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UNIT – V 

NUMERICAL METHODS 

 

Approximate methods for determining fundamental frequency, Dunkerleys lower 

bound, Rayleighs upper bound, Holzer method for closed coupled system and branched 

system. 

 

Dunkerlyes equation. 

     

 It relates the fundamental frequency of a composite system to the frequencies of its 

component parts.  It is based on the fact that modal frequencies of most system for higher 

modes are high wth respect to their fundamental frequency. It is an approximate equation and 

can be derived from an algebraic rule. 

 

Damped Natural frequency. 

 

The damped natural frequency is that frequency of free vibration of a damped linear 

system.  The free vibration of a damped system may be considered periodic in the limited 

sense that the time interval between zero crossings in the same direction is constant. Even 

though successive amplitudes decrease progressively.  

 

Dunkerleys lower bound method to determine the frequency of a system. 

 

 Consider the eigen value problem in the form of for n degree of freedom system , the 

frequency equation will be  

 

   

 Z
n 

– C n-1 Z 
n-1

+…..+C0 = 0                                                                             (1.1) 

 

Where C n-1 coefficient from theory of questions represents sum of all the roots of the 

equation from (6.24), we can write  

 

  C n-1 = α11m1 + α22m2+…+α nn mr 

 

          = 1/p1
2
+p2

2
+….+1/pn

2      

 
(1.2) 

 

Since influence coefficient α ii = 1/Kii we define  

 

  pn
2  

= 1/ α11m1        (1.3) 

 

Where pii represents the natural frequency of the system with only the i
th

 mass considered 

 

Equation (1.2) now becomes  

 

  1/p1
2
+p2

2
+….+1/pn

2
 = 1/p11

2
+p22

2
+….+1/pnn

2 
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 (1.4) 

Since  p1<p2< …. < pn , we can write the above as 

 

  1/pn
2
 = ∑1/ pii

2 
       (1.5) 

 
  

  The above is Dunkereley’s formula and because of the removal of   p2 ,……….., 

pn  terms of the left hand side of equation  (1.4), p1
 
estimated by (1.5) is always less than the 

exact value  . The simplicity of the method lies in the fact that p1 can be estimated by 

considering several single freedom systems with masses m1, m2 etc., considered 

individually, thus reducing the multi degree of freedom system calculations to single degree 

of freedom system calculations. 

 

Rayleighs upper bound method to determine the frequency of a system. 

 

 Consider the multi degree of freedom system with [M] and [K] representing its mass 

and stiffness matrices as in equation (6.7). Let [X] be a modal vector ( as in equation (6.11) 

with its column representing ith mode shape corresponding to its natural frequency pi) and 

for the case of harmonic motion with a frequency ω, the maximum kinetic and potential 

energies are  

 

     

Ť = ½ ω
2
 {X}

 T
 {M} {X}      

Ǔ = ½ {X}
 T

 {K} {X}       (1.6) 

 

So,          

ω
2 =

 {X}
 T

 {K} {X}/{X}
 T

 {M} {X}     (1.7) 

 

The above equation is known as Rayleigh’s quotient. If ω is a natural frequency and 

{X} is corresponding modal vector, (1.7) will be exactly satisfied. However, neither of them 

is known at this stage of calculations. Let us assume a modal vector {X} consistent with the 

kinematics boundary conditions of the system. As in modal expansion, let {X} be expressed 

in terms of orthonormal modal vectors  

 

{X} = {X
1
}+ C2{X

2
}+C3{X

3
}+….        (1.8) 

 

Substituting the above for {X} in (1.7) and noting that  

 

ω
2 

= p1
2
+ C2

2
 p2

2
+…. /1+ C2

2+…. 

 

If {X} is close to {X
1
}, then C2 << 1, C3 < C2, then  

 

  ω
2 

= p1
2
 (1+ C2

2
 p2

2
/ p1

2
+….) 

 

     = p1
2  

        (1.9) 

           

 
 
ω

2 
determined from (1.9) is always greater than the exact value p1

2. 
Since Dunkerleys 
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lower bound method gives a lower bound value, the exact frequency of a system lies in 

between Dunkereley’s and Rayleighs approximations. 

  

Holzer method for closed coupled system. 

 
Consider the close coupled system of fig. again, the i

th
 mass and neighboring elements of 

which are shown. We measure the displacement, velocity and acceleration positive along the 

outward normal. The displacement X and the force F will define the state vector. 

 

{S}   =     {X} 

                {F} 

 

We use a suffix to denote the station number and a superscript R or L to denote the quantities 

to the right or left of a station respectively. The equation of motion for i
th

 mass is 

 

mixi   = Fi
R
 – Fi

L
 

 

The displacement of mass mi is 

 

Xi
R
 = Xi

L
 = Xi 

We combine the equations 

 

{S}i
R
 = [P]i {S} i

L
 

 

[P] is the point matrix which defines the transfer function to obtain the state vector to the 

right of a station in terms of the state vector to the left of a station. 

 

The point matrix is a function of the mass of the station and the harmonic frequency ω. For an 

assumed value of ω, the point matrices for all station can be set up. 

 

Now we consider the force field of the spring Ki and observe that 

 

{S}i
L
 = [F]i {S} i-1

R
 

 

[F] is the field matrix which define the transfer function across field. The field matrix is a 

function of the stiffness of the system only and can be set up for all stations i. 

 

{S}i
R
 = [T]i {S} i-1

R
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[T] is the transfer matrix. 

 

It is important to maintain the order of matrix multiplication and the station 

numbering in using the above transfer matrix. We can use equation for transfer of state vector 

from station successively to obtain the overall transfer matrix of the systems. 

 

{S}1
R
 = [T]1 {S} 0 

 

{S}n+1 = [U] {S} 0 

 

[U]  is the overall transfer matrix of the system. 

 

Procedure to find determine a natural frequency, we adopt the following procedure.    

 

1. Assume a value of ω2
 
representing the desired natural frequency. This may be 

obtained by making a crude model with few stations or by experience. 

 

2. Set up transfer matrices as in equation for all stations. At the end points 

determine the required point or field matrices.   

 

3. Determine the overall transfer matrix as in equation. 

 

4. Change ω
2
 by a suitable increment and repeat steps 1 to 3. 

 

5. Plot u12 vs ω
2
 and find the value ω

2
 for which u12 is zero. This value of ω

2 
is a 

natural frequency. 

 

Holzer method for branched system. 

 

In several mechanical systems, like ship propulsion systems, strip steel mill stands, 

machine tool drives etc.., there may be one or two branch points, as the employ one or two 

drivers driving one or two driven members. 

 

The Holzer’s Method 

 

Consider the system shown in fig. 

Equations of motion are 
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   

        

       

    

1 1 1 2

2 2 1 2 1 2 3 2

3 3 2 3 2 3 4 3

4 4 3 4 3

                        I K ( ) 0

I K ( ) K ( ) 0                   (1)

I K ( ) K ( ) 0

                      I K ( ) 0

 

Assuming 

 

   

1 1 n

2 2 n

3 3 n

4 4 n

cos  t

cos  t              (2)

cos  t

cos  t

   

    

   

   

 

 

and substituting in equation (1) and rearranging, we get 

 

  

1 n 1 1 2 1

2 n 2 1 2 1 2 3 2

3 n 3 2 3 2 3 4 3

4 n 4 3 4 3

 -I 2  = K ( )

I 2 K ( ) K ( )                   (3)

I 2 K ( ) K ( )

-I 2 K ( )

    

            

           

      

 

Adding these, equation (3) results in the right hand side being zero. 

 

So in general 

 

  n nI 2 0    (4)     

 

Where summation is for all the masses. 

This means that we can find the natural frequency by trial till equation (4) is satisfied. This is 

the basis Holzer’s Method. 

 

Further assuming that 1 = 1 radian (since we are interested only in the relative amplitudes) 
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we get 

 

  

1 n 1
2 1

1

1 n 1 2 n 2
3 2

2

1 n 1 2 n 2 3 n 3

4 3

a

I 2

K

I 2 I 2
                     (5)

K

I 2 I 2 I 2

K

 
   

    
    

       
   

 

 

Or in general, 

 

   
i 1

4 i 1 i 1 n 3
1i

1
K 2 I    (6)

K 1



 

  
          

  

 

 The Holzer’s method then consists in assuming value for the natural frequency and 

displacement of one of the rotors. Equation (6) then may be used to find the displacements of 

any other rotor and the sum of the inertia forces. If the system is free at the ends, equation (4) 

must hold. If it is fixed at same point, equation (6) which can be used to obtain the 

displacement of that point should yield zero displacement. If it is not zero, another trial must 

be made with another frequency. Thus a graph may be plotted for displacement vs assumed 

frequency. The frequency for zero displacement is then the natural frequency. The mode 

shapes may then be obtained with the help of equation (6). 

 

The method is equally applicable to translational systems. 

 

Holzer’s method can be applied to branched systems. Any end rotor could be given a 

unit displacement to state with without affecting the final result. All amplitudes and moments 

have to be proportional to this initially assumed displacements. It may be further seen that the 

joint must be equal, and that the total; moment at the joint including its inertia moment must 

equal zero. 

 

A single degree of freedom spring mass system has a natural frequency of 10 cycles per 

second. Another single degree of freedom spring mass system is attached to it. The latter 

had a natural frequency of 20 cycles/second. What is the approximate fundamental 

frequency of composite system? 

 

Solution : from Dunkerley’s equation 

 

  



 

 

 

 

7 

   

2 2 2

2

1n 11 22

1n

1 1 1

1 1
       =

100 400

5 1
       =

400 80

or  80

therefore  80 8.95 cycle / second.


  





 

  

 

 

6. Find the principal modes of the system shown in fig. 

 

 

 
 

 

 

Solution : 

 

Inertia or mass matrix is 

 

  
m 0

0 m

 
 
 

 

 

and the stiffness matrix is K 

 

  
5 1

1 5

 
 
 

 

 

So dynamic matrix C is 
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   
1

m K

1 0 5 1K

m 0 1 1 5

5 1K

m 1 5



  
   

  

 
  

 

 

 

Eigen values of this matrix are given as 

 

  

2 2

n

5K K
          0

m m

5K K
-

m m
or       0             (2)

K 5K

m m

K 4K
so       =  or 

m m

Hence

6K 4K
               and  

m m

   
      
   



 

 




 

 

 

The adjoint of (2) is 

 

  

5K K

m m

K 5K

m m

 
   
 
   
  

 

 

and hence the two principal modes are 

 

  
1

 and 
1 1

      
   
      

 

 

For the two cases, 

 

For displacements in vertical direction 
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  my1+6Ky1 = 0 

and   my2+4Ky2 = 0   (3) 

 

and hence the natural frequencies are 

 

  
6K 4K

  and 
m m

 

 

in vertical direction. This is a system which has same natural frequencies in both the 

directions. 

 

Find one natural frequency of the system shown in fig.  (a) by the Holzer’s Method. 

 

 
 

 

      

1 2 a

2

t1

t2

I I I

0.615 kg cm/sec

K 24.1 kg cm/radian

K 25.84 kg cm/radian

 







 

 

Solution :  Let us first find approximate natural frequency of the system. For this we will be 

grouping together discs that have shafts with high relative stiffness between them. 

 

 Since here Ki1 is comparatively greater than Kt1, we group together discs 2 and 3, thus 

the system reduces to a two degree system shown in fig. 
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n t1

1 2

2

1 1
K

I I

1 1
    = 24.1

0.615 1.230

   = 59

59

 
   

 

 
 

 

 

 

 

 

So let us start with  
2
 = 59 

 

 

Trial 1 


2
 = 59 

 

S.No I  2n
I  2n

I  Kt 
21

I
Kt

  

1 0.615 1 36.30 36.30 24.1 1.535 

2 0.615 -0.535 -18.15 17.15 25.84 0.664 

3 0.615 -1.199 -42.5 -25.35   

 

The external Torque 2I  should be zero, so choose next approximation so as to achieve 

this. 

Trial 2 

n
2
 = 40.3 

 

S.No I  
2I  

2I  Kt 
21

I
Kt

  

1 0.615 1.0 24.8 24.8 24.1 1.03 
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2 0.615 -0.03 -0.745 24.055 24.84 0.93 

3 0.615 -0.96 -23.1 0.955   

 

 

 

Trial 3 


2
 = 42 

 

S.No I  
2I  

2I  Kt 
21

I
Kt

  

1 0.615 1.0 25.81 25.84 24.1 1.072 

2 0.615 -0.072 -1.84 23.94 25.84 0.925 

3 0.615 -0.997 -25.7 -1.76   

 

 

Trial 4 


2
 = 41.0 

 

S.No I  
2I  

2I  Kt 
21

I
Kt

  

1 0.615 1.0 25.2 25.2 24.1 1.04 

2 0.615 -0.047 -1.185 24.015 25.84 0.93 

3 0.615 -0.977 -24.6 -0.585   

 

 

 

 

 

 

 

Trial 5 


2
 = 40.8 

 

S.No I  
2I  

2I  Kt 
21

I
Kt

  

1 0.615 1.0 25.1 25.1 24.1 1.042 

2 0.615 -0.042 -1.055 24.045 25.81 0.93 

3 0.615 -0.972 -24.39 -0.345   

 

 

Trial 6 


2
 = 40.5 
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S.No I  
2I  

2I  Kt 
21

I
Kt

  

1 0.615 1.0 24.9 24.9 24.1 1.035 

2 0.615 -0.035 -0.872 24.028 25.84 0.93 

3 0.615 -0.965 -24.028 0   

 

Hence   
2
 40.5 

 

So exact natural frequency of the system is  

 

   

2n

n

      40.5

i.e    40.5

            =6.37 rad/sec.

 

   

 

Find the natural frequencies and mode shapes of the torsional three rotor system show 

in fig. diameter of each rotor is 25.4 cm. weight of each rotor and its thickness are 

shown in the diagram. G for the material = 8.5  10
5
 kg/cm

2
. 

 

Solution : If 1, 2, 3 are the displacements of the three rotors, the equations of motion of 

the three rotors are, 

 

 
 

1 1 t1 1 2

2 2 t1 2 1 t2 2 3

a 3 t2 3 2

I K ( )

I K ( ) K ( )         (1)

I K ( )

     

          

     

 

 

Assuming simple harmonic motion with 1, 2, 3, as amplitudes and frequency n. 
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2

2

2

1 1 nt 1 1 ntn

2 2 nt 2 2 ntn

3 3 nt 3 3 ntn

 Sin         Sin 

 Sin         Sin     (2)

 Sin         Sin 

        

         

        

 

 

From (1) and (2) 

 

 

 

2

2

2

1 1 t1 1 2n

1 t1 1 n t1 2

2

2 2 t1 2 1 t2 2 3

t1 1 t1 t2 2 2 t2 3n

3 3 t2 3 2n

            -I K ( )

or        K I K 0                        (a)

          -I n K ( ) K ( ) 0

or       K K K I K 0    (b)

and    -I K (

     

      

          

         

     

32 t2 3 t2 3 n

) 0

or       - K (K I ) 0                     (c)



      

 

 

This is a set of homogeneous equations. It will have a non-zero solution only if determinant 

formed out of coefficients of 1, 2 and 3 vanishers. 

 

Or 

 

         

2

2

2

2 2 2 2

2 4

t1 1 t1n

t1 t1 t2 2 t2n

t2 t2 3 n

t1 1 t1 t2 2 t2 3 t2 t1 t1 t2 3n n n n

3 1 2 3
t1 t2 t1 t2n n

1 2 2 3 1 2 3

(K I ) K 0

K (K K I ) K 0

0 K (K I

on expanding

K I K K I k I K K K K I

or

I I I1 1 1 1
w K K K K

I I I I I I I

  

    

  

           

       
          

      

0               (3) 


 

 

Mode Shapes 

 

The amplitude ratio of principal modes of vibration can be obtained from equation I and are 

found to be 
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2

2

t11

2 t1 1 n

t2 32 n

3 t2

K
           

K I

K I
and     

K




  

 




 

 

When n
2
 is zero, amplitude ratios of the discs are 

 

  1 2

2 3

1
 

 
 

 

This indicates that whole assembly rotates as a rigid body when  

 

  n = 0 

Since one of the frequencies of this system is zero, this system is a semidefinite system. 

 

Equation (3) is cubic in n
2
. One root may be n1

2
 = 0. The two other natural frequencies can 

be obtained by solving fourth power equation in n in equation (3) 

 

  

 

2 2

t1 t1 t2 t2

n2 n3
1 2 3

t1 t1 t2 t2 1 2 3
t1 t2

1 2 3 1 2 3

2
22

1

K K K K1
, 

2 I I I

K K K K I I I
              4K K

I I I I I I

1 1 w 25.4 1 7.5
              I   mr  . 12.7

2 2 g 4 2 981

                =0.616 

  
      

   

    
     

   

 
   

 

2kg cm sec

 

 

  

4 4

4
t1

1

4

5

t2

d G 8.5 10 (0.314)
K 24.7 kg cm.rad

32l 32 33.2

3.14
8.5 10

10
K

     =26.5 kg cm/rad

   
  



 
    

   
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2 2
2 3n n

2

1 24.7 24.7 26.5 26.5
,

2 0.616 0.616 0.616

24.7 24.7 26.5 26.5 4 24.7 26.5(0.616 3)

0.616 0.616 0.616 0.616 0.616 0.616

1
[166 83.8]

2

  
      

  

    
    

  

 

 

 

  

2

2

r2

n2

n3

n3

1
        [166 83.8]41.4

2

or     41.4 6.4 rad/sec

1
        (166 83.8) 124.9

2

or     124.9 11.2 rad/sec

  

  

   

  

 

 

a) Mode shape for n1 = 0 

 

2

t1 t11

2

2 t1 1 n1 t2

t2 3 t22 n1

3 t2 t2

K K
1

K I K

K I K
1

K K


  

  

 
  



 

 

b) Mode shape for n2 = 6.4 rad/sec 

 

1

2

2

3

24.7
38

24.7 0.616 41.1

26.5 0.616 41.1
0.0434

26.5


  

  

  
 
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c) Mode shape for n2 = 11.2 rad/sec 
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Mode shapes are plotted in fig. 

 

 
 

 

 

Natural frequencies of the torsional system shown in fig. 

 

 
 

 

Solution : 
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Let us now construct a Holzer’s table 

 

 N0 I n I
2
n I

2
n 

n=2.1 

1 4 1 17.64 17.64 

2 6 0.413 10.9 28.54 

3 6 -1.012 -26.7 2.84 

4 4 -0.96 -16.9 -1500 

n=1 

1 4 1 4 4 

2 6 0.867 5.2 9.2 

3 6 0.407 2.442 11.64 

4 4 0.074 0.296 11.94 

      

n=1.5 1 4 1 9 9 
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2 6 0.7 9.45 18.45 

3 6 -0.225 -3.04 15.41 

4 4 -0.666 -6.00 9.41 

n=1.9 

1 4 1 15.24 15.24 

2 6 0.492 11.29 26.49 

3 6 -0.833 -19.1 7.39 

4 4 -1.4 -21.3 -13.97 

n=1.7 

1 4 1 11.55 11.55 

2 6 0.615 10.70 22.25 

3 6 -0.50 -8.67 13.58 

4 4 -0.888 -10.25 +2.33 

n=3 

1 4 1 36 36 

2 6 -0.2 -10.8 25.2 

3 6 -1.46 -78.8 -53.6 

4 4 -0.07 2.52 -51.08 

n=4 

1 4 1 64 64 

2 6 -1.13 -108.5 -44.5 

3 6 1.095 105 60.5 

4 4 -0.63 -44.2 19.3 

n=3.8 

1 4 1 57.75 57.75 

2 6 -0.925 -80.0 -22.25 

3 6 0.187 16.1 -6.25 

4 4 0.357 20.6 14.35 

n=3.6 

1 4 1 52 52 

2 6 -0.733 -57.2 -5.2 

3 6 0.473 -36.9 -42.1 

4 4 0.727 37.8 -4.3 

n=5 
1 4 1 100 100 

2 6 -2.33 -350 -250 
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3 6 10.17 1520 1270 

4 4 -26.33 -2613 -1343 

n=4.5 

1 4 1 81 81 

2 6 -1.7 -206.5 -125 

3 6 4.57 544.0 419.0 

4 4 17.33 -583.0 -164.0 

 

 

 

 

 

 

 

 

 

 

 

 

    

n=4.2 

1 4 1 81 81 

2 6 -1.7 -206.5 -125 

3 6 4.57 544.0 419.0 

4 4 -17.33 -583.0 -164.0 

n=4.2 

1 4 1 70.4 70.4 

2 6 -1.35 -143 -72.6 

3 6 2.28 242 169.4 

4 4 -2.55 -180 -10.6 

 

Now we can plot a graph between  and I. fig (b) shows this graph. From this natural 

frequencies re found to be 1.73, 3.64, 4.17. 
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Using Holzer’s method, determine the natural frequencies of the system shown in fig. 

 

   Kt = 1 kg-cm/radian 

   I = 1 kg-cm
2
 

   Both in consistent S.I units. 

 

 
 

Solution : In this example we shall use the Holzer’s method but the criterion applied to 

determine the natural frequency will be that when the trial is made with the natural frequency, 

the displacement at the left hand support will be zero. 

 

 One can estimate first natural frequency by Dunkerley’s equation but the trials are 

made without that help. 
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Different trials are recorded in the following table. 

 

 

Item I I
2
  I

2
 I

2
 Kt 

2

t

I

K


 

 

Trial with  = 0.2 

 

1 4 0.16 1 0.16 0.16 1 0.16 

2 3 0.12 0.84 0.101 0.261 2 0.13 

3 2 0.08 0.71 0.056 0.317 3 0.105 

4 1 0.04 0.605 0.025 0.342 4 0.0855 

5   0.5195     

 

Trial with  = 0.3 

 

1 4 0.36 1 0.36 0.36 1 0.36 

2 3 0.27 0.64 0.173 0.533 2 0.267 

3 2 0.18 0.373 0.067 0.600 3 0.200 

4 1 0.09 0.173 0.0155 0.6155 4 0.1539 

5   0.0192     

 

Trial with  = 0.4 

 

1 4 0.64 1 0.64 0.64 1 0.64 

2 3 0.48 0.36 0.173 0.813 2 0.406 

3 2 0.32 -0.046 0.0147 0.798 3 0.266 

4 1 0.16 -0.312 0.049 0.748 4 0.187 

5   -0.499     

 

Trial with  = 0.6 

 

1 4 1.44 1 1.41 1.44 1 1.44 

2 3 1.08 -0.44 -0.475 0.965 2 0.482 

3 2 0.72 -0.922 -0.664 0.301 3 0.100 
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4 1 0.36 -1.023 -0.368 -0.067 4 0.017 

5   -1.006     

 

 

 

 

Trial with  = 0.8 

 

1 4 2.56 1 2.56 2.56 1 2.56 

2 3 1.92 -1.56 -3.00 0.44 2 -0.22 

3 2 1.28 -1.34 -1.72 2.16 3 -0.73 

4 1 0.64 0.61 0.39 2.55 4 0.64 

5   0.03     

 

Trial with  = 1.0 

 

1 4 4 1 4 4 1 4 

2 3 3 -3 9 -5 2 -2.5 

3 2 2 -0.5 -1 -6 3 -2.0 

4 1 1 1.5 1.5 4.5 4 -1.13 

5   2.63     

 

Trial with  = 1.5 

 

1 4 9 1 9 9 1 9 

2 3 6.75 -8 -54 -45 2 -22.5 

3 2 4.5 14.5 65.3 20.3 3 6.77 

4 1 2.25 7.73 17.4 37.7 4 9.43 

5   -1.70     
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Trial with  = 1.8 

 

1 4 12.96 1 12.96 12.96 1 12.96 

2 3 9.72 -11.96 -116.4 
-

103.44 
2 -51.72 

3 2 6.48 -39.76 257.7 134.26 3 51.42 

4 1 3.24 -11.66 -37.8 116.46 4 29.12 

5   -40.78     

 

Trial with  = 2.0 

 

1 4 16 1 16 16 1 16 

2 3 12 -15 -180 -164 2 -82 

3 2 8 +67 536 372 3 124 

4 1 4 -57 -228 144 4 36 

5   -93     

 

Trial with  = 2.5 

 

1 4 25 1 25 25 1 25 

2 3 18.75 -25 -450 -425 2 -212.5 

3 2 12.5 188.5 2360 1935 3 645 

4 1 6.25 -456.5 -2860 -1925 4 -231 

5   -225.5     

 

 

Trial with  = 3.0 

 

1 4 36 1 36 36 1 36 

2 3 27 -35 -945 -909 2 -455 

3 2 18 420 7560 6651 3 2220 

4 1 9 -1800 -16200 -9550 4 -2388 

5   588 
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      Fig. 

 

Now plotting displacement of the fixed end  versus  we get natural frequencies 

where the curve intersects the x-axis. Natural frequencies are the frequencies which make the 

displacement of the support zero. They are red off the graph fig.(b) as 

 

    n1 = 0.30 rad./sec 

    n2  = 0.81 rsd/sec 

    n3 = 1.45 rad./sec 

    n4 = 2.83 rad./sec 

 

Student should check the validity of the Dunkerley’s equation. 

 

 

Find the fundamental natural frequency of the system shown in fig(a). The gear ratio 

for both the branches is 10 . 
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Fig. 

 

All in consistent SI units. 

 

Solution : The equivalent system is given in fig.(b). 

 

 
Fig. 

Let us take 1200 as a unit for inertia and 36  10
6
 as a unit for Kt. since Kt3, Kt4, and Kt6 are 

all too large, we can lump 
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Fig. 

 

3, 4, 5, 6, 7 together. So our equivalent approximate system becomes fig. (c) 

 

We can use  71+5(1-3)=0 

   42+5(2-1)+4(2-3)=0 

   103+2(3-2=0 

 

   

1 1

2

2 2

3 3

5 5
0

7 7

5 7
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4 4
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 
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     
            
        

 
  

 

 The above model however is a crude one. We shall therefore treat the problem as that 

of a branched system as shown in fig.(b). we shall use the Holzer’s method to obtain the 

natural frequency. 

 

 Let us assume a unit displacement for mass 7. the displacement of masses 6 and 3 can 

than be determined from equation, If unit displacement for mass 3 will result. These two 

values of displacement for mass 3 must be made the same by suitably modifying 

proportionately the displacement of one of the branches. After this is done, displacement of 

masses 2 and 1 are calculated and sum of all inertias is found. This process is repeated for 

each assumed frequency. Frequency corresponding to which the sum zero is naturally 

frequency. Let us start with  = 1. 

 

Item I I
2
  I

2
 I

2
 Kt 

2

t

I

K

 
 

7 1 1 1 1 1 1 1 

6 2 2 0 0 1 3 0.33 

3 4 4 -0.33 -1.33 -0.33   

5 1 1 1 1 1 6 0.167 

4 2 2 0.833 1.67 2.67 4 0.67 
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3 4 4 +0.167     

 

Hence  5

0.33
2

0.167


     

 

and we can re-construct the table for masses 5, 4, 3 and add for rotors 1 and 2. 

 

Item I I
2
  I

2
 I

2
 Kt 

2

t

I

K

 
 

5 1 1 -2 -2 -2 6 -0.333 

4 2 2 -1.67 -3.33 -5.33 4 -1.33 

3 4 4 -0.33 -1.33 -6.66 2 -2.83 

Torque acting on mass Kt2 = 1-5.30-1.33=-5.66 

2 4 4 2.5 10.0 4.34 5 0.87 

1 7 7 1.63 11.41 15.75   

 

Trial with  = 1.5 

 

Item I I
2
  I

2
 I

2
 Kt 

2

t

I

K

 
 

7 1 2.25 1 2.25 2.25 1 2.25 

6 2 1.5 -1.25 -5.6 -3.35 3 -1.12 

3 1 9.0 -0.13 -1.17 -4.52   

5 1 2.25 1 2.25 2.25 6 0.39 

4 2 4.5 0.61 2.75 5.0 4 1.25 

3 4 9.0 -0.64     

 

  

1

5

0.64
0.2

0.13



 
   

 
 

 

Let us reconstruct the table for masses 5, 4, 3 and add for masses 1 and 2. 

 

Item I I
2
  I

2
 I

2
 Kt 

2

t

I

K

 
 

5 1 2.25 0.2 0.450 0.45 6 0.0715 

4 2 4.5 0.125 0.56 1.01 4 0.25 

2 4 9.0 -0.13 -1.17 -3.51 2 -1.75 
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Torque acting in Kt2 = -3.35+1.01-1.17 = -3.51 

2 4 9.0 1.62 13.58 10.07 5 2.01 

1 7 15.8 -0.39 -6.15 3.82   

 

Trial with  = 2.0 

   

Item I I
2
  I

2
 I

2
 Kt 

2

t

I

K

 
 

7 1 4 1 4 4 1 4 

6 2 8 -3 -24 -20 3 -6.67 

3 4 16 3.37     

5 1 4 1 4 4 6 0.67 

4 2 8 0.33 2.64 6.64 4 1.66 

3 4 16 -133     

  5

3.37
2.53

1.33


     

 

 

 

Let us now re-construct  table for masses 5, 4, 3 and add for masses 1 and 2. 

 

Item I I
2
  I

2
 I

2
 Kt 

2

t

I

K

 
 

5 1 4 -2.53 -10.12 -10.12 6 -1.68 

4 2 8 -0.85 -6.75 -17 4 -4.21 

3 4 16 3.37 53.9 16.9* 2 8.45 

2 4 16 -5.03 -80.48 63.6 5 -12.7 

1 7 28 -7.67 -2.5 -278.6   

 

Now we plot a graph between I
2
 and . Natural frequency equals  when curve 

intersects the  axis. 

 Torque acting in Kt2 = -20-17+53.9 = 16.9 
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Fig. 

 

From graph fig. n = 1.52, But this must be modified because of our units for inertias and 

stiffnesses taken to facilitates calculations. Thus n, the natural frequency is given by 

 

  

6

n

36 10
1.52

1200

     = 283 radians/sec.


  

 


