
SIT1402 - Mobile Application 

Development 



Unit- I - Introduction and UI interface 
• 1. Introduction to mobile technologies 

• 2. Mobile operating systems 

• 3. Mobile devices – pros and cons 

• 4. Introduction to Android, Versions,Features 

• 5. Android architecture 

• 6. UI Layouts 

• 7. UI Controls / Widgets 

• 8. Event handling 

• 9. Required Tools- Eclipse, ADT, AVD 

• 10. Application structure 

• 11. Android manifest file 

• 12. Android design philosophy 

• 13. Creating andriod applications 2 



1. Mobile Networks / 

Technologies 

GSM 
GPRS 
EDGE 
1G, 2G, 3G, 4G, 5G 
IEEE 802.11 
Infrared 
Bluetooth 

3 



Cellular Network 
• Base stations transmit to and receive from mobiles at the 

assigned spectrum 
– Multiple base stations use the same spectrum (spectral reuse) 

• The service area of each base station is called a cell 

• Each mobile terminal is typically served by the ‘closest’ 
base stations 
– Handoff when terminals move 



Cellular Network Generations 

• It is useful to think of cellular Network/telephony 
in terms of generations:  

– 0G:  Briefcase-size mobile radio telephones 

– 1G:  Analog cellular telephony 

– 2G:  Digital cellular telephony 

– 3G:  High-speed digital cellular telephony (including 
video telephony) 

– 4G:  IP-based “anytime, anywhere” voice, data, and 
multimedia telephony at faster data rates than 3G  
(to be deployed in 2012–2015) 



Frequency Division Multiple 

Access 

• Each mobile is assigned a separate frequency channel for the 
duration of the call 

• Sufficient guard band is required to prevent adjacent channel 
interference 

• Usually, mobile terminals will have one downlink frequency 
band and one uplink frequency band 

• Different cellular network protocols use different frequencies 
• Frequency is a precious and scare resource. We are running 

out of it. 

frequency 



Time Division Multiple Access 

• Time is divided into slots and only one mobile terminal 
transmits during each slot 
– Like during the lecture, only one can talk, but others may take 

the floor in turn 

• Each user is given a specific slot. No competition in cellular 
network 
– Unlike Carrier Sensing Multiple Access (CSMA) in WiFi 

Guard time – signal transmitted by mobile terminals at different locations do 
no arrive at the base station at the same time 



Code Division Multiple Access 

• Use of orthogonal codes to separate different 
transmissions 

• Each symbol of bit is transmitted as a larger number of 
bits using the user specific code – Spreading 
– Bandwidth occupied by the signal is much larger than the 

information transmission rate 

– But all users use the same frequency band together 

Orthogonal among 
users 



1 GENERATION 

• First generation cellular networks 

• Radio signals = analog 

• Technologies - AMPS (Advanced Mobile 
Phone System) 

• First Blackberry (850)  

 

9 



10 



11 



2G (GSM and GPRS Networks) 

• 2G carriers continued to improve 
transmission quality and coverage paging, 
faxes, text messages and voicemail.  

• 2.5G uses GPRS(General Packet Radio 
Services), which delivers packet-switched 
capabilities to existing GSM networks.  

12 



13 



14 



GSM Architecture 

15 



16 



GSM Evolution to 3G 

GSM 

9.6kbps (one timeslot) 

GSM Data 

Also called CSD 

GSM 

General Packet Radio Services 

Data rates up to ~ 115 kbps 

Max: 8 timeslots used as any one time 

Packet switched; resources not tied up all the time 

Contention based.  Efficient, but variable delays 

GSM / GPRS core network re-used by WCDMA (3G) 

GPRS 

HSCSD 

High Speed Circuit Switched Data 

Dedicate up to 4 timeslots for data connection ~ 50 kbps 

Good for real-time applications c.w. GPRS 

Inefficient -> ties up resources, even when nothing sent 

Not as popular as GPRS (many skipping HSCSD) 

EDGE 

Enhanced Data Rates for Global Evolution 

Uses 8PSK modulation 

3x improvement in data rate on short distances 

Can fall back to GMSK for greater distances 

Combine with GPRS (EGPRS) ~ 384 kbps 

Can also be combined with HSCSD 

WCDMA 



GSM Evolution to 3G (con...) 

• W-CDMA (Wide Band Code Division Multiple 

Access) technology. 

• It also used for services like Wireless Application 

Protocol (WAP) access, Multimedia Messaging 

Service (MMS) or Short Message Service (SMS)  

• Internet communication through the excess to World 

Wide Web and E-mail. 

 

18 



19 



20 



21 



22 



2. Mobile Operating 

Systems 

23 



What is Mobile OS? 

• A Mobile OS is a very basic and essential 
software to operate a Mobile System. 

• A Mobile OS is a software platform which 
is designed specially for mobile to handle 
the devices like Smart phone, Tablet, PDA 
with lot of features and facilities. 

24 



25 



Android 

26 

- Android is a mobile operating system (OS) 
currently developed by Google, based on the 
Linux kernel and designed primarily for 
touchscreen mobile devices such as smartphones 
and tablets. 
- It was developed by Google, Open Handset 
Alliance, Android Open Source Project, Android 
Inc. 
- Source model, open source 
- Written in C (core), C++, and Java (UI) 
- OS family, Unix 



27 

OHA (Open Handset Alliance) 

• A business alliance consisting of 47+ 
companies to develop open standards 
for mobile devices 

 



Apple iOS 

 

28 



iOS 

29 

- iOS (originally iPhone OS) is a mobile operating 
system created and developed by Apple Inc. and 
distributed exclusively for Apple hardware. It is 
the operating system that presently powers many 
of the company's mobile devices, including the 
iPhone, iPad, and iPod touch. 
- It was developed by Apple Inc. June 29, 2007 
-Source model, closed source 
- Written in, C,C++, Objective-C, and Swift 
- OS family, Unix 



Windows 

30 



Windows Mobile 

- Windows Mobile is a mobile operating 
system developed by Microsoft for smart phones 
and Pocket PC’s 
- It was first launched in October 2010 with 
Windows Phone 7  
- Currently maintained with Micosoft Corporation 
- Written in C, C++ 
- OS Family, Microsoft Windows 
 

31 



Blackberry 

32 



33 

- BlackBerry OS is a proprietary mobile operating 
system developed by BlackBerry Ltd for its 
BlackBerry line of smartphone handheld devices. 
- It was developed by BlackBerry Ltd on 
January 19, 1999 
- Source model is closed source  
- Written in, C++ and Java 
- OS family, Mobile Operating Systems 

Blackberry 



Symbian 

34 



- Symbian is a mobile operating system (OS) 
and computing platform designed for smart 
phones  
- Symbian was originally developed as a closed-
source OS for PDAs in 1998 by Symbian Ltd.  
- Currently maintained by Accenture on behalf of 
Nokia (historically Symbian Ltd. and Symbian 
Foundation) 
- Written in C++ 
- OS Family RTOS 

Symbian  

35 



Bada 

 

36 



BADA 

37 

- Bada is an operating system for mobile devices 
such as smartphones and tablet computers. 
- It was developed by Samsung Electronics on 
April 2010. 
- Source model is, Mixed: proprietary and open 
source  
- Written in C++ 
- OS Family, POSIX (Portable Operating System 
Interface for Unix) 



Why Mobile App Development? 

• Mobile platform is the platform of the 
future world 

• Job market is hot 
– Market for mobile software surges from $4.1 billion in 2009 to 

$17.5 billion by 2012 

– In 2010, www.dice.com survey: 72% of recruiters looking for 
iPhone app developers, 60% for Android 

– Dice.com: mobile app developers made $85,000 in 2010 and 
salaries expected to rise 

– According to 2016, 79% of the organizations surveyed plan to 
increase spending on mobile development by 36% 

• Students (and faculty!) are naturally 
interested! 38 



Types of Mobile Appications 

• What are they? 

– Any application that runs on a mobile device 

• Types 

– Web Apps 

– Native Apps 

– Hybrid Apps 

39 



Types of Mobile...(con...) 

• Native Apps 

– It is live on the device and are accessed 
through icons on the device home screen.  

– They are installed through an application 
store (such as Google Play or Apple’s App 
Store).  

– They are developed specifically for one 
platform, and can take full advantage of all the 
device features — they can use the camera, 
the GPS, the accelerometer, the compass, the 
list of contacts, and so on.  

40 



Types of Mobile...(con...) 

• Web Apps 

– They are not real applications; they are 
really websites that, in many ways, look and 

feel like native applications, but are 
not implemented as such.  

– They are run by a browser and typically 
written in HTML5 

– Web apps became really popular when 
HTML5 came around and people realized that 
they can obtain native-like functionality in the 
browser. 41 



Types of Mobile...(con...) 

• Hybrid apps 

– Hybrid apps are part native apps, part web 
apps. 

– Like native apps, they live in an app store and 
can take advantage of the many device 
features available.  

– Like web apps, they rely on HTML being 
rendered in a browser, with the caveat that 
the browser is embedded within the app. 

42 



3. Mobile Devices: Advantages (as 

compared to fixed devices) 

• Always with the user 

• Typically have Internet access 

• Typically GPS enabled 

• Typically have accelerometer & compass 

• Mostly have cameras & microphones 

• Many apps are free or low-cost and etc... 

 

43 



Mobile Devices: Limitations 

• Limited memory 

• Limited processing power 

• Different technologies and standards 

• Limited or awkward input: soft keyboard, phone keypad, 
touch screen, or stylus 

• Small screens 

• Limited and slow network access 

• Slow hardware 

• Limited battery life 

• Limited web browser functionality 

• Often inconsistent platforms across devices and etc... 

44 



Android 
Mobile Application Development 



Prerequisite 

 

• Good knowledge of JAVA language 

• Familiarity with Eclipse IDE 

 

 

   * All the above is not mandatory 

 

46 



4. Introduction to Android 

• Open software platform for mobile development 

• A complete stack – OS, Middleware, 
Applications 

• An Open Handset Alliance (OHA) project 

• Powered by Linux operating system 

• Fast application development in Java 

• Open source under the Apache 2 license 

 

47 



48 

What is Android? 

• Android is a software 
stack for mobile devices 
that includes an operating 
system, middleware and 
key applications.  



Developed by 

• Andy Rubin (co-founder of Danger),  

• Rich Miner (co-founder of Wildfire 
Communications, Inc.), 

• Nick Sears (once VP at T-Mobile)  

• Chris White (headed design and interface 
development at WebTV). 

49 



History of Android 

• 1) Initially, Andy Rubin founded Android 
Incorporation in Palo Alto, California, United 
States in October, 2003. 

• 2) In 17th August 2005, Google acquired 
Android Incorporation. Since then, it is in the 
subsidiary of Google Incorporation. 

• 3) The key employees of Android Incorporation 
are Andy Rubin, Rich Miner, Chris 
White and Nick Sears. 

 
50 



History of Android (con...) 

• 4) Originally intended for camera but shifted to 
smart phones later because of low market for 
camera only. 

• 5) Android is the nick name of Andy Rubin given 
by coworkers because of his love to robots. 

• 6) In 2007, Google announces the development 
of Android OS. 

• 7) In 2008, HTC launched the first android 
mobile. 

 
51 



History of Android (con...) 
• The code names of android ranges from A to N currently, such as  

– 1.0 Astro (some times says no code name) 

– 1.1 Bender (Some times say “Petit four”) 
– 1.5 Cupcake 

– 1.6 Donut 

– 2.x Eclair 

– 2.2 Froyo 

– 2.3.x Gingerbread 

– 3.x.x Honeycomb 

– 4.0.x Ice Cream Sandwitch 

– 4.1.x, 4.2.x and 4.3.x Jelly Bean 

– 4.4.x KitKat and  

– 5.x.x Lollipop 

– 6.0 MarshMallow 

– N (“A Few Weeks”) 



History of Android(con...) 

• Let's understand the android history in a 
sequence. 

 



Android Survey 

54 



Distribution of Devices 

Data collected during a 14-day period ending on January 3, 2012 55 



56 



World wide Mobile OS market share 

57 



 

58 



59 



Why Android? 



Why Android? (con...) 

• A lot of students have them 

– 2010 survey by University of Colorado : 22% of 
college students have Android phone (26% 
Blackberry, 40% iPhone) 

– Gartner survey: Android used on 22.7% of smart 
phones sold world-wide in 2010 (37.6% Symbian, 
15.7% iOS) 

• Students already know Java and Eclipse 

– Low learning curve 

– CS students can use App Inventor for Android 

 
61 



Android Applications 
• Android applications are usually developed in the Java 

language using the Android Software Development Kit 

• Once developed, Android applications can be 
packaged easily and sold out either through a store 
such as Google Play, SlideME, Opera Mobile Store, 
Mobango, F-droid and the Amazon Appstore. 

• Android powers hundreds of millions of mobile devices 
in more than 190 countries around the world. It's the 
largest installed base of any mobile platform and 
growing fast.  

• Every day more than 1 million new Android devices 
are activated worldwide. 



Categories of Android 

applications 
• There are many android applications in the 

market 



Features of Android 

• Android is a powerful operating system 
competing with Apple 4GS and supports 
great features. 

Features Description 

Beautiful UI Android OS basic screen provides a 
beautiful and intuitive user interface. 

Connectivity GSM/EDGE, IDEN, CDMA, EV-DO, UMTS, 
Bluetooth, Wi-Fi, LTE, NFC and WiMAX. 

Storage SQLite, a lightweight relational database, is 
used for data storage purposes. 



Features of Android (con...) 
Features Description 

Media support H.263, H.264, MPEG-4 SP, AMR, AMR-WB, 
AAC, HE-AAC, AAC 5.1, MP3, MIDI, Ogg 
Vorbis, WAV, JPEG, PNG, GIF, and BMP 

Messaging SMS and MMS 

Web browser Based on the open-source WebKit layout 
engine, coupled with Chrome's V8 JavaScript 
engine supporting HTML5 and CSS3. 

Multi-touch Android has native support for multi-touch 
which was initially made available in handsets 
such as the HTC Hero. 

Multi-tasking User can jump from one task to another and 
same time various application can run 
simultaneously. 



Features of Android (con...) 
Features Description 

Resizable 
widgets 

Widgets are resizable, so users can expand 
them to show more content or shrink them to 
save space 

Multi-
Language 

Supports single direction and bi-directional text. 

GCM Google Cloud Messaging (GCM) is a service 
that lets developers send short message data 
to their users on Android devices. 

Wi-Fi Direct A technology that lets apps discover and pair 
directly, over a high-bandwidth peer-to-peer 
connection. 

Android Beam A popular NFC-based technology that lets 
users instantly share, just by touching two 
NFC-enabled phones together. 



Android Features (con...) 
• Application framework enabling reuse and 

replacement of components  

• Dalvik virtual machine optimized for mobile devices  

• Integrated browser based on the open source webkit 
engine  

• Optimized graphics powered by a custom 2D graphics 
library; 3D graphics based on the OpenGL ES 1.0 
specification (hardware acceleration optional) 

• SQLite for structured data storage  

• Media support for common audio, video, and still image 
formats (MPEG4, H.264, MP3, AAC, AMR, JPG, PNG, 
GIF)  

67 



What does it have that other’s 
don’t? 

• Google Map Applications 
 

• Background Services and Applications 
 

• Shared Data and Inter-process communication 
 

• All Applications are created Equal 
 

• P2P Inter-device Application Messaging 
 
• MVC2 Architecture 

 
68 



MVC2 

• The goal of the MVC design pattern is to 
separate the application object (model) 
from the way it is represented to the user 
(view) from the way in which the user 
controls it (controller). 
 

69 



Manufacturer and carrier support 

• Almost all carriers have Android 
 
• HTC  
• LG  
• Sony-Ericsson  
• Geeksphone  
• Dell  
• Motorola  
• Acer  
• Samsung   
• Archos  
• Lenovo 
• Huawei 

 

70 



71 

5. Architecture 



72 

Android S/W Stack - 

Applications 

• Android provides a set of core applications: 

 Email Client 

 SMS Program 

 Calendar 

 Maps 

 Browser 

 Contacts 

 Etc 

 

• All applications are written using the Java language. 



73 

Android S/W Stack –  

Application Framework 

• Enabling and simplifying the reuse of 
components 

Developers have full access to the same 
framework APIs used by the core applications. 

Users are allowed to replace components. 



74 

Android S/W Stack –  

App Framework (Cont) 

• Features 

 Feature Role 

View  
System 

Used to build an application, including lists, grids, text 
boxes, buttons, and embedded web browser 

Content  
Provider 

Enabling applications to access data from other  
applications or to share their own data 

Resource  
Manager 

Providing access to non-code resources (localized strings, 
graphics, and layout files) 

Notification 
Manager 

Enabling all applications to display customer alerts in the  
status bar 

Activity  
Manager 

Managing the lifecycle of applications and providing  
a common navigation back-stack 



75 

Android S/W Stack - Libraries 

• Including a set of C/C++ libraries used by 
components of the Android system 

• Interface through Java 

• Surface manager – Handling UI Windows 

• 2D and 3D graphics 

• Media codes, SQLite, Browser engine 



76 

Android S/W Stack - Runtime 

• Core Libraries 

Providing most of the functionality available in 
the core libraries of the Java language 

APIs 

Data Structures 

Utilities 

File Access 

Network Access 

Graphics 

 



77 

Android S/W Stack – Runtime 

(Cont)  
• Dalvik Virtual Machine 

Providing environment on which every 
Android application runs 

Each Android application runs in its own process, 
with its own instance of the Dalvik VM. 

Dalvik has been written such that a device can run 
multiple VMs efficiently. 

Register-based virtual machine 



78 

Android S/W Stack – Runtime 

(Cont)  
• Dalvik Virtual Machine (Cont) 

Executing the Dalvik Executable (.dex) format 

.dex format is optimized for minimal memory 
footprint. 

Compilation 

 

 

Relying on the Linux Kernel for: 

Threading 

Low-level memory management 



79 

Android S/W Stack – Linux 

Kernel 

 Relying on Linux Kernel 2.6 for core system services 

 Memory and Process Management 

 Network Stack 

 Driver Model 

 Security 

 Providing an abstraction layer between the H/W and the rest of 

the S/W stack  



Android development setup 

Follow the instructions ... 
 
Download the software from the URL: 
 http://developer.android.com/sdk/index.html 
 
Install the following Softwares: 
• Android SDK 
• Eclipse IDE (3.4 or newer) 
• Android Development Tools (ADT) Eclipse plug-in 

 
Bring with you (optional): 
• Android OS enabled Mobile device 
• USB cable so you can test your app on your phone 

80 



Application Fundamentals 

• Apps are written in Java 

• Bundled by Android Asset Packaging Tool 

• Every App runs its own Linux process 

• Each process has it’s own Java Virtual 
Machine 

• Each App is assigned a unique Linux user 
ID 

• Apps can share the same user ID to see 
each other’s files 

 
81 



Applications 

• Lifestyle applications for senior citizens  

• Environmental applications that give data 
about pollution levels. 

• Emergency services ( Hospitals, Police 
station etc.,) 

• Bus services 

• Games 

• E-governance 

• Google map  82 



6. UI Layouts 

• The basic building block for user interface 
is a View object which is created from the 
View class 

• It occupies a rectangular area on the 
screen and is responsible for drawing and 
event handling.  

• View is the base class for widgets, which 
are used to create interactive UI 
components like buttons, text fields, etc. 



UI Layouts (con…) 

• The ViewGroup is a subclass of View and 
provides invisible container that hold other 
Views or other ViewGroups and define 
their layout properties. 

• At third level we have different layouts 
which are subclasses of ViewGroup class  

• A typical layout defines the visual structure 
for an Android user interface. 



UI Layouts (con…) 



UI Layouts (con…) 

• To declare the layout using simple XML 
file main_layout.xml which is located in the 
res/layout folder of your project. 

• A layout may contain any type of widgets 
such as buttons, labels, textboxes, and so 
on. 



A simple XML file having 

LinearLayout 
<?xml version="1.0" encoding="utf-8"?>  
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"  
 android:layout_width="fill_parent"  
 android:layout_height="fill_parent"  
 android:orientation="vertical" >  
<TextView android:id="@+id/text"  
 android:layout_width="wrap_content" android:layout_height="wrap_content"  
 android:text="This is a TextView" />  
<Button android:id="@+id/button"  
 android:layout_width="wrap_content" android:layout_height="wrap_content"  
 android:text="This is a Button" />  
<!-- More GUI components go here -->  
</LinearLayout> 



..LinearLayout (con…) 
• Once the layout has created, it can loaded by 

the help of application code 

• Sample Code 

public void onCreate(Bundle 
savedInstanceState)  

{  

 super.onCreate(savedInstanceState); 
setContentView(R.layout.activity_main);  

} 



Layout Types 

• Linear Layout 

• Relative Layout 

• Table Layout  

• Absolute Layout 

• Frame Layout 

• List View 

• Grid View 



Linear Layout 

• Linear Layout is a view group that aligns all 
children in either vertically or horizontally. 

 



Attributes 

Attribute Description 

android:id This is the ID which uniquely identifies 
the layout. 

android:gravity This specifies how an object should 
position its content, on both the X and 
Y axes. Possible values are top, 
bottom, left, right, center, 
center_vertical, center_horizontal etc. 

android:orientation This specifies the direction of 
arrangement and you will use 
"horizontal" for a row, "vertical" for a 
column. The default is horizontal. 



Example 

<?xml version="1.0" encoding="utf-8"?>  

<LinearLayout 
xmlns:android="http://schemas.android.com/apk/
res/android"  

 android:layout_width="fill_parent"  

 android:layout_height="fill_parent"  

 android:orientation="vertical" >  

<!-- More GUI components go here --> 

</LinearLayout> 



Output 



Relative Layout 

• Relative Layout enables 
you to specify how child 
views are positioned 
relative to each other.  

• The position of each view 
can be specified as relative 
to sibling elements or 
relative to the parent. 



Attributes 

Attribute Description 

android:id This is the ID which uniquely 
identifies the layout. 

android:gravit
y 

This specifies how an object should 
position its content, on both the X 
and Y axes. Possible values are 
top, bottom, left, right, center, 
center_vertical, center_horizontal 
etc. 

By default, all child views are drawn at the top-left of the 
layout, so you must define the position of each view using 
the various layout properties. 



Example 

<RelativeLayout 
xmlns:android="http://schemas.android.co
m/apk/res/android" 
android:layout_width="fill_parent" 
android:layout_height="fill_parent" 
android:paddingLeft="16dp" 
android:paddingRight="16dp" > 

<!-- More GUI components go here --> 

</RelativeLayout> 



Output 



Table Layout 

• TableLayout going to be 
arranged groups of views into 
rows and columns.  

• Use the <TableRow> element 
to build a row in the table.  

• Each row has zero or more 
cells; each cell can hold one 
View object 

•  It don’t display border lines 
for their rows, columns, or 
cells. 



Attributes 
Attribute Description 

android:id This is the ID which 
uniquely identifies the 
layout. 

android:collapseColum
ns 

This specifies the zero-
based index of the 
columns to collapse.  

android:shrinkColumns The zero-based index of 
the columns to shrink.  

android:stretchColumns The zero-based index of 
the columns to stretch.  



Example 

<TableLayout 
xmlns:android="http://schemas.android.com/apk/res/and
roid" android:layout_width="fill_parent" 
android:layout_height="fill_parent">  

 <TableRow 

  android:layout_width="fill_parent" 
 android:layout_height="fill_parent"> 

  <!-- More GUI components go here --> 

 </TableRow> 

 <!-- More Table rows go here --> 

</TableLayout> 



Output 



Absolute Layout 

• Absolute Layout lets 
you specify exact 
locations (x/y 
coordinates) of its 
children.  

• Absolute layouts are 
less flexible and harder 
to maintain than other 
types of layouts without 
absolute positioning. 



Attributes 

Attribute Description 

android:id This is the ID which uniquely 
identifies the layout. 

android:layout_x This specifies the x-
coordinate of the view. 

android:layout_y This specifies the y-
coordinate of the view. 



Example 

<AbsoluteLayout 
xmlns:android="http://schemas.android.com/apk/res/andr
oid"  

 android:layout_width="fill_parent" 
android:layout_height="fill_parent"> 

 <Button android:layout_width="100dp" 
 android:layout_height="wrap_content" 
 android:text="OK"  

  android:layout_x="50px"  

  android:layout_y="361px" /> 

<!-- More GUI components go here --> 

</AbsoluteLayout> 



Output 



Frame Layout 

• Frame Layout is designed to 
block out an area on the 
screen to display a single 
item.  

• Generally, Frame Layout 
should be used to hold a 
single child view, because it 
can be difficult to organize 
child views in a way that's 
scalable to different screen 
sizes without the children 
overlapping each other. 



Attributes 

Attribute Description 

android:id This is the ID which uniquely identifies the 
layout. 

android:foreground This defines the drawable to draw over the 
content and possible values may be a 
color value. 

android:foregroundGravity Defines the gravity to apply to the 
foreground drawable. The gravity defaults 
to fill. Possible values are top, bottom, left, 
right, center, center_vertical, 
center_horizontal etc. 

android:measureAllChildre
n 

Determines whether to measure all 
children or just those in the VISIBLE or 
INVISIBLE state when measuring. Defaults 
to false. 



Example 

<FrameLayout 
xmlns:android="http://schemas.android.co
m/apk/res/android" 
android:layout_width="fill_parent" 
android:layout_height="fill_parent"> 

 <!-- More GUI components go here --> 

</FrameLayout> 



Output 

 



List View 

• List View is a view 
which groups several 
items and display them 
in vertical scrollable list.  

• The list items are 
automatically inserted to 
the list using 
an Adapter that pulls 
content from a source 
such as an array or 
database. 



Attributes 
Attribute Description 

android:id This is the ID which uniquely identifies 
the layout. 

android:divider This is drawable or color to draw 
between list items. 

android:dividerHeight This specifies height of the divider. This 
could be in px, dp, sp, in, or mm. 

android:entries Specifies the reference to an array 
resource that will populate the ListView. 

android:footerDividersEnable
d 

When set to false, the ListView will not 
draw the divider before each footer 
view. The default value is true. 

android:headerDividersEnabl
ed 

When set to false, the ListView will not 
draw the divider after each header view. 
The default value is true. 



Example 

<LinearLayout 
xmlns:android="http://schemas.android.com/apk/res/and
roid" xmlns:tools="http://schemas.android.com/tools" 
android:layout_width="match_parent" 
android:layout_height="match_parent" 
android:orientation="vertical"  

 tools:context=".ListActivity" >  

  <ListView android:id="@+id/mobile_list"   
  android:layout_width="match_parent"  
  android:layout_height="wrap_content" > 
 </ListView>  

</LinearLayout> 



Output 

 



Grid View 

• Grid View shows items 
in two-dimensional 
scrolling grid (rows & 
columns)  

• The grid items are not 
necessarily 
predetermined but 
they automatically 
inserted to the layout 
using a ListAdapter 



Grid View (con…) 

• An adapter actually bridges between UI 
components and the data source that fill 
data into UI Component.  

• Adapter can be used to supply the data to 
like spinner, list view, grid view etc. 



Attributes 

Attribute Description 

android:id This is the ID which uniquely identifies the 
layout. 

android:columnWidth This specifies the fixed width for each column. 
This could be in px, dp, sp, in, or mm. 

android:gravity Specifies the gravity within each cell. Possible 
values are top, bottom, left, right, center, 
center_vertical, center_horizontal etc. 

android:horizontalSpaci
ng 

Defines the default horizontal spacing 
between columns. This could be in px, dp, sp, 
in, or mm. 

android:numColumns Defines how many columns to show.  

android:verticalSpacing Defines the default vertical spacing between 
rows. This could be in px, dp, sp, in, or mm. 



Example 

<?xml version="1.0" encoding="utf-8"?>  

<GridView 
xmlns:android="http://schemas.android.com/apk/res/androi
d"  

 android:id="@+id/gridview"  

 android:layout_width="fill_parent" 
android:layout_height="fill_parent" 
android:columnWidth="90dp"  

 android:numColumns="auto_fit" 
android:verticalSpacing="10dp" 
android:horizontalSpacing="10dp" 
android:stretchMode="columnWidth"  

 android:gravity="center" /> 



Output 



7. UI Controls / Widgets 

• Input controls are the interactive 
components in your app's user interface.  

• Android provides a wide variety of controls 
you can use in your UI, such as buttons, 
text fields, seek bars, check box, zoom 
buttons, toggle buttons, and many more 



UI Controls (con…) 



UI Controls (con…) 
• TextView 

• EditText 

• Button 

• ImageButton 

• ToggleButton 

• AutoCompleteTextVie
w 

• CheckBox 
 

 

• RadioButton 

• RadioGroup 

• ProgressBar 

• Spinner 

• TimePicker 

• DatePicker 
 

 



TextView Control 

• A TextView displays text to the user and 
optionally allows them to edit it.  

• A TextView is a complete text editor, however 
the basic class is configured to not allow editing. 



Attributes 

Attribute Description 

android:id This is the ID which uniquely identifies the 
control. 

android:fontFamily Font family (named by string) for the text. 

android:inputType The type of data being placed in a text 
field. Phone, Date, Time, Number, 
Password etc. 

android:text Text to display. 

android:textAllCaps Present the text in ALL CAPS. Possible 
value either "true" or "false". 

android:textColor Text color. May be a color value. 

android:textSize Size of the text. Recommended dimension 
type for text is "sp" for scaled-pixels. 



Example 

In XML: 

<TextView  

 android:id="@+id/text_id" android:layout_width="300dp" 
android:layout_height="200dp" 
android:capitalize="characters" android:text="hello_world" 
android:textColor="@android:color/holo_blue_dark" 
android:textColorHighlight="@android:color/primary_text_d
ark" android:layout_centerVertical="true" 
android:layout_alignParentEnd="true" 
android:textSize="50dp"/> 

In JAVA: 

TextView txtView = (TextView) findViewById(R.id.text_id); 



Output 



EditText Control 

• A EditText is an 
overlay over TextView 
that configures itself 
to be editable.  

• It is the predefined 
subclass of TextView 
that includes rich 
editing capabilities. 



Attributes 

Attribute Description 

android:autoText If set, specifies that this TextView 
has a textual input method and 
automatically corrects some 
common spelling errors. 

android:drawableBotto
m 

This is the drawable to be drawn 
below the text. 

android:drawableRight This is the drawable to be drawn 
to the right of the text. 

android:editable If set, specifies that this TextView 
has an input method. 

android:text This is the Text to display. 



Example 

In XML: 

<EditText  

 android:id="@+id/edittext" 
android:layout_width="fill_parent" 
android:layout_height="wrap_content" 
android:layout_alignLeft="@+id/button" 
android:layout_below="@+id/textView1" 
android:layout_marginTop="61dp" android:ems="10" 
android:text="@string/enter_text"  

 android:inputType="text" />  

In JAVA: 

EditText  eText = (EditText) findViewById(R.id.edittext); 



Output 



Button Control 

• A Button is a Push-button which can be 
pressed, or clicked, by the user to perform 
an action. 



Attributes 

 Attribute Description 

android:autoText If set, specifies that this TextView 
has a textual input method and 
automatically corrects some 
common spelling errors. 

android:drawableBotto
m 

This is the drawable to be drawn 
below the text. 

android:drawableRight This is the drawable to be drawn 
to the right of the text. 

android:editable If set, specifies that this TextView 
has an input method. 

android:text This is the Text to display. 



Example 

In XML: 

<Button android:layout_width="wrap_content" 
android:layout_height="wrap_content"  

 android:text="Button" android:id="@+id/button" 
android:layout_alignTop="@+id/editText" 
android:layout_alignLeft="@+id/textView1" 
android:layout_alignStart="@+id/textView1" 
android:layout_alignRight="@+id/editText" 
android:layout_alignEnd="@+id/editText" /> 



Example (con…) 
In JAVA: 

Button b1=(Button)findViewById(R.id.button); 
b1.setOnClickListener(new View.OnClickListener()  

 {  

  @Override  

  public void onClick(View v)  

   {  

   Toast.makeText(MainActivity.this,"YOUR 
MESSAGE",Toast.LENGTH_LONG).show();  

   }  

 }); 

 



Output 



ImageButton Control 

• A ImageButton is a AbsoluteLayout which 
enables you to specify the exact location 
of its children.  

• This shows a button with an image 
(instead of text) that can be pressed or 
clicked by the user. 



Attributes 

Attribute Description 

android:adjustViewBounds Set this to true if you want the 
ImageView to adjust its bounds to 
preserve the aspect ratio of its 
drawable. 

android:baseline This is the offset of the baseline within 
this view. 

android:baselineAlignBottom If true, the image view will be baseline 
aligned with based on its bottom edge. 

android:cropToPadding If true, the image will be cropped to fit 
within its padding. 

android:src This sets a drawable as the content of 
this ImageView. 



Example 

In XML: 

<ImageButton 
android:layout_width="wrap_content" 
android:layout_height="wrap_content" 
android:id="@+id/imageButton" 
android:layout_centerVertical="true" 
android:layout_centerHorizontal="true" 
android:src="@drawable/abc"/>  
 

 



Example (con…) 
In JAVA: 

ImageButton imgButton =(ImageButton) 
findViewById(R.id.imageButton); 
imgButton.setOnClickListener(new 
View.OnClickListener()  

 {  

  @Override public void onClick(View v)  

  {  

  
 Toast.makeText(getApplicationContext(),“Test 
Image Button",Toast.LENGTH_LONG).show();  

  }  

 }); 



Output 



ToggleButton Control 

• A ToggleButton displays 
checked/unchecked states as a button.  

• It is basically an on/off button with a light 
indicator. 



Attributes 

Attribute Description 

android:disabledAlpha This is the alpha to apply 
to the indicator when 
disabled. 

android:textOff This is the text for the 
button when it is not 
checked. 

android:textOn This is the text for the 
button when it is checked. 



Example 
In XML: 

<ToggleButton  

  android:layout_width="wrap_content" 
android:layout_height="wrap_content"  

 android:text="On"  

 android:id="@+id/toggleButton1“ 
  android:checked="true" />  

<ToggleButton  

 android:layout_width="wrap_content" 
android:layout_height="wrap_content"  

 android:text="Off"  

 android:id="@+id/toggleButton2"  

 android:checked="true“ />  

<Button  

 android:layout_width="wrap_content" 
android:layout_height="wrap_content
"  

 android:id="@+id/button2"  

 android:text="ClickMe“ /> 



Example (con…) 
In JAVA: 

ToggleButton tg1,tg2;  

Button b1; 

tg1=(ToggleButton)findViewById(R.id.toggleButton1); 

tg2=(ToggleButton)findViewById(R.id.toggleButton2); 

b1=(Button)findViewById(R.id.button2); 

b1.setOnClickListener(new View.OnClickListener() {  

@Override public void onClick(View v) {  

StringBuffer result = new StringBuffer();  

result.append("You have clicked first ON Button").append(tg1.getText());  

result.append("\You have clicked Second ON Button 
").append(tg2.getText()); 

Toast.makeText(MainActivity.this,result.toString(),Toast.LENGTH_SHORT)
.show(); } }); 



Output 



AutoCompleteTextView 

Control 
• A AutoCompleteTextView is a view that is similar 

to EditText, except that it shows a list of 
completion suggestions automatically while the 
user is typing. 

• The list of suggestions is displayed in drop down 
menu.  

• The user can choose an item from there to 
replace the content of edit box with. 



Attributes 
Attribute Description 

android:completionHintVie
w 

This defines the hint view displayed in the 
drop down menu. 

android:completionThresho
ld 

This defines the number of characters that 
the user must type before completion 
suggestions are displayed in a drop down 
menu. 

android:dropDownAnchor This is the View to anchor the auto-
complete dropdown to. 

android:dropDownHeight This specifies the basic height of the 
dropdown. 

android:dropDownSelector This is the selector in a drop down list. 

android:dropDownWidth This specifies the basic width of the 
dropdown. 

android:popupBackground This sets the background. 



Example 

In XML: 

<AutoCompleteTextView 
android:id="@+id/autoCompleteTextView1
" android:layout_width="wrap_content" 
android:layout_height="wrap_content" 
android:layout_alignLeft="@+id/textView2" 
android:layout_below="@+id/textView2" 
android:layout_marginTop="54dp" 
android:ems="10" /> 



Example (con…) 
In JAVA: 

AutoCompleteTextView autocompletetextview; String[] 
arr = { "Paries,France", "PA,United 
States","Parana,Brazil", "Padua,Italy", 
"Pasadena,CA,United States"};  

autocomplete = (AutoCompleteTextView) 
findViewById(R.id.autoCompleteTextView1); 

ArrayAdapter<String> adapter = new 
ArrayAdapter<String> 
(this,android.R.layout.select_dialog_item, arr); 

autocomplete.setThreshold(2); 

autocomplete.setAdapter(adapter); 



Output 



CheckBox Control 

• A CheckBox is an 
on/off switch that can 
be toggled by the user.  

• To use check-boxes 
when presenting users 
with a group of 
selectable options that 
are not mutually 
exclusive. 



Attributes 

Attribute Description 

android:autoText If set, specifies that this TextView 
has a textual input method and 
automatically corrects some 
common spelling errors. 

android:drawableBot
tom 

This is the drawable to be drawn 
below the text. 

android:drawableRig
ht 

This is the drawable to be drawn to 
the right of the text. 

android:editable If set, specifies that this TextView 
has an input method. 

android:text This is the Text to display. 



Example 

In XML: 

<CheckBox android:id="@+id/checkBox1" 
android:layout_width="wrap_content" 
android:layout_height="wrap_content"  

 android:text="Do you like android“ 
 android:checked="false“ /> 

 <CheckBox android:id="@+id/checkBox2" 
android:layout_width="wrap_content" 
android:layout_height="wrap_content"  

 android:text="Do you like android "  

 android:checked="false“ /> 



Example (con…) 
In JAVA: 

 CheckBox ch1,ch2; Button b1,b2; 

 ch1=(CheckBox)findViewById(R.id.checkBox1); 
ch2=(CheckBox)findViewById(R.id.checkBox2); 
b1=(Button)findViewById(R.id.button); 

 b1.setOnClickListener(new View.OnClickListener() { 
@Override  

 public void onClick(View v) {  

 StringBuffer result = new StringBuffer();  

 result.append("Thanks : ").append(ch1.isChecked()); 
result.append("\nThanks: ").append(ch2.isChecked()); 
Toast.makeText(MainActivity.this, result.toString(), 
Toast.LENGTH_LONG).show(); }  

}); 



Output 



RadioButton Control 

• A RadioButton has two states: either 
checked or unchecked. 

• This allows the user to select one option 
from a set. 



Example 

In XML: 

<RadioGroup 

 <RadioButton  

  android:text="JAVA"  

  android:id="@+id/radioButton1"  

  android:checked="false“ />  
 <RadioButton  

  android:text="ANDROID"  

  android:id="@+id/radioButton2“  
  android:checked="false“ />  

<RadioButton  

 android:text="HTML"  

 android:id="@+id/radioButton
3“  

 android:checked="false“ /> 

</RadioGroup> 



Example (con…) 
In JAVA: 

RadioButton rb1;   RadioGroup rg1;   Button b1; 

addListenerRadioButton(); 

private void addListenerRadioButton() {  

 rg1 = (RadioGroup) findViewById(R.id.radioGroup);  

 b1 = (Button) findViewById(R.id.button1); 
b1.setOnClickListener(new View.OnClickListener() { 
@Override public void onClick(View v) {  

 int selected=rg1.getCheckedRadioButtonId(); 
rb1=(RadioButton)findViewById(selected); 
Toast.makeText(MainActivity.this,rb1.getText(),Toast.LE
NGTH_LONG).show(); } }); } 



Output 



RadioGroup Control 

• A RadioGroup class is used for set of 
radio buttons. 

• If we check one radio button that belongs 
to a radio group, it automatically unchecks 
any previously checked radio button within 
the same group. 

  

(Refer RadioButton) 



Progress Bar Control 

• Progress bars are used to show progress of a 
task.  

• A class called ProgressDialog that allows you to 
create progress bar.  

• Syntax: 

 ProgressDialog progress = new 
ProgressDialog(this); 

• For example, when you are uploading or 
downloading something from the internet, it is 
better to show the progress of download/upload 
to the user. 



ProgressDialog class methods 
Methods Description 

getMax() This method returns the maximum value 
of the progress. 

incrementProgressBy(int 

diff) 
This method increments the progress bar 
by the difference of value passed as a 
parameter. 

setIndeterminate(boolean 

indeterminate) 
This method sets the progress indicator 
as determinate or indeterminate. 

setMax(int max) This method sets the maximum value of 
the progress dialog. 

setProgress(int value) This method is used to update the 
progress dialog with some specific value. 

show(Context context, 

CharSequence title, 

CharSequence message) 

This is a static method, used to display 
progress dialog. 



Example 

In XML: 

<Button 
android:layout_width="wrap_content" 
android:layout_height="wrap_content" 
android:text="DOWNLOAD" 
android:onClick="download" 
android:id="@+id/button1" 
android:layout_marginLeft="125dp" 
android:layout_marginStart="125dp" 
android:layout_centerVertical="true" /> 



Example (con…) 
In JAVA: 

Button b1;  

private ProgressDialog progress; 

b1 = (Button) findViewById(R.id.button1); 

public void download(View view){  

 progress=new ProgressDialog(this); 
progress.setMessage("Downloading Music");  

 progress.setProgressStyle(ProgressDialog.STYLE_HORI
ZONTAL); progress.setIndeterminate(true);  

 progress.setProgress(0);  

 progress.show();  

  



Example (con…) 
final int totalProgressTime = 100;  

 final Thread t = new Thread() {  

 @Override public void run() {  

  int jumpTime = 0;  

  while(jumpTime < totalProgressTime) {  

   try {   

    sleep(200);  

    jumpTime += 5;  

    progress.setProgress(jumpTime); }  

   catch (InterruptedException e) { } 

   } } }; 

  t.start(); } 

 



Output 



Spinner Control 

• Spinner allows you to select an item from 
a drop down menu. 

 



Example 

In XML: 

<Spinner android:id="@+id/spinner" 
android:layout_width="fill_parent" 
android:layout_height="wrap_content" 
android:prompt="@string/spinner_title"/> 

In JAVA: 

Spinner spinner = (Spinner) findViewById(R.id.spinner); 

spinner.setOnItemSelectedListener(this);  

List<String> categories = new ArrayList<String>();  

 categories.add(“Automobile");  
  categories.add(“Business Services"); 
 



Example (con…) 
 categories.add("Computers");  

 categories.add("Education");  

 categories.add("Personal");  

 categories.add("Travel"); 

ArrayAdapter<String> dataAdapter = new 
ArrayAdapter<String>(this, 
android.R.layout.simple_spinner_item, categories); 

dataAdapter.setDropDownViewResource(android.R.layout.
simple_spinner_dropdown_item);  

spinner.setAdapter(dataAdapter); 



Example (con…) 
public void onItemSelected(AdapterView<?> 

parent, View view, int position, long id) {  

String item = 
parent.getItemAtPosition(position).toString();  

Toast.makeText(parent.getContext(), "Selected: " 
+ item, Toast.LENGTH_LONG).show();  

} 



Output 



TimePicker Control 

• Time Picker allows you to select the time of day 
in either 24 hour or AM/PM mode.  

• The time consists of hours, minutes and clock 
format.  

• Android provides this functionality through 
TimePicker class. 



Methods 

Methods Description 

is24HourView() This method returns true if this is in 24 
hour view else false 

isEnabled() This method returns the enabled 
status for this view 

setCurrentHour(Integer 

currentHour) 
This method sets the current hour 

setCurrentMinute(Integer 

currentMinute) 
This method sets the current minute 

setEnabled(boolean enabled) This method set the enabled state of 
this view 

setIs24HourView(Boolean 

is24HourView) 
This method set whether in 24 hour or 
AM/PM mode 

setOnTimeChangedListener(TimePi

cker.OnTimeChangedListener 

onTimeChangedListener) 

This method Set the callback that 
indicates the time has been adjusted 
by the user 



Example 
In XML: 

<TimePicker android:id="@+id/timePicker1" 
android:layout_width="wrap_content" 
android:layout_height="wrap_content" /> 

In JAVA: 

TimePicker timePicker1; 

 

timePicker1 = (TimePicker)findViewById(R.id.timePicker1); 

 

int hour = timePicker1.getCurrentHour();  

 

int min = timePicker1.getCurrentMinute(); 

 



Output 

 



DatePicker Control 
• Date Picker allows you to select the date 

consisting of day, month and year in your 
custom user interface.  

• Android provides DatePicker and 
DatePickerDialog components. 



Methods 
Methods Description 

getDayOfMonth() This method gets the selected day of 
month 

getMonth() This method gets the selected month 

getYear() This method gets the selected year 

setMaxDate(long maxDate) This method sets the maximal date 
supported by this DatePicker in 
milliseconds  

setMinDate(long minDate) This method sets the minimal date 
supported by this NumberPicker in 
milliseconds  

setSpinnersShown(boolean 

shown) 
This method sets whether the spinners 
are shown 

updateDate(int year, int month, 

int dayOfMonth) 
This method updates the current date 

getCalendarView() This method returns calendar view 

getFirstDayOfWeek() This Method returns first day of the week 



Example 

In JAVA: 

DatePicker datePicker; 

Calendar calendar; 

int year, month, day; 

calendar = Calendar.getInstance();  

year = calendar.get(Calendar.YEAR);  

month = calendar.get(Calendar.MONTH);  

day = calendar.get(Calendar.DAY_OF_MONTH); 



8. Event Handling 

• Events are a useful way to collect data 
about a user's interaction with interactive 
components of Applications.  

• Like button presses or screen touch etc.  

• The Android framework maintains an 
event queue as first-in, first-out (FIFO) 
basis.  

• Capture these events in program and take 
appropriate action as per requirements. 



Event Handling (con…) 

• Event Management 

– Event Listeners 

• An event listener is an interface in the View class 
that contains a single callback method.  

• These methods will be called by the Android 
framework when the View to which the listener has 
been registered is triggered by user interaction 
with the item in the UI. 



Event Handling (con…) 
– Event Handlers 

• When an event happens and we have registered in 
the event listener for the event, the event listener 
calls the Event Handlers, which is the method that 
actually handles the event. 

– Event Listeners Registration 

• Event Registration is the process by which an 
Event Handler gets registered with an Event 
Listener so that the handler is called when the 
Event Listener fires the event 

 



Event Listeners & Event 

Handlers 
Event Handler Event Listener Description 

onClick() OnClickListener() This is called when the 
user either clicks or 
touches or focuses upon 
any widget like button, 
text, image etc. 

onLongClick() OnLongClickListener() This is called when the 
user either clicks or 
touches or focuses upon 
any widget like button, 
text, image etc. for one or 
more seconds. 

onFocusChange
() 

OnFocusChangeListene
r() 

This is called when the 
widget looses its focus. 



Event Listeners & Event 

Handlers (con…) 
onKey() OnFocusChangeListener

() 

This is called when the 
user is focused on the 
item and presses or 
releases a hardware key 
on the device. 

onTouch() OnTouchListener() This is called when the 
user presses the key, 
releases the key, or any 
movement gesture on 
the screen. 

onMenuItemClick() OnMenuItemClickListene

r() 
This is called when the 
user selects a menu 
item. 

onCreateContextMenu
() 

onCreateContextMenuIte

mListener() 
This is called when the 
context menu is being 
built(as the result of a 
sustained "long click”). 



Event Listeners Registration 

• Event Registration is the process by which an 
Event Handler gets registered with an Event 
Listener so that the handler is called when the 
Event Listener fires the event.  

• Top 3 ways are, 

– Using an Anonymous Inner Class 

– Activity class implements the Listener interface. 

– Using Layout file activity_main.xml to specify event 
handler directly. 

 



Example 

• Using an Anonymous Inner Class 

Button b1; 

b1=(Button)findViewById(R.id.button); 

b1.setOnClickListener(new View.OnClickListener() 
{ @Override  

 public void onClick(View v) {  

 TextView txtView = (TextView) 
findViewById(R.id.textView);  

 txtView.setTextSize(25); } }); 



Example (con…) 
• Activity class implements the Listener interface 

 BtnListener listener = new BtnListener();  

 ((Button) 
findViewById(R.id.btnNum0Id)).setOnClickListen
er(listener); 

private class BtnListener implements 
OnClickListener { // On-click event handler for all 
the buttons @Override public void onClick(View 
view) { 

  //ToDo the code here…. 
} } 



Example (con…) 
• Using Layout file activity_main.xml to specify 

event handler directly 

• In XML 

<Button  

 android:layout_width="wrap_content" 
android:layout_height="wrap_content" 
android:text="Small font"  

 android:id="@+id/button“  
 android:onClick=“Font_Change”/> 



Example (con…) 

• In JAVA 

public void Font_Change(View v) {  

TextView txtView = (TextView) 
findViewById(R.id.textView);  

 txtView.setTextSize(25); 

} 



9. Tools - Eclipse IDE 

 



Eclipse IDE (con…) 

 



DDMS Configuration 

 



New Android Project Creation 

 



Giving Name Application / 

Project 
 



Con… 

 



Icon Customization 

 



Customized Icon 

 



Activity type selection 

 



Customize the activity name 

 



Default code appear in Eclipse 

IDE 

 



Creating AVD Manager 

 



AVD Configuration 

 



Launching the AVD 

 



Launching the AVD (con…) 

 



AVD – Emulator 

 



Configure the Logcat 

 



Application running status 

displayed in Logcat 
 



Output  

 



10. Application Structure 

 



Application Structure (con…) 

1. src 

2. gen 

3. bin 

4. res/drawable-hdpi 

5. res/layout 

6. res/values 

7. AndroidManifest.xml 



Application Structure (con…) 
1. src 

– This contains the .java source files for your project.  

– By default, it includes an MainActivity.java source file 
having an activity class that runs when your app is 
launched using the app icon. 

2. gen 

– This contains the .R file, a compiler-generated file that 
references all the resources found in your project.  

– User should not modify this file. 

 



Application Structure (con…) 
• bin 

– This folder contains the Android package 
files .apk built by the ADT during the build process 
and everything else needed to run an Android 
application. 

• res/drawable-hdpi 

– This is a directory for drawable objects that are 
designed for high-density screens. 

• res/layout 

– This is a directory for files that define your app's user 
interface. 



Application Structure (con…) 

• res/values 

– This is a directory for other various XML files 
that contain a collection of resources, such as 
strings and colours definitions. 

• AndroidManifest.xml 

– This is the manifest file which describes the 
fundamental characteristics of the app and 
defines each of its components. 

 



11. AndroidManifest 

• The component you develop as a part of 
your application, you must declare all its 
components in a manifest.xml which 
resides at the root of the application 
project directory.  

• This file works as an interface between 
Android OS and your application, so if you 
do not declare your component in this file, 
then it will not be considered by the OS. 



AndroidManifest (con…) 
• Default manifest file will look like as following file 

<manifest 
xmlns:android="http://schemas.android.com/apk/res/and
roid" package="com.example.helloworld"  

 android:versionCode="1"  

 android:versionName="1.0" >  

 <uses-sdk  

  android:minSdkVersion="8"  

  android:targetSdkVersion="22" />  

  



AndroidManifest (con…) 
 <application  

    android:icon="@drawable/ic_launcher"  

    android:label="@string/app_name"  

    android:theme="@style/AppTheme" >  

   <activity  

      android:name=".MainActivity"  

      android:label="@string/title_activity_main" >  

  <intent-filter>  

     <action android:name="android.intent.action.MAIN" 
/>  

    <category 
android:name="android.intent.category.LAUNCHER"/> 
</intent-filter> </activity> </application> </manifest> 

 



AndroidManifest (con…) 
• <application>...</application> tags enclosed the 

components related to the application. 

• Attribute android:icon will point to the application 
icon available underres/drawable-hdpi. 

• The @string/app_name refers to the app_name 
string defined in the strings.xml file, which is 
"HelloWorld" 

• The <activity> tag is used to specify an activity 
and android:name attribute specifies the fully 
qualified class name of the Activity subclass. 



AndroidManifest (con…) 
• The android:label attributes specifies a string to 

use as the label for the activity / application. 

• The action for the intent filter is named 
android.intent.action.MAIN to indicate that this 
activity serves as the entry point for the 
application. 

• The category for the intent-filter is named 
android.intent.category.LAUNCHER to indicate 
that the application can be launched from the 
device's launcher icon. 



AndroidManifest (con…) 
• Following is the list of tags which you will use in 

your manifest file to specify different Android 
application components. 

– <activity> elements for activities 

– <service> elements for services 

– <receiver> elements for broadcast receivers 

– <provider> elements for content providers 

 



 

 

218 

• To know about the history, features and various 
versions of Android 

• Draw the Android architecture 

• To study various tools used in Android 
development 

• To study about Eclipse IDE 

• To develop first Android App “Hello World” 
• To implement the various Android layouts 

• To implement the various Android UI controls 

• To study the importance of Android application 
structure and Android manifest file  

Practices 


