
STRENGTH OF MATERIALS – SME1204 – V UNIT COURSE MATERIAL 

Pressurized thin walled cylinder  

Preamble Pressure vessels are exceedingly important in industry. Normally two types of 

pressure vessel are used in common practice such as cylindrical pressure vessel and spherical 

pressure vessel.  

In the analysis of this walled cylinders subjected to internal pressures it is assumed that the radial 

plans remains radial and the wall thickness does not change due to internal pressure. Although 

the internal pressure acting on the wall causes a local compressive stresses (equal to pressure) 

but its value is neglibly small as compared to other stresses & hence the sate of stress of an 

element of a thin walled pressure is considered a biaxial one. Further in the analysis of thin 

walled cylinders, the weight of the fluid is considered neglible. Let us consider a long cylinder of 

circular cross - section with an internal radius of R 2 and a constant wall thickness ‘t' as showing 

fig.  

 

This cylinder is subjected to a difference of hydrostatic pressure of ‘p' between its inner and 

outer surfaces. In many cases, ‘p' between gage pressure within the cylinder, taking outside 

pressure to be ambient. By thin walled cylinder we mean that the thickness ‘t' is very much 

smaller than the radius Ri and we may quantify this by stating than the ratio t / Ri of thickness of 

radius should be less than 0.1. An appropriate co-ordinate system to be used to describe such a 

system is the cylindrical polar one r, q, z shown, where z axis lies along the axis of the cylinder, r 

is radial to it and q is the angular co-ordinate about the axis. The small piece of the cylinder wall 

is shown in isolation, and stresses in respective direction have also been shown.    

Type of failure  

Such a component fails in since when subjected to an excessively high internal pressure. While it 

might fail by bursting along a path following the circumference of the cylinder. Under normal 

circumstance it fails by circumstances it fails by bursting along a path parallel to the axis. This 

suggests that the hoop stress is significantly higher than the axial stress.  

In order to derive the expressions for various stresses we make following   

Applications 



Liquid storage tanks and containers, water pipes, boilers, submarine hulls, and certain air plane 

components are common examples of thin walled cylinders and spheres, roof domes. 

ANALYSIS : In order to analyse the thin walled cylinders, let us make the following 

assumptions :  

• There are no shear stresses acting in the wall.  

• The longitudinal and hoop stresses do not vary through the wall.  

•  Radial stresses sr which acts normal to the curved plane of the isolated element are neglibly 

small as compared to other two stresses especially when     

The state of tress for an element of a thin walled pressure vessel is considered to be biaxial, 

although the internal pressure acting normal to the wall causes a local compressive stress equal 

to the internal pressure, Actually a state of tri-axial stress exists on the inside of the vessel. 

However, for the walled pressure vessel the third stress is much smaller than the other two 

stresses and for this reason in can be neglected.  

Thin Cylinders Subjected to Internal Pressure:  

When a thin – walled cylinder is subjected to internal pressure, three mutually perpendicular 

principal stresses will be set up in the cylinder materials, namely  

•  Circumferential or hoop stress  

•  The radial stress  

•  Longitudinal stress 

now let us define these stresses and determine the expressions for them 

Hoop or circumferential stress:  

This is the stress which is set up in resisting the bursting effect of the applied pressure and can be 

most conveniently treated by considering the equilibrium of the cylinder.  



 

In the figure we have shown a one half of the cylinder. This cylinder is subjected to an internal 

pressure p.  

i.e.         p = internal pressure  

d = inside diametre  

L = Length of the cylinder  

t  = thickness of the wall  

Total force on one half of the cylinder owing to the internal pressure 'p'  

= p x Projected Area  

= p x d x L  

= p .d. L                       -------  (1)  

The total resisting force owing to hoop stresses sH set up in the cylinder walls 

= 2 .sH .L.t                 ---------(2)  

Because s H.L.t. is the force in the one wall of the half cylinder.  

the equations (1) & (2) we get  

   2 . sH . L . t = p . d . L  

                  sH = (p . d) / 2t  

Circumferential or hoop Stress (sH) = 

(p .d)/ 2t  

Longitudinal Stress:  



Change in Dimensions :  

The change in length of the cylinder may be determined from the longitudinal strain.  

Consider now again the same figure and the vessel could be considered to have closed ends and 

contains a fluid under a gage pressure p.Then the walls of the cylinder will have a longitudinal 

stress as well as a ciccumferential stress.  

 

Total force on the end of the cylinder owing to internal pressure  

= pressure x area  

= p x p d
2
 /4  

Area of metal resisting this force = pd.t. (approximately)  

because pd is the circumference and this is multiplied by the wall thickness  

 

 

 



Since whenever the cylinder will elongate in axial direction or longitudinal direction, this will 

also get decreased in diameter or the lateral strain will also take place. Therefore we will have to 

also take into consideration the lateral strain as we know that the poisson's ratio (ν) is  

 

  

where the -ve sign emphasized that the change is negative  

Consider an element of cylinder wall which is subjected to two mutually ^
r
 normal stresses sL 

and sH .  

Let E = Young's modulus of elasticity  

 



 

Volumetric Strain or Change in the Internal Volume:  

When the thin cylinder is subjected to the internal pressure as we have already calculated that 

there is a change in the cylinder dimensions i.e, longitudinal strain and hoop strains come into 

picture. As a result of which there will be change in capacity of the cylinder or there is a change 

in the volume of the cylinder hence it becomes imperative to determine the change in volume or 

the volumetric strain.  

The capacity of a cylinder is defined as  

V = Area X Length  

= pd
2
/4 x L  

Let there be a change in dimensions occurs, when the thin cylinder is subjected to an internal 

pressure.  

(i) The diameter d changes to d + d d  



(ii) The length L changes to L + d L  

Therefore, the change in volume = Final volume - Original volume  

   

Therefore to find but the increase in capacity or volume, multiply the volumetric strain by 

original volume. 

Hence  

Change in Capacity / Volume       or  

 

 

 

 



 

 

 

Cylindrical Vessel with Hemispherical Ends:  

Let us now consider the vessel with hemispherical ends. The wall thickness of the cylindrical and 

hemispherical portion is different. While the internal diameter of both the portions is assumed to 

be equal. Let the cylindrical vassal is subjected to an internal pressure p.  

 

For the Cylindrical Portion  

 

For The Hemispherical Ends:  

 

Because of the symmetry of the sphere the stresses set up owing to internal pressure will be two 

mutually perpendicular hoops or circumferential stresses of equal values. Again the radial 

stresses are neglected in comparison to the hoop stresses as with this cylinder having thickness to 



diametre less than1:20.  

Consider the equilibrium of the half – sphere  

Force on half-sphere owing to internal pressure = pressure x projected Area  

= p. pd
2
/4  

 

 

Fig – shown the (by way of dotted lines) the tendency, for the cylindrical portion and the 

spherical ends to expand by a different amount under the action of internal pressure. So owing to 

difference in stress, the two portions (i.e. cylindrical and spherical ends) expand by a different 

amount. This incompatibly of deformations causes a local bending and sheering stresses in the 

neighborhood of the joint. Since there must be physical continuity between the ends and the 

cylindrical portion, for this reason, properly curved ends must be used for pressure vessels.  

Thus equating the two strains in order that there shall be no distortion of the junction  

 

But for general steel works ν = 0.3, therefore, the thickness ratios becomes  

 t2 / t1 = 0.7/1.7 or  

t1 = 2.4 t2 

i.e. the thickness of the cylinder walls must be approximately 2.4 times that of the hemispheroid 

ends for no distortion of the junction to occur. 



SUMMARY OF THE RESULTS : Let us summarise the derived results  

(A)  The stresses set up in the walls of a thin cylinder owing to an internal pressure p are :  

(i) Circumferential or loop stress  

sH = pd/2t  

(ii) Longitudinal or axial stress  

sL = pd/4t  

Where d is the internal diametre and t is the wall thickness of the cylinder.  

then  

Longitudinal strain ÎL = 1 / E [ sL - ν sH]  

Hoop stain ÎH = 1 / E [ sH - ν sL ]  

(B)  Change of internal volume of cylinder under pressure 

 

(C) Fro thin spheres circumferential or loop stress  

 

Thin rotating ring or cylinder  

Consider a thin ring or cylinder as shown in Fig below subjected to a radial internal pressure p 

caused by the centrifugal effect of its own mass when rotating. The centrifugal effect on a unit 

length of the circumference is  

p = m w
2
 r  

 



Thin ring rotating with constant angular velocity w 

Here the radial pressure ‘p' is acting per unit length and is caused by the centrifugal effect if its 

own mass when rotating.  

Thus considering the equilibrium of half the ring shown in the figure,  

2F = p x 2r (assuming unit length), as 2r is the projected area  

F = pr  

Where F is the hoop tension set up owing to rotation.  

The cylinder wall is assumed to be so thin that the centrifugal effect can be assumed constant 

across the wall thickness.  

F = mass x acceleration = m w
2
 r x r  

This tension is transmitted through the complete circumference and therefore is resisted by the 

complete cross – sectional area.  

hoop stress = F/A = m w
2
 r

2
 / A  

Where A is the cross – sectional area of the ring.  

Now with unit length assumed m/A is the mass of the material per unit volume, i.e. the density r .  

hoop stress = r w
2
 r

2
  

sH = r . w
2
 . r

2
  

BIAXIAL STRESS SYSTEMS 

 

A biaxial stress system has a stress state in two directions and a shear stress typically showing in 

Fig.. 

 
 

Element of a structure showing a biaxial stress system 

 



When a Biaxial Stress state occurs in a thin metal, all the stresses are in the plane of the material. 

Such a stress system is called PLANE STRESS. We can see plane stress in pressure vessels, 

aircraft skins, car bodies, and many other structures. 

 

THIN CYLINDERS AND SPHERICAL SHELLS 

 

The stresses set up in the walls of a thin cylinder owing to an internal pressure p are: 

circumferential or hoop stress = pd/2t and 

longitudinal or axial stress = pd/4t 

 

DEFORMATION  IN THIN CYLINDRICAL AND SPHERICAL SHELLS 

 

Hoop or circumferential stress 

 This is the stress which is set up in resisting the bursting effect of the applied pressure and can 

be most conveniently treated by considering the equilibrium of half of the cylinder as shown in 

Fig. 

 

 
 

 
Longitudinal stress or axial stress 

Consider now the cylinder shown in the fig.. 

 



 
 

Problem 1 

 

A thin cylindrical pipe of diameter 1.5 mm and thickness 1.5 cm is subjected to an internal fluid 

pressure of 1.2 N/mm
2
. Determine: 

i)Longitudinal stress developed in the pipe and 

ii)Circumferential stress developed in the pipe. 

Solution: 

Given: 

       Dia of pipe d=1.5 m 

       Thickness,  t=1.5 cm = 1.5x10
-2

m 

        Internal fluid pressure, p=1.2 N/mm
2 

 

i) The longitudinal stress is given by 

                  σ =pd/2t 

                   = (1.2x1.5)/(4x1.5x10
-2

) 

                   =30 N/mm
2
 

ii) The circumferential stress is given by 

                                  σ =pd/4t 

                                    =(1.2x1.5) / (2x1.5x10
-2

) 



                                    =60 N/mm
2
 

Problem 2 

 

A cylinder of internal diameter 2.5 m and of thickness 5cm contains a gas.If the tensile stress in 

the material is not to exceed 80 N/mm
2
, determine the internal pressure of the gas. 

 

Solution:  

Given:  

         Internal dia of cylinder  d=2.5 cm 

         Thickness of cylinder  t= 5cm=5x10
-2

m 

         Maximum permissible stress =80 N/mm
2
 

As maximum permissible stress is given, hence this should be equal to circumferential stress σ 

   σ =80 N/mm
2
 

                  σ =pd/2t 

 

                P=(2t x σ)/d 

 

               =(2x5x10
-2

x80) / 2.5 

 

             =3.2 N/mm
2
 

Efficiency of a joint 

 

The cylindrical shells are having two types of joints namely longitudinal joint and 

circumferential joint. 

Let   ɳ l = efficiency of a longitudinal joint and 

         ɳ c = efficiency of a circumferential joint…… 

the circumferential stress(σ1) is given by, 

                   σ1 = (p x d) / (2t x ɳ l)   and 

longitudinal stress(σ2) is given by., 

                             σ2 = (p x d) / (4t x ɳ c)    

 

In longitudinal joint, the circumferential stress is developed whereas in circumferential joint the 



longitudinal stress is developed. 

Problem 3: 

A boiler is subjected to an internal steam pressure of 2 N/mm
2
, the thickness of a boiler plate is 

2cm and permissible tensile stress is 120 N/mm
2 

, find out the maximum diameter when 

efficiency of longitudinal joint is 90% and that of circumferential joint is 40%. 

 

Solution: 

Given  

        Internal steam pressure, p = 2 N/mm
2
 

        Thickness of boiler plate, t =2cm 

         Permissible tensile stress = 120 N/mm
2
 

In case of a joint, the permissible stress may be circumferential stress or longitudinal 

stress. 

      efficiency of longitudinal joint = ɳ l = 90% = 0.90 

     efficiency of circumferential joint = ɳ c = 40% = 0.40 

max. diameter for circumferential stress is given by,  

 

σ1 = (p x d) /(2t x ɳ l)    

where  σ1 = given Permissible tensile stress = 120 N/mm
2
 

 

                      120 = (2 x d) / (2x 0.90 x2) 

 

                          d= (120x2x0.9x2) / 2 

                            = 216 cm. 

    Max.diameter for longitudinal stress is given by, 

           σ2 = (p x d) / (4t x ɳ c)    



          where  σ2 = given Permissible tensile stress = 120 N/mm
2
 

 

                                          120 = (2 x d) / (4x 0.40 x2) 

 

                                                   d= (120x4x0.4x2) / 2 

                                                    d=192 cm. 

the longitudinal or circumferential stresses included in the material are directly 

proportional to the diameter (d), and hence stress induced will be less if the value of d is 

less. Hence minimum value of d is taken…..so, max.diameter = 192 cm 

Effect of internal pressure on the dimensions of a thin cylindrical shell 

 

 

Then, circumferential strain, 

                                    e1 = (σ1 / E) – ( µ σ2 /E) 

                                    =  (1- µ/2) 



           and longitudinal strain, 

                             e2 = (σ2 / E) – ( µ σ1 / E) 

                                =  (1/2 - µ) 

Change in diameter, δd/d =  (1- µ/2) 

Change in length, δL/L    =  (1/2 - µ) 

Change in volume, δV/V = (2e1+ e2)  

                                         =V(2 δd/d + δL/L) 

Problem 4: 

Calculate change in diameter, change in length and change in volume of a thin cylindrical shell 

100cm diameter, 1cm thickness and 5m long when subjected to internal pressure of  3N/mm
2, 

take the value of E = 2 x 10
5
 N/mm

2 
and poisson’s ratio µ = 0.3 

 

Solution: 

 Given:   diameter of shell, d=100cm 

               Thickness of shell, t= 1cm 

               Length of shell, L= 5m= 500cm 

               Internal pressure, p = 3N/mm
2
 

                Young’s modulus, E=  2 x 10
5
 N/mm

2
 

        And  Poisson’s ratio µ = 0.3 

         

 

          

 

    

 



                    

(iii) change in volume δV/V is given by, 

 

 

Thin spherical shells 

 

The figure shows a thin spherical shell of internal diameter d and thickness t and subjected to 

internal fluid pressure p , the fluid inside the shell has a tendency to split the shell into two 

hemispheres along x-x axis. 

 

 
Circumferential or hoop stress(σ1) is given by, 

                                     σ1 = pd/4t  

    circumferential stress when the joint efficiency  is given by, 

                                        σ1 = pd/4t. ɳ 

 

Problem 5 

 

A vessel in the shape of a spherical shell of 1.20m internal diameter and 12mm shell thickness is 

subjected to pressure of 1.6 N/mm
2
, determine the stress induced in the material of the vessel. 

 

Solution 

Given. 



        Internal diameter , d = 1.2m = 1200mm 

        Shell thickness, t = 12mm and 

         Fluid pressure, p = 1.6 N/mm
2
 

The stress induced in the material of the spherical shell is given by, 

                                                       σ1 = pd/4t  

                                                         = (1.6 x 1200) / (4x12) 

                                                        = 40 N/mm
2
 

Problem 6 

 A spherical vessel 1.5m diameter is subjected to an internal fluid pressure of 2 N/mm
2
, find the 

thickness of the plate required if maximum stress is not to exceed 150 N/mm
2
 and joint 

efficiency is 75%  

  Solution 

         Given 

                 Diameter of shell, d = 1.5m = 1500mm, 

                  Fluid pressure, p = 2 N/mm
2 

                          
Stress in the material, σ1 = 150 N/mm

2 

                   Joint efficiency, ɳ = 75% = 0.75 

                       Let t = thickness of the plate and  

                   Stress induced is given by, 

                                        σ1 = pd/4t. ɳ 

                                         t = (p x d) / (4 x ɳ x σ1) 

                                          = (2 x 1500) / (4 x 0.75 x 150) 

                                          = 6.67mm 

 

Change in dimension of a thin spherical shell due to an internal pressure 

 Strain in any direction is also noted as δd/d which is given by the equation 

                                                         δd/d =  (1- µ) 

                     

                  and volumetric strain δV/V is given by, 

                                                  δV/V = 3 x (δd/d) 

                                                            =  (1- µ) 

Problem 7 

A spherical shell of internal diameter 0.9m and of thickness 10mm is subjected to an internal 

pressure of 1.4 N/mm
2
, determine the increase in diameter and increase in volume, take               

E = 2 x 10
5
 N/mm

2
 and µ = 0.33 

 

Solution. 

Given. 

 

Internal diameter, d = 0.9m=900mm  

Thickness of the shell, t=10mm 

Fluid pressure, p = 1.4 N/mm
2
 

And E = 2 x 10
5
 N/mm

2
 

 µ = 0.33 

using the relation  



               δd/d =  (1- µ) 

                        =  (1-0.33) 

                        = 105 x 10
-6

 

                  increase in diameter, δd = 105 x 10
-6

 x 900 

                                                          = 94.5 x 10
-3

mm 

                                                          = 0.0945mm. 

          

  Now,  

                    Volumetric strain = δV/V = 3 x (δd/d) 

                                                 = 3 x 105 x 10
-6

 

                                           δV/V = 315 x 10
-6

 

            increase in volume , δV = 315 x 10
-6 

x V 

                                                   = 315 x 10
-6 

x ( π/6 d
3
) 

                                                  = 315 x 10
-6

x (π/6 x 900
3
) 

                                                  = 12028.5 mm
3
 

 

Normal and shear stresses on inclined sections 

 

To obtain a complete picture of the stresses in a bar, we must consider the stresses acting on an 

“inclined” (as opposed to a “normal”) section through the bar. 

 

                 
  

 

Because the stresses are the same throughout the entire bar, the stresses on the sections are 

uniformly distributed. 

 

        
 

2D view of the normal section 

 
 



2D view of the inclined section 

 
 

CURVED BEAM  
 
Theory of Simple Bending 
 
Due to bending moment, tensile stress develops in one portion of section and compressive stress in 
the other portion across the depth. In between these two portions, there is a layer where stresses 
are zero. Such a layer is called neutral layer. Its trace on the cross section is called neutral axis. 
Again for simple bending, the bending equation is suitable for beam which is initially straight before 
the application of bending moment. 
 
M/I = σ/y = E/R 
 
Curved beam 
 
Curved beams are the parts of machine members found in C-clamps, crane hooks, frames 
machines, planers etc. In straight beams the neutral axis of the section coincides with its centroidal 
axis and the stress distribution in the beam is linear. But in the case of curved beams the neutral 
axis of is shifted towards the centre of curvature of the beam causing a non-linear [hyperbolic] 
distribution of stress. The neutral axis lies between the centroidal axis and the centre of curvature 
and will always be present within the curved beams. It has also been found that the stresses in the 
fibres of a curved beam are not proportional to the distances of the fibres from the neutral surfaces, 
as is assumed for a straight beam. 

 

 
 

Stresses in Curved Beam (WINKLER-BATCH THEORY) 

 
Consider a curved beam subjected to bending moment Mb as shown in the figure. The distribution of 

stress in curved flexural member is determined by using the following assumptions: 

 



i) The material of the beam is perfectly homogeneous [i.e., same material throughout] and isotropic 

[i.e., equal elastic properties in all directions] 

ii) The cross section has an axis of symmetry in a plane along the length of the beam. 

iii) The material of the beam obeys Hooke's law. 

iv) The transverse sections which are plane before bending remain plane after bending also. 

v) Each layer of the beam is free to expand or contract, independent of the layer above or 

below it. 

vi) The Young's modulus is same both in tension and compression. 

vii) The radial strain is negligible. 

 

 
 
Derivation of Expression to Determine Stress at any Point on the Fibres of a Curved Beam 

 

 
 



 
 

 
 

 



 

 
 

 



 
 

 
 

 



 



 



 



 



 



 

 



 
 

 



 
 

 



 

 



 
 

 
 

 



 
 

 



 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 



 



 
 

 

 

 

 

 

 

 

 



 



 
 



 



 



 



 



 



 



 
 

 

 

 

 

 

 

 

 

 


