
Unit - II

Building Blocks and Databases

Unit- II - Building Blocks and Databases
• 1. Introduction to Activity and Intents

• 2. Understanding Activity Life Cycle

• 3. Linking Activities

• 4. Passing Data

• 5. Toast

• 6. Displaying Dialog Window

• 7. Notifications

• 8. Services

• 9. Broadcast Receivers

• 10. Content Provider

• 11. SQLite – Database

• 12. Publish App in Playstore

• 13. Sample Applications
2

1. Introduction to Activity and Intents

• An Activity is an application component that

provides a screen with which users can

interact in order to do something, such as dial

the phone, take a photo, send an email, or

view a map.

• Each activity is given a window in which to

draw its user interface.

• The window typically fills the screen, but may

be smaller than the screen and float on top of

other windows.
3

IŶtroduĐtioŶ to AĐtiǀitǇ aŶd IŶteŶts ;ĐoŶ…Ϳ

• Intents in android are used as message

passing mechanism that works both within

your application and between applications.

• Three of the core components of an

application — activities, services, and

broadcast receivers are activated through

messages, called intents

• E.g. Intents can be used to start an activity to

send email.
4

2. Android Activity Life Cycle

• The steps that an application goes through

from starting to finishing

• Slightly different than normal Java life cycle

due to :

– The difference in the way Android application are

defined

– The limited resources of the Android hardware

platform

5

AĐtiǀitǇ Life CǇĐle ;ĐoŶ…Ϳ

• Each application runs in its own process.

• Each activity of an app is run in the apps
process

• Processes are started and stopped as needed
to run an apps components.

• Processes may be killed to reclaim needed
resources.

• Killed apps may be restored to their last state
when requested by the user

6

AĐtiǀitǇ Life CǇĐle;ĐoŶ…Ϳ
• Management of the life cycle is done

automatically by the system via the activity stack.

• The activity class has the following method
callbacks to help you manage the app:
– onCreate()

– onStart()

– onResume()

– onPause()

– onStop()

– onRestart()

– onDestroy()

7

Activity Life

Cycle

8

Example

public class MainActivity extends Activity {
@Override

 protected void onCreate(Bundle
savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
Toast.makeText(getApplicationContext;Ϳ, ͞I aŵ
onCreate() Method",
Toast.LENGTH_SHORT).show();

}

9

Eǆaŵple ;ĐoŶ…Ϳ
@Override

protected void onStart() {
Toast.makeText(getApplicationContext;Ϳ, ͞I aŵ
onStart() method", Toast.LENGTH_SHORT).show();
super.onStart();

}

@Override

protected void onResume() {
Toast.makeText(getApplicationContext(), " I am
onResume() method ", Toast.LENGTH_SHORT).show();
super.onResume();

}

10

Eǆaŵple ;ĐoŶ…Ϳ
@Override

protected void onPause() {
Toast.makeText(getApplicationContext(), " I am
onPause() method ", Toast.LENGTH_SHORT).show();
super.onPause();

}

@Override

protected void onStop() {
Toast.makeText(getApplicationContext(), " I am
onStop() method ", Toast.LENGTH_SHORT).show();
super.onStop();

}

11

Eǆaŵple ;ĐoŶ…Ϳ
@Override

protected void onRestart() {
Toast.makeText(getApplicationContext(), " I am
onRestart() method ", Toast.LENGTH_SHORT).show();
super.onRestart();

 }

@Override

protected void onDestroy() {
Toast.makeText(getApplicationContext(), " I am
onDestroy() method ", Toast.LENGTH_SHORT).show();
super.onDestroy();

} }

12

3. Linking Activity

• Android Intent is an abstract description of an

operation to be performed.

• It can be used with,

– An startActivity() to launch an Activity

– An sendBroadcast() to send it to any interested

BroadcastReceiver components

– An startService(Intent) to communicate with a

background Service

13

LiŶkiŶg AĐtiǀitǇ ;ĐoŶ…Ϳ

• Intent Objects

–An Intent object is a bundle of information

which is used by the component that

receives the intent.

– Intent object can contain the following

components

• Action

– A string naming the action to be performed.

– The action in an Intent object can be set by the

setAction() method and read by getAction().
14

LiŶkiŶg AĐtiǀitǇ ;ĐoŶ…Ϳ

–Data

• Adds a data specification to an intent filter.

• The setData() method specifies data only as a

URI, setType() specifies it only as a MIME type,

and setDataAndType() specifies it as both a URI

and a MIME type. The URI is read by getData()

and the type by getType().

15

LiŶkiŶg AĐtiǀitǇ ;ĐoŶ…Ϳ

–Category

• The category is an optional part of Intent object

and it's a string containing additional

information about the kind of component that

should handle the intent.

• The addCategory() method places a category in

an Intent object, removeCategory() deletes a

category previously added

16

LiŶkiŶg AĐtiǀitǇ ;ĐoŶ…Ϳ

– Extras

• This will be in key-value pairs for additional information

that should be delivered to the component handling

the intent.

• The extras can be set and read using the putExtras()

and getExtras() methods respectively.

– Flags

• The flags are optional part of Intent object

• It helps to instruct the Android system how to launch

an activity, and how to treat it after it's launched etc.

17

LiŶkiŶg AĐtiǀitǇ ;ĐoŶ…Ϳ

• Types of Intents

– There are following two types of intents

supported by Android

18

LiŶkiŶg AĐtiǀitǇ ;ĐoŶ…Ϳ

• Explicit Intents

– It going to be connected internal world of application, i.e.

to connect one activity to another activity, below image is

connecting first activity to second activity by clicking the

button.

19

LiŶkiŶg AĐtiǀitǇ ;ĐoŶ…Ϳ
• Example

Intent i = new Intent(FirstActivity.this, SecondAcitivity.class);

startActivity(i);

Intent i= new Intent(android.content.Intent.ACTION_VIEW,
Uri.parse("http://www.google.com"));

 startActivity(i);

Intent i= new Intent(android.content.Intent.ACTION_VIEW,
Uri.parse("tel:9943005903"));

startActivity(i);

20

LiŶkiŶg AĐtiǀitǇ ;ĐoŶ…Ϳ

• Implicit Intents

– These intents do not name a target and the field for the

component name is left blank.

– Implicit intents are often used to activate components in

other applications.

• Example

 Intent read1=new Intent();

read1.setAction(android.content.Intent.ACTION_VIEW);

read1.setData(ContactsContract.Contacts.CONTENT_URI);

startActivity(read1);

21

4. Passing Data

• Activity is used to represent the data to user

and allows user interaction.

• In an android application, we can have

multiple activities and that can interact with

each other.

• During activity interaction we might required

to pass data from one activity to other.

22

PassiŶg Data ;ĐoŶ…Ϳ

• Data is passed as extras and are key/value pairs.

• The key is always a String and the value you can use

the primitive data types int, float, chars, etc.

• Syntax for sending data

 Intent intent = new Intent(context,

YourActivityClass.class);

 intent.putExtra(KEY, <your value here>);

startActivity(intent);

23

PassiŶg Data ;ĐoŶ…Ϳ

• Syntax for retrieving data

 Intent intent = getIntent();

String stringData= intent.getStringExtra(KEY);

int numberData = intent.getIntExtra(KEY,
defaultValue);

boolean booleanData = intent.getBooleanExtra(KEY,
defaultValue);

char charData = intent.getCharExtra(KEY,
defaultValue);

24

Example

public class MainActivity extends Activity implements

OnClickListener {

 Button btn;

@Override

protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 btn = (Button) findViewById(R.id.btnPassData);

 btn.setOnClickListener(this);

 }

25

Eǆaŵple ;ĐoŶ…Ϳ

 @Override

 public void onClick(View view) {

 Intent intent = new

Intent(getApplicationContext(), SecondActivity.class);

 intent.putExtra("message", "Hello From

MainActivity");

 startActivity(intent);

 }

 }

26

Eǆaŵple ;ĐoŶ…Ϳ
public class SecondActivity extends Activity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_another);

 Intent intent = getIntent();

 String msg = intent.getStringExtra("message");

 Toast toast = Toast.makeText(this, msg,
Toast.LENGTH_LONG);

 toast.show();

 }

}

27

5. Toasts

• A toast provides simple feedback about an operation

in a small popup.

• It only fills the amount of space required for the

message and the current activity remains visible and

interactive

• Toasts automatically disappear after a timeout.

28

Toasts ;ĐoŶ…Ϳ

• First, instantiate a Toast object with one of

the makeText() methods.

• This method takes three parameters: the

application Context, the text message, and the

duration for the toast. It returns a properly

initialized Toast object.

• You can display the toast notification

with show().

29

Toasts ;ĐoŶ…Ϳ

 Context context = getApplicationContext();

CharSequence text = "Hello toast!";

int duration = Toast.LENGTH_SHORT;

Toast toast = Toast.makeText(context, text, duration);

toast.show();

 (or)

 Toast.makeText(context, text, duration).show();

 (or)

 Toast.ŵakeTeǆt;getAppliĐatioŶCoŶteǆt;Ϳ,͟ Hello
toast! ,͟ Toast.LENGTH_“HORTͿ.shoǁ;Ϳ;

30

Positioning your Toast

• A standard toast notification appears near the

bottom of the screen, centered horizontally.

• You can change this position with the setGravity(int,

int, int) method.

• This accepts three parameters: a Gravity constant, an

x-position offset, and a y-position offset.

• Exmaple

 toast.setGravity(Gravity.TOP|Gravity.LEFT, 0, 0);

31

Custom Toast

• To create a customized layout for your toast

notification.

• To create a custom layout, define a View layout, in

XML or in your application code, and pass the

root View object to the setView(View) method.

32

Example

<LinearLayout

 android:id="@+id/toast_layout_root"

 android:orientation="horizontal"

 android:layout_width="fill_parent"

 aŶdroid:laǇout_height="fill_pareŶt͟ >

 <TextView

 android:id="@+id/text"

 android:layout_width="wrap_content"

 aŶdroid:laǇout_height="ǁrap_ĐoŶteŶt͞ />

</LinearLayout>

33

Eǆaŵple ;ĐoŶ…Ϳ

LayoutInflater inflater = getLayoutInflater();

View layout = inflater.inflate(R.layout.custom_toast,

 (ViewGroup)

findViewById(R.id.toast_layout_root));

TextView text = (TextView) layout.findViewById(R.id.text);

text.setText("This is a custom toast");

Toast toast = new Toast(getApplicationContext());

toast.setGravity(Gravity.CENTER_VERTICAL, 0, 0);

toast.setDuration(Toast.LENGTH_LONG);

toast.setView(layout);

toast.show();
34

6. Displaying Dialog Window

• A dialog is a small window that prompts the

user to make a decision or enter additional

information.

• Creating alert dialog is very easy.

• The Dialog class is the base class for dialogs,

but you should avoid instantiating Dialog

directly.

• Instead, use one of the following subclass

 AlertDialog class

35

Dialog WiŶdoǁ ;ĐoŶ…Ϳ

• Three regions of an alert dialog

– Title

• This is optional and should be used only when the

content area is occupied by a detailed message.

– Content area

• This can display a message.

– Action buttons

• There should be no more than three action buttons in a

dialog.

36

Dialog WiŶdoǁ ;ĐoŶ…Ϳ
• Different action buttons

– Positive

• Use this to accept and continue with the action (the

"OK" action).

– Negative

• Use this to cancel the action.

– Neutral

• Use this when the user may not want to proceed with

the action, but doesn't necessarily want to cancel.

• It appears between the positive and negative buttons.

• For example, the action might be "Remind me later."

37

Dialog WiŶdoǁ ;ĐoŶ…Ϳ

• Different alert dialogue methods

– one button(ok button) - setPositiveButton()

– two buttons(yes or no buttons) -

setNegativeButton()

– three buttons(yes, no and cancel buttons) -

setNeutralButton()

38

Example

AlertDialog.Builder alertDialog = new

AlertDialog.Builder(AlertDialogActivity.this);

 // Setting Dialog Title

 alertDialog.setTitle("Confirm Delete...");

 // Setting Dialog Message

 alertDialog.setMessage("Are you sure you want delete

this?");

 // Setting Icon to Dialog

 alertDialog.setIcon(R.drawable.delete);

39

Eǆaŵple ;ĐoŶ…Ϳ

 // Setting Positive "Yes" Button

 alertDialog.setPositiveButton("YES", new

DialogInterface.OnClickListener() {

 public void onClick(DialogInterface dialog,int

which) {

 // Write your code here to invoke YES event

 Toast.makeText(getApplicationContext(), "You

clicked on YES", Toast.LENGTH_SHORT).show();

 }

 });

40

Eǆaŵple ;ĐoŶ…Ϳ

 // Setting Negative "NO" Button

 alertDialog.setNegativeButton("NO", new

DialogInterface.OnClickListener() {

 public void onClick(DialogInterface dialog, int which) {

 // Write your code here to invoke NO event

 Toast.makeText(getApplicationContext(), "You clicked

on NO", Toast.LENGTH_SHORT).show();

 dialog.cancel();

 }

 });

41

Output

 // Showing Alert Message

 alertDialog.show();

42

7. Notification

• A notification is a message you can display to the user outside

of your application's normal UI.

• When you tell the system to issue a notification, it first

appears as an icon in the notification area.

• To see the details of the notification, the user opens

the notification drawer.

• Both the notification area and the notification drawer are

system-controlled areas that the user can view at any time.

• Android Toast class provides a handy way to show users alerts

but problem is that these alerts are not persistent which

means alert flashes on the screen for a few seconds and then

disappears.
43

Step 1 - Create Notification Builder

• A first step is to create a notification builder

using NotificationCompat.Builder.build().

• Use Notification Builder to set various

Notification properties like its small and large

icons, title, priority etc.

• Syntax

NotificationCompat.Builder mBuilder = new

NotificationCompat.Builder(this);

44

Step 2 - Setting Notification

Properties
• To set its Notification properties using Builder object as

per your requirement.

– A small icon, set by setSmallIcon()

– A title, set by setContentTitle()

– Detail text, set by setContentText()

• Example

 mBuilder.setSmallIcon(R.drawable.notification_icon);

mBuilder.setContentTitle("Notification Alert, Click Me!");

mBuilder.setContentText("Hi, This is Android Notification

Detail!");

45

Step 3 - Attach Actions

• The action is defined by a PendingIntent containing

an Intent that starts an Activity in your application.

• A PendingIntent object helps you to perform an

action on your applications behalf, often at a later

time, without caring of whether or not your

application is running.

• We take help of stack builder object which will

contain an artificial back stack for the started

Activity.

• This ensures that navigating backward from the

Activity leads out of your application to the Home

screen. 46

Step 3 - AttaĐh AĐtioŶs ;ĐoŶ…Ϳ

Intent resultIntent = new Intent(this,

ResultActivity.class);

TaskStackBuilder stackBuilder =

TaskStackBuilder.create(this);

stackBuilder.addParentStack(MainActivity.this);

stackBuilder.addNextIntent(resultIntent);

PendingIntent resultPendingIntent =

stackBuilder.getPendingIntent(0,PendingIntent.FLAG

_UPDATE_CURRENT);

mBuilder.setContentIntent(resultPendingIntent);
47

Step 4 - Issue the notification

• Finally, you pass the Notification object to the system by

calling NotificationManager.notify() to send your

notification.

• Make sure you call

NotificationCompat.Builder.build() method on builder object

before notifying it.

• Example

NotificationManager mNotificationManager =

(NotificationManager)

getSystemService(Context.NOTIFICATION_SERVICE)

mNotificationManager.notify(notificationID, mBuilder.build());

48

Example

Button b;

b=(Button)findViewById(R.id.notify_btn);

 b.setOnClickListener(new View.OnClickListener() {

@Override

public void onClick(View v) {

// TODO Auto-generated method stub

Notify_method("Test notify message");

}

49

Example (con...)

private void Notify_method(String string) {

NotificationManager notificationManager = (NotificationManager)

getSystemService(NOTIFICATION_SERVICE);

Notification notification = new Notification(R.drawable.abc,"New Message",

System.currentTimeMillis());

 Intent notificationIntent = new

Intent(MainActivity.this,NotifyDisplay.class);

 PendingIntent pendingIntent = PendingIntent.getActivity(MainActivity.this,

0,notificationIntent, 0);

 notification.setLatestEventInfo(MainActivity.this, "Notification",string,

pendingIntent);

 notificationManager.notify(9999, notification);

}

});
50

Output

51

8. Services

• A service is a component that runs in the background

to perform long-running operations without needing

to interact with the user and it works even if

application is destroyed.

• A service can essentially take two states

– Started
• A service is started when an application component, such as an

activity, starts it by calling startService().

• Once started, a service can run in the background indefinitely,

even if the component that started it is destroyed.

52

“erǀiĐes ;ĐoŶ…Ϳ

– Bound
• A service is bound when an application component binds to it by

calling bindService().

• A bound service offers a client-server interface that allows

components to interact with the service, send requests, get

results, and even do so across processes with inter-process

communication (IPC).

• A service has life cycle callback methods that you can

implement to monitor changes in the service's state

and you can perform work at the appropriate stage

53

Service

Life Cycle

54

“erǀiĐes ;ĐoŶ…Ϳ

• To create an service, you create a Java class

that extends the Service base class or one of

its existing subclasses.

• The Service base class defines various callback

methods and the most important are given

below.

• Don't need to implement all the callbacks

methods

55

“erǀiĐes ;ĐoŶ…Ϳ

• onStartCommand()

– The system calls this method when another
component, such as an activity, requests that the
service be started, by calling startService().

– If you implement this method, it is your responsibility
to stop the service when its work is done, by
calling stopSelf() or stopService()methods.

• onBind()

– The system calls this method when another
component wants to bind with the service by
calling bindService()

56

“erǀiĐes ;ĐoŶ…Ϳ

• onUnbind()

– The system calls this method when all clients have

disconnected from a particular interface published

by the service.

• onRebind()

– The system calls this method when new clients

have connected to the service, after it had

previously been notified that all had disconnected

in its onUnbind(Intent).

57

“erǀiĐes ;ĐoŶ…Ϳ

• onCreate()

– The system calls this method when the service is
first created using onStartCommand() or onBind().
This call is required to perform one-time set-up.

• onDestroy()

– The system calls this method when the service is
no longer used and is being destroyed.

– Your service should implement this to clean up
any resources such as threads, registered
listeners, receivers, etc.

58

Declaring a service in the manifest

• Like activities (and other components), you must
declare all services in your application's manifest file.

• To declare your service, add a <service> element as a
child of the <application> element.

• Example

 <manifest ... >
 ...
 <application ... >
 <service android:name=".ExampleService" />
 ...
 </application>
</manifest>

59

Example

public class MainActivity extends Activity {

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_main);

}

public void startService(View view) {

startService(new Intent(getBaseContext(), MyService.class));

}

public void stopService(View view) {

stopService(new Intent(getBaseContext(), MyService.class));

} }
60

XML file

<Button

 android:layout_width="wrap_content"
android:layout_height="wrap_content"

 android:id="@+id/button1"

 android:text="START SERVICES"

 android:onClick="startService͞ />
<Button

 android:layout_width="wrap_content"
android:layout_height="wrap_content"

 android:text="STOPSERVICES"

 android:id="@+id/button2"

 android:onClick="stopService͞ />

61

Output

62

Example

public class MyService extends Service {

 int mStartMode; // indicates how to behave if the

service is killed

 IBinder mBinder; // interface for clients that bind

 boolean mAllowRebind; // indicates whether onRebind

should be used

 @Override

 public int onStartCommand(Intent intent, int flags, int

startId) {

 Toast.makeText(this, "Service Started",

Toast.LENGTH_LONG).show();

 return mStartMode;

 }

63

Eǆaŵple ;ĐoŶ…Ϳ
 @Override

 public IBinder onBind(Intent intent) {
 // A client is binding to the service with
bindService()
 return mBinder;
 }
 @Override
 public boolean onUnbind(Intent intent) {
 // All clients have unbound with unbindService()
 return mAllowRebind;
 }

64

Eǆaŵple ;ĐoŶ…Ϳ

 @Override

 public void onRebind(Intent intent) {

 // A client is binding to the service with bindService(),

 // after onUnbind() has already been called

 }

 @Override

 public void onDestroy() {

 // The service is no longer used and is being destroyed

 Toast.makeText(this, "Service Destroyed",

Toast.LENGTH_LONG).show();

 }

}

65

9. Broadcast Receivers

• Simply respond to broadcast messages from other

applications or from the system itself.

• These messages are sometime called events or

intents.

• Broadcast receiver who will intercept this

communication and will initiate appropriate action.

• Three important steps

– Creating the Broadcast Receiver.

– Registering Broadcast Receiver

– Broadcasting Custom Intents

66

Creating the Broadcast Receiver

• A broadcast receiver is implemented as a subclass

of BroadcastReceiver class and overriding the onReceive()

method where each message is received as a Intent object

parameter.

• Example

public class MyReceiver extends BroadcastReceiver {

 @Override

 public void onReceive(Context context, Intent intent) {

 Toast.makeText(context, "Intent Detected.",

Toast.LENGTH_LONG).show();

} }

67

Registering Broadcast Receiver

• An application listens for specific broadcast intents by

registering a broadcast receiver in AndroidManifest.xml file.

• Consider we are going to register MyReceiver for system

generated event ACTION_BOOT_COMPLETED which is fired by

the system once the Android system has completed the boot

process.

68

…BroadĐast ReĐeiǀer ;ĐoŶ…Ϳ

• To modify in AndroidManifest.xml file

<receiver android:name="MyReceiver">

 <intent-filter>

 <action

android:name="android.intent.action.BOOT_COMPL

ETED">

 </action>

 </intent-filter>

</receiver>

69

Few important system events

Event Constant Description

android.intent.action.BATTERY_CHANGED Containing the charging state, level, and

other information

android.intent.action.BATTERY_LOW Indicates low battery condition

android.intent.action.BATTERY_OKAY Indicates the battery is now okay after

being low.

android.intent.action.BOOT_COMPLETED After the system has finished booting.

android.intent.action.BUG_REPORT Show activity for reporting a bug.

android.intent.action.CALL Perform a call to someone specified by the

data.

android.intent.action.CALL_BUTTON The user pressed the "call" button to go to

the dialer

android.intent.action.DATE_CHANGED The date has changed.

android.intent.action.REBOOT Have the device reboot.
70

Broadcasting Custom Intents

• If you want your application itself should generate and send

custom intents then you will have to create and send those

intents by using the sendBroadcast() method inside your

activity class.

• To modify the AndroidManifest.xml file

<receiver android:name="MyReceiver">

 <intent-filter>

 <action

android:name="com.example.CUSTOM_INTENT">

 </action>

 </intent-filter>

</receiver>
71

Example

public void broadcastIntent(View view) {

 Intent intent = new Intent();

intent.setAction("com.example.CUSTOM_INTEN

T");

sendBroadcast(intent);

}

72

Example (Overall)

public class MainActivity extends Activity {

@Override public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_main);

}

// broadcast a custom intent.

public void broadcastIntent(View view){

 Intent intent = new Intent();

intent.setAction("com.example.CUSTOM_INTENT");

sendBroadcast(intent);

} }

73

Eǆaŵple ;OǀerallͿ ;ĐoŶ…Ϳ

public class MyReceiver extends

BroadcastReceiver {

@Override public void onReceive(Context

context, Intent intent) {

Toast.makeText(context, "Intent Detected.",

Toast.LENGTH_LONG).show();

} }

74

AndroidManifest.xml

<receiver android:name="MyReceiver">

 <intent-filter>

 <action

android:name="com.example.CUSTOM_INTEN

T">

 </action>

 </intent-filter>

</receiver>

75

XML File

<TextView

 android:id="@+id/textView1"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

aŶdroid:teǆt="Eǆaŵple of BroadĐast͞ />

<Button

 android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:id="@+id/button1"

 android:text="BROADCAST INTENT"

aŶdroid:oŶCliĐk="ďroadĐastIŶteŶt͞ />

76

Output

77

10. Content Provider

• A content provider manages access to a central

repository of data.

• A provider is part of an Android application, which

often provides its own UI for working with the data.

• A content provider component supplies data from

one application to others on request.

• Such requests are handled by the methods of the

ContentResolver class.

• A content provider can use different ways to store its

data and the data can be stored in a database, in

files, or even over a network
78

CoŶteŶt Proǀider ;ĐoŶ…Ϳ

79

CoŶteŶt Proǀider ;ĐoŶ…Ϳ

• Sometimes it is required to share data across

applications. This is where content providers become

very useful.

• Content providers let you centralize content in one

place and have many different applications access it

as needed.

• A content provider behaves very much like a

database where you can query it, edit its content, as

well as add or delete content using insert(), update(),

delete(), and query() methods.

80

Create Content Provider
• First of all you need to create a Content Provider

class that extends the ContentProvider baseclass.

• Second, you need to define your content provider

URI address which will be used to access the content.

• Next you will need to create your own database to

keep the content.

• Next you will have to implement Content Provider

queries to perform different database specific

operations.

• Finally register your Content Provider in your activity

file using <provider> tag.
81

CoŶteŶt Proǀider ;ĐoŶ…Ϳ

• Syntax:

public class MyApplication extends

ContentProvider {

 //To do the code here

}

82

CoŶteŶt Proǀider ;ĐoŶ…Ϳ

• onCreate() This method is called when the provider is started.

• query() This method receives a request from a client. The

result is returned as a Cursor object.

• insert()This method inserts a new record into the content

provider.

• delete() This method deletes an existing record from the

content provider.

• update() This method updates an existing record from the

content provider.

• getType() This method returns the MIME type of the data at

the given URI.

83

AndroidManifest.xml file.

<provider android:name="StudentsProvider" >

<android:authorities="com.example.provider.

College">

</provider>

84

Example

public void onClickAddName(View view) {

// Add a new student record

ContentValues values = new ContentValues();

values.put(StudentsProvider.NAME,

((EditText)findViewById(R.id.txtName)).getText().toString());

values.put(StudentsProvider.GRADE,

((EditText)findViewById(R.id.txtGrade)).getText().toString());

Uri uri = getContentResolver().insert(

StudentsProvider.CONTENT_URI, values);

Toast.makeText(getBaseContext(), uri.toString(),

Toast.LENGTH_LONG).show(); }

85

Example (con..)

public void onClickRetrieveStudents(View view) {

// Retrieve student records String URL =

"content://com.example.provider.College/students";

Uri students = Uri.parse(URL);

Cursor c = managedQuery(students, null, null, null, "name");

if (c.moveToFirst()) {

 do{ Toast.makeText(this,

c.getString(c.getColumnIndex(StudentsProvider._ID)) + ", " +

c.getString(c.getColumnIndex(StudentsProvider.NAME)) + ", "

+ c.getString(c.getColumnIndex(StudentsProvider.GRADE)),

Toast.LENGTH_SHORT).show();

} while (c.moveToNext()); }
86

Example (con..)

@Override

public Uri insert(Uri uri, ContentValues values) {

long rowID = db.insert(STUDENTS_TABLE_NAME, "", values);

if (rowID > 0) {

Uri _uri = ContentUris.withAppendedId(CONTENT_URI, rowID);

getContext().getContentResolver().notifyChange(_uri, null);

return _uri;

}

throw new SQLException("Failed to add a record into " + uri);

}

87

XML file

<Button android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:id="@+id/button1"

 aŶdroid:teǆt="Add Naŵe͞
android:onClick="onClickAddName"/>

<Button android:layout_width="wrap_content"

android:layout_height="wrap_content"

 android:text="Retrive student"

 aŶdroid:id="@+id/ďuttoŶϮ͞
android:onClick="onClickRetrieveStudents"/>

88

Output

89

11. Databases - SQLite

• SQLite is at the heart of AŶdroid’s database
support.

• Simple, small (~350KB), light weight RDMS
implementation with simple API

• Each database is stored as a single file containing
both Pragma & Data

• Writes cause file locking and are always sequential
and blocking

• Reads can be multi-tasked

90

“QLite ;ĐoŶ…Ϳ

• SQLite is so dominant in the embedded and also
the mobile world due to,

• Low memory consumption

• Ease of use

• Free availability

• Open Source

• ACID Compliant

• Uses SQL query language

91

“QLite ;ĐoŶ…Ϳ

• SQLite Version included with Android varies

with OS version

• ≤ Ϯ.ϭ : SQLite 3.5.9

• 2.2 - 2.3.3 : SQLite 3.6.22

• 3.0 – 4.0.3 : SQLite 3.7.4

• 4.1 – 4.4.x : SQLite 3.7.11

• 4.5 : SQLite 3.8.4

• Latest SQLite Version: 3.8.10

92

“QLite ;ĐoŶ…Ϳ

• It differs in many aspects from a conventional

database system.

– SQLite is serverless

– SQLite stores data in one database file

– SQLite offers only a few data types

– SQLite uses manifest typing instead of static types

– SQLite has no fixed column length

– SQLite uses cross-platform database files

93

Data Types in SQLite

• NULL – The null value

• INTEGER - Any number which is no floating point
number

• REAL - A floating point value, 8-byte IEEE floating
point number.

• TEXT - text string and also single characters,
stored using the database encoding (UTF-8, UTF-
16BE or UTF-16LE).

• BLOB - The value is a blob of data, stored exactly
as it was input.

94

SQLite Classes

• SQLiteCursor - A Cursor implementation that
exposes results from a query on a
SQLiteDatabase.

• SQLiteDatabase - Exposes methods to manage a
SQLite database. It has methods to create, delete,
execute SQL commands, and perform other
common database management tasks.

• SQLiteOpenHelper - A helper class to manage
database creation and version management.

• SQLiteProgram - A base class for compiled SQLite
programs.

95

“QLite Classes ;ĐoŶ…Ϳ

• SQLiteQuery – A SQLite program that

represents a query that reads the resulting

rows into a CursorWindow.

• SQLiteQueryBuilder - A convenience class that

helps build SQL queries to be sent to

SQLiteDatabase objects.

• SQLiteStatement - A pre-compiled statement

against a SQLiteDatabase that can be reused.

96

android.database.sqlite.SQLiteDatabase

• Contains the methods for:

– creating

– opening

– closing

– inserting

– updating

– deleting

– querying

97

openOrCreateDatabase()

• This method will open an existing database or

create one in the application data area

SQLiteDatabase myDatabase;

myDatabase = openOrCreateDatabase

("my_sqlite_database.db" ,

SQLiteDatabase.CREATE_IF_NECESSARY, null);

98

Create Table

String createTable = "CREAT TABLE

demo(id INTEGER PRIMARY KEY

AUTOINCREMENT,

firstName TEXT, lastName TEXT);

myDatabase.execSQL(createTable);

99

Insert Records

long insert(String table, String

nullColumnHack, ContentValues values)

import android.content.ContentValues;

ContentValues values = new ContentValues();

values.put("firstname" , "First Name");

values.put("lastname" , "Last Name");

long newAuthorID =

myDatabase.insert("demo" , "" , values);

100

Update Records

int update(String table, ContentValues values,

String whereClause, String[] whereArgs)

Integer demoId=1;

ContentValues values = new ContentValues();

values.put("firstname" , "New First Name");

 myDatabase.update;͞deŵo" , ǀalues ,
 "id=?" , new String[] {demoId.toString() });

101

Record Deletion

int delete(String table, String whereClause,

String[] whereArgs)

String [] whereArgs= {"20", "30"};

recAffected= myDatabase.delete;͞deŵo",
"recID> ? and recID< ?", whereArgs);

102

Queries using SQLite

Android offers two mechanisms for phrasing
SQL-select statements:

•Raw queries take for input a syntactically
correct SQL-select statement. The select
query could be as complex as needed and
involve any number of tables

•Simple queries are compact parameterized
select statements that operate on a single
table

103

Raw Query

1. Cursor c1 = db.rawQuery("select count(*)

as Total from demo",null);

2. String mySQL= "select count(*) as Total

from demo where recID> ? and name = ?";

 String[] args= {"1", "Sathyabama"};

 Cursor c1 = db.rawQuery(mySQL, args);

104

Simple Queries

• Simple queries use a template implicitly

representing a condensed version of a typical

(non-joining) SQL select statement.

• No explicit SQL statement is made.

• Simple queries can only retrieve data from a

single table.

105

“iŵple Queries ;ĐoŶ…Ϳ

• The ŵethod’s signature has a fixed sequence of

seven arguments representing:

1. the table name

2. the columns to be retrieved

3. the search condition (where-clause)

4. arguments for the where-clause

5. the group-by clause

6. having-clause

7. the order-by clause

106

query method

query(String table,

 String[] columns,

 String selection,

 String[] selectionArgs,

 String groupBy,

 String having,

 String orderBy)

107

Simple Query - Example

String[] columns = {"Dno","Avg(Salary) as AVG"};

String[] conditionArgs= {"30", "Chennai"};

Cursor c = db.query("EmployeeTable",

 columns,

 " age>= ? And location= ? " ,

 conditionArgs,

 "Dno",

 "Count(*) > 2",

 "AVG Desc ");

108

Cursors

- Android cursors are used to gain (random) access to tables
produced by SQL select statements.

- Cursors primarily provide one row-at-the-time operations on
a table.

1. Positional awareness operators (isFirst(), isLast(),

isBeforeFirst(), isAfterLast())

2. Record Navigation (moveToFirst(), moveToLast(),

moveToNext(), moveToPrevious(), move(n))

3. Field extraction (getInt, getString, getFloat, getBlob,
getDate)

4. Schema inspection (getColumnName, getColumnNames,

getColumnIndex, getColumnCount, getCount)

109

Cursor Example

String [] columns ={"id", "firstname", "lastname"};

Cursor myCur= db.query("demo", columns, null, null, null,
null, "recID");

int idCol= myCur.getColumnIndex("id");

int fnameCol= myCur.getColumnIndex("firstname");

int lnameCol= myCur.getColumnIndex("lastname");

while(myCur.moveToNext()) {

 columns[0] = Integer.toString((myCur.getInt(idCol)));

 columns[1] = myCur.getString(fnameCol);

 columns[2] = myCur.getString(lnameCol);

 txtMsg.append("\n"+ columns[0] + " " + columns[1] + " " +

columns[2]);

110

12. Publish App in Playstore

• In order to publish applications on Google play, it is necessary

to have a publisher account. To sign up for a publisher account

follow these steps:

• 1. Visit the Google Play Android Developer console

at https://play.google.com/apps/publish.

• 2. Enter basic information about your developer identity.

• 3. Read and accept the Developer Distribution Agreement for

your locale.

• 4. Pay the $25 USD registration fee.

• 5. Confirm verification by e-mail.

• 6. After the account has been created, it is possible to publish

applications using Google Play.

111

Puďlish App iŶ PlaǇstore ;ĐoŶ…Ϳ

• Android application publishing is a process that

makes your Android applications available to users.

• Infect, publishing is the last phase of the Android

application development process.

• Once you developed and fully tested your Android

Application, you can start selling or distributing free

using Google Play.

• You can also release your applications by sending

them directly to users or by letting users download

them from your own website.

112

Puďlish App iŶ PlaǇstore ;ĐoŶ…Ϳ

113

Puďlish App iŶ PlaǇstore ;ĐoŶ…Ϳ
• A simplified check list which will help you in

launching your Android application.

– 1. Regression Testing Before you publish your application,

you need to make sure that its meeting the basic quality

expectations for all Android apps, on all of the devices that

you are targeting. So perform all the required testing on

different devices including phone and tablets.

– 2. Application Rating When you will publish your

application at Google Play, you will have to specify a

content rating for your app, which informs Google Play

users of its maturity level. Currently available ratings are

(a) Everyone (b) Low maturity (c) Medium maturity (d)

High maturity.
114

Puďlish App iŶ PlaǇstore ;ĐoŶ…Ϳ

– 3. Targeted Regions Google Play lets you control what

countries and territories where your application will be

sold. Accordingly you must take care of setting up time

zone, localization or any other specific requirement as per

the targeted region.

– 4. Application Size Currently, the maximum size for an APK

published on Google Play is 50 MB. If your app exceeds

that size, or if you want to offer a secondary download,

you can use APK Expansion Files, which Google Play will

host for free on its server infrastructure and automatically

handle the download to devices.

115

Puďlish App iŶ PlaǇstore ;ĐoŶ…Ϳ

– 5. SDK and Screen Compatibility It is important to

make sure that your app is designed to run

properly on the Android platform versions and

device screen sizes that you want to target.

– 6. Application Pricing Deciding whether your app

will be free or paid is important because, on

Google Play, free app's must remain free. If you

want to sell your application then you will have to

specify its price in different currencies.

116

Puďlish App iŶ PlaǇstore ;ĐoŶ…Ϳ

– 7. Promotional Content It is a good marketing practice to

supply a variety of high-quality graphic assets to showcase

your app or brand. After you publish, these appear on your

product details page, in store listings and search results,

and elsewhere.

– 8. Build and Upload release-ready APK The release-ready

APK is what you will upload to the Developer Console and

distribute to users. You can check complete detail on how

to create a release-ready version of your app: Preparing for

Release

117

Puďlish App iŶ PlaǇstore ;ĐoŶ…Ϳ

– 9. Finalize Application Detail Google Play gives you

a variety of ways to promote your app and engage

with users on your product details page, from

colour-ful graphics, screen shots, and videos to

localized descriptions, release details, and links to

your other apps. So you can decorate your

application page and provide as much as clear

crisp detail you can provide.

118

Puďlish App iŶ PlaǇstore ;ĐoŶ…Ϳ

APK DEVELOPMENT PROCESS
119

Puďlish App iŶ PlaǇstore ;ĐoŶ…Ϳ
• Before exporting the apps, you must know some of

the tools

– Dx tools(Dalvik executable tools): It going to convert .class

file to .dex file. it has useful for memory optimization and

reduce the boot-up speed time

– AAPT(Android assistance packaging tool): It has useful to

convert .Dex file to .apk file

– APK(Android packaging kit): The final stage of deployment

process is called as .apk.

• You will need to export your application as an APK

(Android Package) file before you upload it Google

Play.
120

Puďlish App iŶ PlaǇstore ;ĐoŶ…Ϳ

• To export an application, just open that application

project in Eclipse IDE / Android studio and

select Build → Generate Signed APK from your

Eclipse IDE / Android studio and follow the simple

steps to export your application.

• Next select, Generate Signed APK option as shown in

the above screen shot and then click it so that you

get following screen where you will choose Create

new keystore to store your application.

121

Puďlish App iŶ PlaǇstore ;ĐoŶ…Ϳ

122

Puďlish App iŶ PlaǇstore ;ĐoŶ…Ϳ

123

Puďlish App iŶ PlaǇstore ;ĐoŶ…Ϳ

• Enter your key store path, key store password, key

alias and key password to protect your application

and click on Next button once again. It will display

following screen to let you create an application:

124

Puďlish App iŶ PlaǇstore ;ĐoŶ…Ϳ

• Once you filled up all the information, like app

destination, build type and flavours

click finish button While creating an application it will

show as below

• Finally, it will generate your Android Application as

APK format File which will be uploaded at Google

Play marketplace.

125

13. Sample Applications

• To develop an App for sending data from one

activity to another

• To develop an App for web browser

• To develop an App for sending SMS

• To develop an App for Placement Registration

• To develop an App for Resume

• To develop an App for phone profile changer

• To develop an App for sending notifications

126

