I

Ŷeed that oďjeĐt too, so doŶ’t get rid of it! .͟

95 SIT1402 - Mobile Application Development

The Retain Method (con...)

• Eg.

// CarStore.h

#import <Foundation/Foundation.h>

@interface CarStore : NSObject

 -(NSMutableArray *)inventory;

 -(void)setInventory:(NSMutableArray *)newInventory;

@end

// CarStore.m

 -(void)setInventory:(NSMutableArray *)newInventory {

_inventory = [newInventory retain];

}

96 SIT1402 - Mobile Application Development

13.5 The autorelease method
• The autorelease method relinquishes ownership of an object,

but instead of destroying the object immediately, it defers the

actual freeing of memory until later on in the program.

• This allows you to release objects ǁheŶ Ǉou are ͞supposed͟
to, while still keeping them around for others to use.

• Eg.

// CarStore.h

+ (CarStore *)carStore;

// CarStore.m

+ (CarStore *)carStore {

 CarStore *newStore = [[CarStore alloc] init];

 return [newStore autorelease];

}
97 SIT1402 - Mobile Application Development

13.6 The dealloc Method
• AŶ oďjeĐt’s dealloc method is the opposite of its init method.

• It’s Đalled right ďefore the oďjeĐt is destroǇed, giǀiŶg Ǉou a
chance to clean up any internal objects.

• This method is called automatically by the runtime—you

should never try to call dealloc yourself.

• Eg.

// CarStore.m

-(void)dealloc {

 [_inventory release];

 [super dealloc];

}

98 SIT1402 - Mobile Application Development

MeŵorǇ MaŶageŵeŶt ;ĐoŶ…Ϳ

• Automatic Reference Counting works the exact same way as

MRR, but it automatically inserts the appropriate memory-

management methods for you.

• This is a big deal for Objective-C developers, as it lets them

focus entirely on what their application needs to do rather

than how it does it.

• ARC takes the human error out of memory management with

virtually no downside, so the only reason not to use it is when

Ǉou’re iŶterfaĐiŶg ǁith a legaĐǇ Đode ďase.
• The rest of this module explains the major changes between

MRR and ARC

99 SIT1402 - Mobile Application Development

MeŵorǇ MaŶageŵeŶt ;ĐoŶ…Ϳ

• Enabling ARC

– First, let’s go ahead aŶd turn ARC back on in the

projeĐt’s Build Settings tab.

– Change the Automatic Reference Counting compiler option

to Yes.

– Again, this is the default for all Xcode templates, aŶd it’s
what you should be using for all of your projects

100 SIT1402 - Mobile Application Development

MeŵorǇ MaŶageŵeŶt ;ĐoŶ…Ϳ

• Automatic Reference Counting, the compiler manages all of

your object ownership automatically

• We never to worry about how the memory management

system actually works

• To understand the various attributes of @property, since they

tell the compiler what kind of relationship objects should have

– Strong attribute

– Weak attribute

– Copy attribute

101 SIT1402 - Mobile Application Development

MeŵorǇ MaŶageŵeŶt ;ĐoŶ…Ϳ

• The strong Attribute

– It creates an owning relationship to whatever object is

assigned to the property

– It makes sure the value exists as long as it’s assigned to the

property

102 SIT1402 - Mobile Application Development

MeŵorǇ MaŶageŵeŶt ;ĐoŶ…Ϳ

• The weak Attribute

– The weak attribute creates a non-owning relationship

– Possible to maintain a cyclical relationship without creating

a retain cycle

– Two objects should never have strong references to each

other

103 SIT1402 - Mobile Application Development

MeŵorǇ MaŶageŵeŶt ;ĐoŶ…Ϳ

• The copy Attribute

– The copy attribute is an alternative to strong

– Instead of taking ownership of the existing object,

it creates a copy of whatever you assign to the

property, then takes ownership of that

– Properties that represent values are good

candidates for copying

– Eg. @property (nonatomic, copy) NSString

*model;

104 SIT1402 - Mobile Application Development

14. Required Tools

• Objective-C is the native programming

language for Apple’s iO“ aŶd O“ X operating

systems.

• It’s a Đoŵpiled, geŶeral-purpose language

capable of building everything from command

line utilities to animated GUIs to domain-

specific libraries.

• It also provides many tools for maintaining

large, scalable frameworks.

105 SIT1402 - Mobile Application Development

Types of programs written in

Objective-C

106 SIT1402 - Mobile Application Development

14.1 Xcode

• Xcode is the Integrated Development

Environment (IDE) designed for developing

iOS and Mac OS apps

• The Xcode IDE includes editors used to design

and implement your apps

• Xcode can show you mistakes in both syntax

and logic, and even suggests fixes as you type

• Finally, Build and run your apps

107 SIT1402 - Mobile Application Development

Xcode (con...)

108 SIT1402 - Mobile Application Development

Components Of Xcode
• Xcode IDE : IDE that enables you to manage, edit,

and debug your projects

• Dashcode : IDE that enables you to develop web-

based iPhone and iPad applications and Dashboard

widgets

• iOS Simulator : Provides a software simulator to

simulate an iPhone or an iPad on your Mac

• Interface Builder : Visual editor for designing user

interfaces for your iPhone and iPad applications

• Instruments : Analysis tool to help you both optimize

your application and monitor for memory leaks in

real time

109 SIT1402 - Mobile Application Development

14.1.1 Creating an Application

• Xcode provides several templates for various types of iOS and

OS X applications. All of them can be found by navigating

to File > New > Project... or using the Cmd+Shift+N shortcut.

• This will open a dialog window asking you to select a

template:

 Creating a command line application
110 SIT1402 - Mobile Application Development

14.1.2 Configuring a command line

application

• This opens another dialog asking you to

configure the project:

111 SIT1402 - Mobile Application Development

Configuring a command...(con...)

• You can use whatever you like for the Product Name and

Organization Name fields.

• Finally, the Use Automatic Reference Counting checkbox

should always be selected for new projects.

• Clicking Next prompts you for a file path to store the project

(save it anywhere you like), and you should now have a brand

new Xcode project to play with.

• In the left-haŶd ĐoluŵŶ of the XĐode IDE, Ǉou’ll fiŶd a file
called main.m (along with some other files and folders). At the

moment, this file contains the entirety of your application.

• Note that the .m extension is used for Objective-C source files.

112 SIT1402 - Mobile Application Development

Configuring a command...(con...)

 main.m in the Project Navigator

• To compile the project, click the Run button in the upper-left

corner of the IDE or use the Cmd+R shortcut.

• This should display Hello, World!in the Output Panel located

at the bottom of the IDE:

113 SIT1402 - Mobile Application Development

14.1.3 The main() Function

#import <Foundation/Foundation.h>

int main(int argc, const char * argv[])

{

 @autoreleasepool

 {

 // insert code here...

 NSLog(@"Hello, World!");

 }

 return 0;

}
114 SIT1402 - Mobile Application Development

14.2 iOS Simulator

• The iOS Simulator app, available within Xcode,

presents the iPhone, iPad, or Apple Watch user

interface in a window on your Mac computer.

• You interact with iOS Simulator by using the

keyboard and the mouse to emulate taps, device

rotation, and other user actions.

• There are two different ways to access iOS Simulator

through Xcode.

– The first way is to run your app in iOS Simulator.

– The second way is to launch iOS Simulator without

running an app.

115 SIT1402 - Mobile Application Development

14.2.1 Running Your App in iOS

Simulator
• When testing an app in iOS Simulator, it is easiest to

launch and run your app in iOS Simulator directly

from your Xcode project.

• To run your app in iOS Simulator, choose an iOS

simulator—for example, iPhone 6 or iPad Air—from

the Xcode scheme pop-up menu and click Run.

• Xcode builds your project and then launches the

most recent version of your app running in iOS

Simulator on your Mac screen

116 SIT1402 - Mobile Application Development

Running Your App...(con...)

117 SIT1402 - Mobile Application Development

14.3 Instruments

• Instruments is a powerful and flexible performance-

analysis and testing tool that’s part of the XĐode tool
set.

• It’s desigŶed to help Ǉou profile your OS X and iOS

apps, processes, and devices in order to better

understand and optimize their behavior and

performance.

• Incorporating Instruments into your workflow from

the beginning of the app development process can

save you time later by helping you find issues early in

the development cycle.

118 SIT1402 - Mobile Application Development

Instruments (con...)

• In Instruments, you use specialized tools, known

as instruments, to trace different aspects of your

apps, processes, and devices over time.

• Instruments collects data as it profiles, and presents

the results to you in detail for analysis.

• By using Instruments effectively, you can:

– Examine the behavior of one or more apps or processes

– Examine device-specific features, such as Wi-Fi and

Bluetooth

– Perform profiling in a simulator or on a physical device

119 SIT1402 - Mobile Application Development

Instruments (con...)
– Create custom DTrace instruments to analyze aspects of

system and app behavior

– Track down problems in your source code

– Conduct performance analysis on your app

– Find memory problems in your app, such as leaks,

abandoned memory, and zombies

– Identify ways to optimize your app for greater power

efficiency

– Perform general system-level troubleshooting

– Automate testing of your iOS app by running custom

scripts to perform a sequence of user actions and

replaying them to reliably reproduce those events and

collect data over multiple runs

– Save instrument configurations as templates
120 SIT1402 - Mobile Application Development

14.3.1 The Instruments Workflow

121 SIT1402 - Mobile Application Development

The Instruments Workflow (con...)

• It can be used to gather all kinds of useful

information about your app, and help you diagnose

and resolve problems.

• At a high level, it consists of the following main

phases:

– Set up a trace document containing the desired

instruments and settings.

– Target a device and an app to profile.

– Profile the app.

– Analyze the data captured during profiling.

– Fix any problems in your source code.
122 SIT1402 - Mobile Application Development

14.3.2 Know When to Use

Instruments
• While testing your app with Xcode, consult the

debug navigator gauges (see Figure) before diving

into Instruments.

• These gauges provide high-level information about

Ǉour app’s CPU, ŵeŵorǇ, eŶergǇ usage, aŶd ŵore.
• Often, they provide all the information you need to

improve performance and resolve common problems

quickly.

• Use Instruments when you need to perform more

detailed analysis

123 SIT1402 - Mobile Application Development

14.3.3 The CPU debugging gauge in

Xcode

124 SIT1402 - Mobile Application Development

14.4 ARC

• Automatic Reference Counting (ARC) to track and

ŵaŶage Ǉour app’s memory usage.

• Every time you create a new instance of a class, ARC

allocates a chunk of memory to store information

about that instance.

• This memory holds information about the type of the

instance, together with the values of any stored

properties associated with that instance.

• Additionally, when an instance is no longer needed,

ARC frees up the memory used by that instance so

that the memory can be used for other purposes

instead. 125 SIT1402 - Mobile Application Development

ARC (con...)

• This ensures that class instances do not take up

space in memory when they are no longer needed.

• ARC were to deallocate an instance that was still in

use, it would no longer be possible to access that

iŶstaŶĐe’s properties, or Đall that iŶstaŶĐe’s ŵethods.
• Indeed, if you tried to access the instance, your app

would most likely crash.

• ARC tracks how many properties, constants, and

variables are currently referring to each class

instance.

126 SIT1402 - Mobile Application Development

ARC (con...)

• ARC will not deallocate an instance as long as at least

one active reference to that instance still exists.

• To make this possible, whenever you assign a class

instance to a property, constant, or variable, that

property, constant, or variable makes a strong

reference to the instance.

• The reference is called a ͞stroŶg͞ refereŶĐe ďeĐause
it keeps a firm hold on that instance, and does not

allow it to be deallocated for as long as that strong

reference remains.

127 SIT1402 - Mobile Application Development

14.5 Framework

• A framework is a collection of resources; it collects a

static library and its header files into a single

structure that Xcode can easily incorporate into your

projects.

• The Foundation framework defines a base layer of

Objective-C classes.

• In addition to providing a set of useful primitive

object classes, it introduces several paradigms that

define functionality not covered by the Objective-C

language.

128 SIT1402 - Mobile Application Development

Framework (con...)

• The Foundation framework is designed with

these goals in mind:

– Provide a small set of basic utility classes

– Make software development easier by introducing

consistent conventions for things such as

deallocation

– Support Unicode strings, object persistence, and

object distribution

– Provide a level of OS independence to enhance

portability
129 SIT1402 - Mobile Application Development

Framework (con...)

• The framework was developed by NeXTStep, which

was acquired by Apple and these foundation classes

became part of Mac OS X and iOS.

• Since it was developed by NeXTStep, it has class

prefix of "N“ .͞
• We have used Foundation Framework in all our

sample programs. It is almost a must to use

Foundation Framework.

130 SIT1402 - Mobile Application Development

Framework (con...)

• Generally, we use something like #import

<Foundation/NSString.h> to import a Objective-C

class, but in order avoid importing too many classes,

it's all imported in #import

<Foundation/Foundation.h>.

• NSObject is the base class of all objects including the

foundation kit classes. It provides the methods for

memory management.

• It also provides basic interface to the runtime system

and ability to behave as Objective-C objects. It

doesn't have any base class and is the root for all

classes.
131 SIT1402 - Mobile Application Development

Framework (con...)

• Foundation Classes based on functionality

 Loop Type Description

Data storage NSArray, NSDictionary, and NSSet provide

storage for Objective-C objects of any class.

Text and

strings

NSCharacterSet represents various groupings of

characters that are used by the NSString and

NSScanner classes.

The NSString classes represent text strings and

provide methods for searching, combining, and

comparing strings.

An NSScanner object is used to scan numbers

and words from an NSString object.
132 SIT1402 - Mobile Application Development

Framework (con...)

Dates and times The NSDate, NSTimeZone, and NSCalendar classes

store times and dates and represent calendrical

information. They offer methods for calculating date

and time differences. Together with NSLocale, they

provide methods for displaying dates and times in

many formats and for adjusting times and dates

based on location in the world.

Exception handling Exception handling is used to handle unexpected

situations and it's offered in Objective-C with

NSException.

File handling File handling is done with the help of class

NSFileManager.

URL loading system A set of classes and protocols that provide access to

common Internet protocols.
133 SIT1402 - Mobile Application Development

Practices
• To study various tools involved to develop an iOS app.

• Write a structure Objective-C program.

• Write a Objective-C program for finding given number

is prime or not.

• Write a Objective-C program to reverse a given

number.

• Explain various conditional branching and looping

statements in Objective-C.

• Mention the exception handling mechanism in

Objective-C

• Explain about memory management in Objective-C

134 SIT1402 - Mobile Application Development

