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Pressurized thin walled cylinder

Preamble Pressure vessels are exceedingly important in industry. Normally two types of
pressure vessel are used in common practice such as cylindrical pressure vessel and spherical
pressure vessel.

In the analysis of this walled cylinders subjected to internal pressures it is assumed that the radial
plans remains radial and the wall thickness does not change due to internal pressure. Although
the internal pressure acting on the wall causes a local compressive stresses (equal to pressure)
but its value is neglibly small as compared to other stresses & hence the sate of stress of an
element of a thin walled pressure is considered a biaxial one. Further in the analysis of thin
walled cylinders, the weight of the fluid is considered neglible. Let us consider a long cylinder of
circular cross - section with an internal radius of R , and a constant wall thickness ‘t' as showing
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This cylinder is subjected to a difference of hydrostatic pressure of ‘p' between its inner and
outer surfaces. In many cases, ‘p' between gage pressure within the cylinder, taking outside
pressure to be ambient. By thin walled cylinder we mean that the thickness ‘t' is very much
smaller than the radius R; and we may quantify this by stating than the ratio t / R; of thickness of
radius should be less than 0.1. An appropriate co-ordinate system to be used to describe such a
system is the cylindrical polar one r, g, z shown, where z axis lies along the axis of the cylinder, r
is radial to it and q is the angular co-ordinate about the axis. The small piece of the cylinder wall
is shown in isolation, and stresses in respective direction have also been shown.

Type of failure

Such a component fails in since when subjected to an excessively high internal pressure. While it
might fail by bursting along a path following the circumference of the cylinder. Under normal
circumstance it fails by circumstances it fails by bursting along a path parallel to the axis. This
suggests that the hoop stress is significantly higher than the axial stress.

In order to derive the expressions for various stresses we make following

Applications



Liquid storage tanks and containers, water pipes, boilers, submarine hulls, and certain air plane
components are common examples of thin walled cylinders and spheres, roof domes.

ANALYSIS : In order to analyse the thin walled cylinders, let us make the following
assumptions :

* There are no shear stresses acting in the wall.

* The longitudinal and hoop stresses do not vary through the wall.

« Radial stresses s; which acts normal to the curved plane of the isolated element are neglibly
- <]

small as compared to other two stresses especially when i

The state of tress for an element of a thin walled pressure vessel is considered to be biaxial,

although the internal pressure acting normal to the wall causes a local compressive stress equal

to the internal pressure, Actually a state of tri-axial stress exists on the inside of the vessel.

However, for the walled pressure vessel the third stress is much smaller than the other two

stresses and for this reason in can be neglected.

Thin Cylinders Subjected to Internal Pressure:

When a thin — walled cylinder is subjected to internal pressure, three mutually perpendicular
principal stresses will be set up in the cylinder materials, namely

« Circumferential or hoop stress

* The radial stress

« Longitudinal stress

now let us define these stresses and determine the expressions for them
Hoop or circumferential stress:

This is the stress which is set up in resisting the bursting effect of the applied pressure and can be
most conveniently treated by considering the equilibrium of the cylinder.



In the figure we have shown a one half of the cylinder. This cylinder is subjected to an internal
pressure p.

Ie. p = internal pressure
d = inside diametre
L = Length of the cylinder
t = thickness of the wall
Total force on one half of the cylinder owing to the internal pressure 'p'
= p x Projected Area
=pxdxL
=pdL e (1)
The total resisting force owing to hoop stresses sy set up in the cylinder walls
=S 2R TR I Sp— ()
Because s n.L.t. is the force in the one wall of the half cylinder.
the equations (1) & (2) we get
2.sy.L.t=p.d.L

su=(p.d)/2t

Circumferential or hoop Stress (sn) =
(p .d)/ 2t

Longitudinal Stress:



Consider now again the same figure and the vessel could be considered to have closed ends and
contains a fluid under a gage pressure p.Then the walls of the cylinder will have a longitudinal
stress as well as a ciccumferential stress.
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Total force on the end of the cylinder owing to internal pressure

= pressure X area

=pxpd®/4

Area of metal resisting this force = pd.t. (approximately)

because pd is the circumference and this is multiplied by the wall thickness
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Change in Dimensions :

The change in length of the cylinder may be determined from the longitudinal strain.



Since whenever the cylinder will elongate in axial direction or longitudinal direction, this will
also get decreased in diameter or the lateral strain will also take place. Therefore we will have to
also take into consideration the lateral strain as we know that the poisson's ratio (v) is

_ - lateral strain
langitudnal strain

where the -ve sign emphasized that the change is negative

Consider an element of cylinder wall which is subjected to two mutually A" normal stresses s.
and sy .

Let E = Young's modulus of elasticity
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Resultant Strainin longitudnal direction =%—ya€“=1§(q vayl
recalling

_pd _pd

T (T

£, (longitudnal strain) = f—;[%? v]

or
Changein Length = Longitudalstrain x ariginal Length
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Similarly the hoop StramEz:E(aH —E,-'UL:IZE pE_t_ijl_t
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Infact =;is the hoop strain ifwe just go by the definition then
_ Changein diametre _ &d
Originaldiametre d

where d =original diameter.
if we are interested to find out the change in diametre then
Changein diametre ==, .Original diametre
i.e 6d ==; .d substituting the value of =5 we get
p.d

ad= E[E‘F]d
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Volumetric Strain or Change in the Internal Volume:
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When the thin cylinder is subjected to the internal pressure as we have already calculated that
there is a change in the cylinder dimensions i.e, longitudinal strain and hoop strains come into
picture. As a result of which there will be change in capacity of the cylinder or there is a change
in the volume of the cylinder hence it becomes imperative to determine the change in volume or
the volumetric strain.

The capacity of a cylinder is defined as

V = Area X Length

- 2

=pd/4xL

Let there be a change in dimensions occurs, when the thin cylinder is subjected to an internal
pressure.

(i) The diameter d changestod + d d



(if) The length L changesto L +d L

Therefore, the change in volume = Final volume - Original volume

=

[d+6&df.(L+60 - =d® L

1
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Changein volume _ E[d-'_ad] (L6l Ed L

Crriginalvolume TEL

Yolumetric strain=

{d+8dff (L+60) - d* L) | (o +6d” +2d 6d) (L +6L) - d* L]
ST 7 - 7
d°L d°L
simplifying and neglecting the products and squares of smallguantities,ie. 6d & 6L
hence

i
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By definition E—t =Longitudnal strain

%= hoop strain, Thus

|"-.|I’ulu metric strain = longitudnal strain +2 x hoop strain|

on substituting the value of langtudnal and hoop strains we get

=P9n-2] & g=PYp-2
= th[ W] &5 th[ d

or YWaolumetric =g, +2&; = Eﬁ - 2v] +2_[E[1 —Eu]]
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Therefore to find but the increase in capacity or volume, multiply the volumetric strain by
original volume.

Hence

Change in Capacity / Volume  or

) d
| lume = P15 - 4]y
ncreaseinvalume th[ ¥




Cylindrical Vessel with Hemispherical Ends:

Let us now consider the vessel with hemispherical ends. The wall thickness of the cylindrical and
hemispherical portion is different. While the internal diameter of both the portions is assumed to
be equal. Let the cylindrical vassal is subjected to an internal pressure p.
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For the Cylindrical Portion
hoop ar circumferential stress= o, 't'here synifies the cylindrical partion.
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For The Hemispherical Ends:

Because of the symmetry of the sphere the stresses set up owing to internal pressure will be two
mutually perpendicular hoops or circumferential stresses of equal values. Again the radial
stresses are neglected in comparison to the hoop stresses as with this cylinder having thickness to



diametre less than1:20.
Consider the equilibrium of the half — sphere

Force on half-sphere owing to internal pressure = pressure X projected Area

= p. pd¥/4
Resisting force = oy . mdt,
o
——=og,.ndt
P 1 H- 2

= ayifar sphere)=ﬂ

i
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similarly the hoop 51ram=E[crH - v.cr“]——[1 -

Fig — shown the (by way of dotted lines) the tendency, for the cylindrical portion and the
spherical ends to expand by a different amount under the action of internal pressure. So owing to
difference in stress, the two portions (i.e. cylindrical and spherical ends) expand by a different
amount. This incompatibly of deformations causes a local bending and sheering stresses in the
neighborhood of the joint. Since there must be physical continuity between the ends and the
cylindrical portion, for this reason, properly curved ends must be used for pressure vessels.

Thus equating the two strains in order that there shall be no distortion of the junction
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But for general steel works v = 0.3, therefore, the thickness ratios becomes
t,/t,=0.7/1.7 or

i.e. the thickness of the cylinder walls must be approximately 2.4 times that of the hemispheroid
ends for no distortion of the junction to occur.



SUMMARY OF THE RESULTS : Let us summarise the derived results

(A) The stresses set up in the walls of a thin cylinder owing to an internal pressure p are :
(1) Circumferential or loop stress

Sy = pd/2t

(i) Longitudinal or axial stress

S = pd/4t

Where d is the internal diametre and t is the wall thickness of the cylinder.

then

Longitudinal strain T =1/ E [S_ - v SH]

Hoop stain Ty =1/E [Sn-vs. ]

(B) Change of internal volume of cylinder under pressure

= ﬂ[ﬁ - 41.!]"0"

(C) Fro thin spheres circumferential or loop stress

. i
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Thin rotating ring or cylinder
Consider a thin ring or cylinder as shown in Fig below subjected to a radial internal pressure p
caused by the centrifugal effect of its own mass when rotating. The centrifugal effect on a unit

length of the circumference is

p=mw’r




Thin ring rotating with constant angular velocity w

Here the radial pressure ‘p' is acting per unit length and is caused by the centrifugal effect if its
own mass when rotating.

Thus considering the equilibrium of half the ring shown in the figure,
2F = p x 2r (assuming unit length), as 2r is the projected area

F=pr

Where F is the hoop tension set up owing to rotation.

The cylinder wall is assumed to be so thin that the centrifugal effect can be assumed constant
across the wall thickness.

F = mass X acceleration = mw? r x r

This tension is transmitted through the complete circumference and therefore is resisted by the
complete cross — sectional area.

hoop stress = F/A =mw? r*/ A
Where A is the cross — sectional area of the ring.
Now with unit length assumed m/A is the mass of the material per unit volume, i.e. the density r .

hoop stress = r w? r?

sy=r.w.r

BIAXIAL STRESS SYSTEMS

A biaxial stress system has a stress state in two directions and a shear stress typically showing in
Fig..
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Element of a structure showing a biaxial stress system
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When a Biaxial Stress state occurs in a thin metal, all the stresses are in the plane of the material.
Such a stress system is called PLANE STRESS. We can see plane stress in pressure vessels,
aircraft skins, car bodies, and many other structures.

THIN CYLINDERS AND SPHERICAL SHELLS

The stresses set up in the walls of a thin cylinder owing to an internal pressure p are:
circumferential or hoop stress = pd/2t and
longitudinal or axial stress = pd/4t

DEFORMATION IN THIN CYLINDRICAL AND SPHERICAL SHELLS

Hoop or circumferential stress

This is the stress which is set up in resisting the bursting effect of the applied pressure and can
be most conveniently treated by considering the equilibrium of half of the cylinder as shown in
Fig.

. Half of a thin cylinder subjected 10 internal pressure showing the hoop and
longitudinal stresses acting on any element in the cylinder surface.
Total force on half-cylinder owing to internal pressure = p x projected area = p x dL
Total resisting force owing to hoop stress oy set up in the cylinder walls
=2ayx Lt

Z.cr”Lr = de

circamferential or hoop stress oy = % i

Longitudinal stress or axial stress

Consider now the cylinder shown in the fig..

Total force on the end of the cylinder owing to internal pressure
mad?

= PIEssuUre x area = p x —

4
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Fig 9.2 Cross-section of a thin cylinder.

Area of metal resisting this force = rdt (approximately)

stress set up = f 4 nd‘?,."tl pd

P= area P ndt 4t
. I pd
ie. longitudinal stress ¢, = s

Problem 1

A thin cylindrical pipe of diameter 1.5 mm and thickness 1.5 cm is subjected to an internal fluid
pressure of 1.2 N/mm?. Determine:
i)Longitudinal stress developed in the pipe and

ii)Circumferential stress developed in the pipe.

Solution:
Given:
Dia of pipe d=1.5m
Thickness, t=1.5 cm = 1.5x10m
Internal fluid pressure, p=1.2 N/mm?
) The longitudinal stress is given by
o =pd/2t
= (1.2x1.5)/(4x1.5x10%)
=30 N/mm?

i) The circumferential stress is given by
o =pd/4t

=(1.2x1.5) / (2x1.5x107?)



=60 N/mm?
Problem 2

A cylinder of internal diameter 2.5 m and of thickness 5cm contains a gas.If the tensile stress in
the material is not to exceed 80 N/mm?, determine the internal pressure of the gas.

Solution:
Given:
Internal dia of cylinder d=2.5cm
Thickness of cylinder t=5cm=5x107m
Maximum permissible stress =80 N/mm?
As maximum permissible stress is given, hence this should be equal to circumferential stress o

6 =80 N/mm?
o =pd/2t

P=(2tx o)/d

=(2x5x10°x80) / 2.5

=3.2 N/mm?
Efficiency of a joint

The cylindrical shells are having two types of joints namely longitudinal joint and
circumferential joint.

Let n,= efficiency of a longitudinal joint and
nc = efficiency of a circumferential joint......
the circumferential stress(cy) is given by,
or1=(pxd)/(2txn,) and
longitudinal stress(cy) is given by.,

o, =(pxd)/ (4t xny)

In longitudinal joint, the circumferential stress is developed whereas in circumferential joint the



longitudinal stress is developed.
Problem 3:

A boiler is subjected to an internal steam pressure of 2 N/mm?, the thickness of a boiler plate is
2cm and permissible tensile stress is 120 N/mm? | find out the maximum diameter when
efficiency of longitudinal joint is 90% and that of circumferential joint is 40%.

Solution:
Given
Internal steam pressure, p = 2 N/mm?
Thickness of boiler plate, t =2cm
Permissible tensile stress = 120 N/mm?

In case of a joint, the permissible stress may be circumferential stress or longitudinal
stress.

efficiency of longitudinal joint = n; = 90% = 0.90
efficiency of circumferential joint = n. = 40% = 0.40

max. diameter for circumferential stress is given by,

o1 =(pxd)/(2txn,)

where o1 = given Permissible tensile stress = 120 N/mm?

120 = (2 x d) / (2% 0.90 x2)

d=(120x2x0.9x2) / 2
=216 cm.

Max.diameter for longitudinal stress is given by,
o, =(pxd)/(4txnc)



where o, = given Permissible tensile stress = 120 N/mm?

120 = (2 x d) / (4x 0.40 x2)

d=(120x4x0.4x2) | 2
d=192 cm.

the longitudinal or circumferential stresses included in the material are directly
proportional to the diameter (d), and hence stress induced will be less if the value of d is
less. Hence minimum value of d is taken.....so, max.diameter = 192 cm

Effect of internal pressure on the dimensions of a thin cylindrical shell

When a fluid having internal pressure (p) is stored in a thin cylindrical shell, du
internal pressure of the fluid the stresses set up at any point of the material of the shell are

(i) Hoop or circumferential stress (o, ), acting on longitudinal section.

(i1) Longitudinal stress (g,) acting on the circumferential section.

These stresses are principal stresses, as they are acting on principal planes. The stres
the third principal plane is zero as the thickness (¢) of the cylinder is very small. Actually
stress in the third principal plane is radial stress which is very small for thin cylinders and
be neglected.

Let p = Internal pressure of fluid

L = Length of cylindrical shell
d = Diameter of the cylindrical shell
t = Thickness of the cylindrical shell
E = Modulus of Elasticity for the material of the shell
o, = Hoop stress in the material
o, = Longitudinal stress in the material
u = Poisson's ratio
&d = Change in diameter due to stresses set up in the material
8L = Change in length
OV = Change in volume.

Then, circumferential strain,

e1=(01/ E)—(}.l Gz/E)

_ pd
= 2 (L-w2)



and longitudinal strain,
€= (02/ E) —(un o1/ E)

= 22 (12 - )

T x:E

Change in diameter, 5d/d = 2= (1- p/2)
2tE

Change in length, SL/L =22 (1/2 - p)

Z2tE
Change in volume, 6V/V = (2¢1+ €;)

=V/(2 5d/d + SL/L)

Problem 4:

Calculate change in diameter, change in length and change in volume of a thin cylindrical shell
100cm diameter, 1cm thickness and 5m long when subjected to internal pressure of 3N/mm?
take the value of E = 2 x 10°> N/mm? and poisson’s ratio p = 0.3

Solution:
Given: diameter of shell, d=100cm
Thickness of shell, t= 1cm
Length of shell, L= 5m=500cm
Internal pressure, p = 3N/mm?
Young’s modulus, E= 2 x 10° N/mm?
And Poisson’s ratio p = 0.3

(i) Change in diameter (&d) is given by equation

b (1-374)
ol L.
dd=or|\'"g*¥

2
_ _AuBl 1_1,;.125}
2x1x2x10° 2

=0.04 [1-0.125] = 0.035 ecm.

(i) Change in length (5L) is given by equation

pdL |1
=53]



2.5x8l]x3l]ﬂ|:1

= —=0.25]| =
2x1x2x10° |2 ] R

(iii) change in volume 8V/V is given by,

v _8d SL
— D — e —
V “d L
o, 0:035  0.0375 ( 8d =0.035, L= o.0375)
=&X730 " 300 T d =80, L =300
= 0.000875 + 0.000125 = 0.001
V=0.001xV

where volume V = -:— d?xL= % x 80? x 300 = 1507964.473 cm?®
Change in volume, 8V = 0.001 x 1507964.473 = 1507.96 cm®. Ans.

Thin spherical shells
The figure shows a thin spherical shell of internal diameter d and thickness t and subjected to

internal fluid pressure p , the fluid inside the shell has a tendency to split the shell into two
hemispheres along x-x axis.

- -

Circumferential or hoop stress(c1) is given by,
o1 = pd/4t
circumferential stress when the joint efficiency is given by,
o1 = pd/4t. n

Problem 5

A vessel in the shape of a spherical shell of 1.20m internal diameter and 12mm shell thickness is
subjected to pressure of 1.6 N/mm?, determine the stress induced in the material of the vessel.

Solution
Given.



Internal diameter , d = 1.2m = 1200mm
Shell thickness, t = 12mm and
Fluid pressure, p = 1.6 N/mm?
The stress induced in the material of the spherical shell is given by,
(O pd/4t
= (1.6 x 1200) / (4x12)
= 40 N/mm?
Problem 6
A spherical vessel 1.5m diameter is subjected to an internal fluid pressure of 2 N/mm?, find the
thickness of the plate required if maximum stress is not to exceed 150 N/mm? and joint
efficiency is 75%
Solution
Given
Diameter of shell, d = 1.5m = 1500mm,
Fluid pressure, p = 2 N/mm?
Stress in the material, 61 = 150 N/mm?
Joint efficiency, n.=75% = 0.75
Let t = thickness of the plate and
Stress induced is given by,
o1 = pd/4t. n
t=(pxd)/(4xnxo1)
(2 x 1500) / (4 x 0.75 x 150)
6.67mm

Change in dimension of a thin spherical shell due to an internal pressure
Strain in any direction is also noted as 6d/d which is given by the equation

_pd
8d/d = 2= (1- )

and volumetric strain 8V/V is given by,
dV/V =3 x (86d/d)

dpd
=5z -
Problem 7
A spherical shell of internal diameter 0.9m and of thickness 10mm is subjected to an internal
pressure of 1.4 N/mm? determine the increase in diameter and increase in volume, take

E =2 x 10° N/mm?and p = 0.33

Solution.
Given.

Internal diameter, d = 0.9m=900mm
Thickness of the shell, t=10mm
Fluid pressure, p = 1.4 N/mm?

And E = 2 x 10° N/mm?

n=0.33

using the relation



_ pd
dd/d =2 (1- )

1.4 % 0.9 X 1000
= (1-0.33)
2 X 10X 2 X 10000

=105x 10°

increase in diameter, 8d = 105 x 10 x 900
=94.5x 10°mm
=0.0945mm.

Now,

Volumetric strain = dV/V = 3 x (6d/d)
=3x105x 10°
SV/V=315x10°
increase in volume , 0V =315 x 10°x Vv
=315 x 10°x (/6 d°)
=315 x 10°x (/6 x 900%)
=12028.5 mm*®

Normal and shear stresses on inclined sections

To obtain a complete picture of the stresses in a bar, we must consider the stresses acting on an
“inclined” (as opposed to a “normal”) section through the bar.

Inclined section Normal section
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Because the stresses are the same throughout the entire bar, the stresses on the sections are
uniformly distributed.

( Inclined Normal
P section % P section

2D view of the normal section
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2D view of the inclined section
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CURVED BEAM
Theory of Simple Bending

Due to bending moment, tensile stress develops in one portion of section and compressive stress in
the other portion across the depth. In between these two portions, there is a layer where stresses
are zero. Such a layer is called neutral layer. Its trace on the cross section is called neutral axis.
Again for simple bending, the bending equation is suitable for beam which is initially straight before
the application of bending moment.

M/l = oly = E/R
Curved beam

Curved beams are the parts of machine members found in C-clamps, crane hooks, frames
machines, planers etc. In straight beams the neutral axis of the section coincides with its centroidal
axis and the stress distribution in the beam is linear. But in the case of curved beams the neutral
axis of is shifted towards the centre of curvature of the beam causing a non-linear [hyperbolic]
distribution of stress. The neutral axis lies between the centroidal axis and the centre of curvature
and will always be present within the curved beams. It has also been found that the stresses in the
fibres of a curved beam are not proportional to the distances of the fibres from the neutral surfaces,
as is assumed for a straight beam.

Differences between Straight and Curved Beams

Sl. no Straight beam Curved beam
1 The neutral axis of beam coincides with The neutral axis is shifted towards
centroidal axis. the centre of curvature by a distance

called eccentricity i.e. the neutral axis
lies between centroidal axis and
centre of curvature

2 The variation of normal stress due to The variation of normal stress due to
bending is linear, tensile at the inner fibre bending across section is non-linear
and compressive at the outer fibre with and is hyperbolic.

zero value at the centroidal axis.

Stresses in Curved Beam (WINKLER-BATCH THEORY)

Consider a curved beam subjected to bending moment Ms as shown in the figure. The distribution of

stress in curved flexural member is determined by using the following assumptions:



i) The material of the beam is perfectly homogeneous [i.e., same material throughout] and isotropic
[i.e., equal elastic properties in all directions]

il) The cross section has an axis of symmetry in a plane along the length of the beam.

iii) The material of the beam obeys Hooke's law.

iv) The transverse sections which are plane before bending remain plane after bending also.

v) Each layer of the beam is free to expand or contract, independent of the layer above or

below it.

vi) The Young's modulus is same both in tension and compression.

vii) The radial strain is negligible.

MOTATIONS AND SYMBOLS USED

o = Stress

g = Direct stress, tensile or compressive

a; = Stress at inner fibre

o, = Siress af ouler fibre

oy = Normal stress due to bending at inner fibre

The = Normal stress due to bending at ouler fibre

My = Bending moment for critical section, L. e moment about centroidal axis
r. = Distance of centroldal axis from centre of curvature

ry, = Distance of newtral axis from centre of curvature

e = Ecceniricity, e distance betweencentroldal axis & neutral axis
¥ = Distance of fiber from netral axis

A = Area of cross — section of member, (curved beam),

P = Load on member

Toar = Maximum siiear stress

Derivation of Expression to Determine Stress at any Point on the Fibres of a Curved Beam




Consider a curved beam with r;, as the radius of centroidal axis, r,, the radius of neutral
surface, r, the radius of inner fibre, r,, the radius of outer fibre subjected to bending moment
M.

Let AB and CD be the two adjacent cross-sections separated from each other by a small
angle d6.

Because of M, the section CD rotates through a small angle da and point “C” shifted to “C" “
& point D shifted to D'.

Consider a elemental fiber “PQ" at a distance “r" from center of curvature “o” or at a distance
“y” from neutral axis. Due to application of moment M, , the point Q shifted to Q’. The unit

deformation of fibre PQ at a distance y from neutral surface is:

Deformation ¢ = <<
PQ
yda yda

—CET rdo (r, —y)do
The unit stress on this fibre is, Stress = Strain x Young’s modulus of material of beam
Eyda
o=Exe= Gn—y)a6 T T T T (2)

For equilibrium, the summation of the forces acting on the cross sectional area must be zero.

=> JcrdA =0
Eyda
(rn —y)d&'
da ydA
— =0 @ e ————————— 3
a8 ) T —» ©

Also the external moment M, applied is resisted by internal moment. i.e M,=-M
—> jy(jgdA) _yy

= jy(%d“‘) =M

B Eyida B
= j((rn—y)dﬁ' dA) -

da y?
—>F— | (—==—aa)=m

de (rn_y)
da ((y? —yn, +yrn)
=>F — dA =M
dé ( (?‘n—Jf)
da da ydA
=>—F — | ydA+ E —n, M

de dg ™ (rn—y):



da vdA

FROM equation (B)E
q G —y)

[ ydA = The moment of cross sectional area with respect to neutral surface

o, =53 4
— —F — X%
b a0 ¢

Here ‘e’ represents the distance between the centroidal axis and neutral axis. j.e.
e =T — T
Rearranging terms in equation

. da _ Mb
7 df  Ede
Eyda My v

considering the equation (2)o = E X € = = = —
g 2 —3)d0  Ae (n — )

M, v
—”—m[r —y]

7 [

Ae
Where “r” be the radius of the elemental fiber from center of curvature =rn, — y

=>0=

On considering the equation (3)

da ydA
(rn_y) a
ydA
R
(.rn _}’)

[{IWLL)

From the figure it is found that “y”’=r,—rorr,=r+yorr=r,—y

dA — T+ 1)dA _
o y f(y T rn) fd JTZO

(.rn -

dA
=>1, T:jdA:A

A
z

The bending stress distribution diagram along the depth of the curved beam is shown as

follows:



,

e

o

SIGN CONVENTION:-
Consider the simple bending case:-

A cantilever beam subjected 1o end load as shown in figure. Due 1o load a bending moment

T

j5jsem e

A cantifever beam subjecred 1o end foad as shown in figure. Due o load a bending moment
acting about the cemiroidal axis in clock wise direction which tends o bend the beam &
produce a convex suface ar the rop and a concave surface ar the bortom. This implies thar
the upper fibers / layer at the top are under tension whereas the fibers / layers at the botom
are under compression.

Ler consider the cross-section of the beam {plane hatched in red cofour), due o moment “M"
the cross-section plane (plane hatched in red colour) rends 1o rotate in clock wise direction
{moment direction), i.e the plane hatched in green colour abowve the neutral axis comeas out of
the cross-section plane whereas bellow the neutral axis it goes inmo the cross-section plane.
The side of the neurral axis where plane harched in green colour comeas our, thar side of the
neutral axis the bending stress is tensile in nature and vice-versa.



SIGN CONVENTION FOR BENDING MOMENT “M™

CONSIDER THE CASE FOR CURVED BEAM

Case-1

The applied moment trying to close the curve beam or trying to bend more or trying to
reduce the radius of curvature.,

When the applied moment trying to reduce the radius of curvature, the outer surface is under
tension and the inner surface is under compression. The bending moment “M” is considered

as negative,

Coim pressive

Case-2

The applied moment trying to open the curve beam or trying to straight the beam or trying to
increase the radius of curvature.,

When the applied moment trying to increase the radius of curvature, the outer surface is
under compression and the inner surface is under tension. The bending moment “M™ is
considered as positive,




SN CONVENTION FOR Ty
ay~ considersd 35 poSMVe When T 15 measure in the dIrecnon rowards e cenmer of
curvamre & negamve when I IS measure in the direcmon ourwards from the center of

cUrvature.

LOCATHIN OF THE HEUTRAL &XIS

& Recrangular secoon:-

e
o

————d L L L]

Axis Passing Through Center Of Curvature

Rodius of reweral axis "r" =_I|'+""1
T
Area of the redlangwiar sectian 4= bih
Consider 3 elemental section af gisiznce %" from newiral axis o (ckness A"

Area of the elemental section oA ™= bxdy

==

dAd _ rhxdy
==
AFT =ty

dr

Differentating both the side w.rt 9" -=1  =>dr =dy



. #_JB ldr_b‘l’nﬂ—ﬁ-[]“’]m_b[w h-u-]_bh[.lj

Hencar, :
A b h h

BT T )

Derermination of C.&. of the sacoomn.-
.6 of the sectior situated at g distonce ¥ from the bottom of the section.

h
¥ from the bottom of the section =E

h
Radius of curvature of cerntridal avisr, =1 +E

B. Trapazoidal Sacodon:-

P|'

AXTS PASSING THROUGH CENTER OF CURVATURE

Consider an alaman@:l secTon ar a diIsTance “y "~ from neumral x5 of thicknass “oy ™
Lar wid'th of the afemental secrion “b" ° whare :

_ bu] ¥ [r, —r)

b= b,+ |



Area af the slamental secTon 04"

:l’.-l.:b':.d'}r=[ﬁu+{h:b"

) tra =71 dy

Asr=rg+¥
dr
— =1 =" .:h-:.l_'[:l.r
dy
Hence dA =b" xdy=b"= dr =[b'|:|+{ E: '}F-[ru—:l':'

dr

Whers “A™ =r,—

Tﬂdumn.d:‘l'i-lzﬁ-b' a¢r=jr' [1._4_{1":;‘*:-]3.:,_ —r)| dr

= jnh. dr + {b' ; b"] rﬁ[r. —r) dr
5 ]

— 2 2
= balr = + (2222) {:r-[h - [’T o }

= b, 8+ (22 fr 1] - St —rir, + 7]

= b [h] + {b‘ : t"]I ALY —% [hir, + n}]}

= bolh] + (=2 [Fintr, -]

= b [A] + (%} E%Iﬁ[ﬁ:.-]

i i
= b, [k] + (B, — b) EE:.] == (b, = b,k

A
Rodiug of rewtral axis " " =—
I+

r r r

= jﬂ_ E'I:*En':f[b"'_{h_;ﬁl-“-[ﬁ—r} wdr

. -fﬂ:jr.-.[&uﬂi—;—'}x [r.,—r:l]{h_= }-:%dtrﬂiu] {f:%dr— J:dr}

= b, h[E] + {b‘ ; b'] [r.h{r_'j - (r, —r.?l]

Ty




by -

= b, In r_T] { [ b- - i.]
A
Hence Radius of neutral axis “r," = —3
>
by + bolk
TI =
b tn(2) + (A7) [ro in(32) - 1]

ererminanion of C.&. of the s8coon:-
.G of the section situared at @ divtonce ¥ from the bottom of the section.

¥ from the hottom of the sectiom = E:J-l_-l_l;:

Rodius of owrvature of centridal ards ., = 1 + F

C. Inanguiar Secmon:

bl

g

AR FASSING THREOUGH CENTER OF CURATLRE
On putting the boundary condifion In formulation of trapezoldal sacion, the radies of cunvature of

neuiral axls may be calculated
Ei'|=fl ] ||_'|n=l'_'l



> 1m,+b0 ; (B}

==

b () + (P2) raimn(Z) -] (f) [l -

Deameminanion of C.G. af the S8cDon -

.G of the section situated at a distance ¥ from the bottom of the section.

§ from the bottom of the section = [E';":_tiﬂ] i[b__|_[[:] =

Rodius of cwrrature of certridal aris """ =n + F

A. COMPOSITe S8CTION: (-secTion)

J 2 [r.h['r

by
g
ﬂ] H'J-
¥
2
F, . h,
i Fa
Tg
Fi s
ANTS PASS G THROUVGH CENTER OF CURVATURE

Tatal area af the -sestion s "A"

1
A=Zﬂ. = by % hy + by % Ry + by %Ry

=1

.



$= ]%—biml: ]+b1!m{r]+b,! {:]

T
A hy + +
Radius of neutral axis "r," = EL kL Ll ki LI

J-E byin(Z) + baln (2] + byln (2

n=n+h
np=r+h,=n +h +h; +h,

Dererminanion of C.G. of the sacoon:-
C.6G of the sectior situated at a distonce ¥ from the bottom of the section.

Rodius of cuwrvature of cerntridal aris"r," = + ¥

B. Circiilar Secmon.-

EL

AXI5 PASEING THROUGH CENTER OF CURVATLURE




A e+ ml
Hu:.ilus-ufmrralﬂ:b'rn'=lrdﬂ= L™ 41'51

r

Dererminanion of C.G. of the s8coon.-
£.6 of the section situated at @ distonce ¥ from the battom of the section.
Rodius of aovature of centridal arisr. =+ =+ R

CRANE HOOK PROBLEM:-

SR T ———

I
1
|
I

Conslder a secon "P at an angel 8 from horizontal.
Bending moment about the cenirodd "C" at the saction "Pa" 15 -
M,=Pus )0 =PxOC cos8 =P x.om@
Normial koad atting on the cnoes- sacton "PQT 15
F=P cosé@

CHrect-stress aciing at the secilon |s -




Whenz “A" |s the coss-secional area of the Deam.

Norte:- when #=0, the bending moment and direct STress are maximum & plane Is known as
crimcal plane.

&1, a crane hook |15 of trapezpidal cross-saciion hawing Irmer side B0 mm, outer slde 30 mm,
and depth 120 mm. the radius of cureature of the Inner side Is 30 mm. i the load 100 kN s applied
In following two condilon, find the maimum tenslie and compressive SesE ACINEE critical cnoss-
saction.

d).  when the load pass through cenier of cunyature.
). when the load shifted by 10 mm towands Inside sunfzce from cenber of cuniatune.

¢).  when the load shifted by 10 mm away from canier of cuniature.

Solution: -

Glven data--

Point *C" be the cenfer of cunvabure

n = Bimm, h= 120mm, b = Blmm, b, = I0mm, P = 100kN = 10 = 10* N

rm =1+ h=20{mm

ARG PASTTNG THAGIAGH CERNTEE OF CURVATURE

Dererminarion of C.G. of the sacdon:-



.6 of the section situated at a distonce ¥ from the bottom of the section.
h iy + 2h, 12080 + 2 = 30
e, +b, 1~ 3| 80+30

Rodius of owrvature of cerntridal aris, =, + ¥ = B0 + 50091 = 1310.91mm

¥ from the bottom of the section = = 50.91mm

Mence Radius of neutral axis " 5" =%ﬁ
I+
T b+ bk 180+ 30120
b, m(F)+ S L J':] 30 tn () + (g 200 tn [ J) - 120]
G600 6600 600

_ - = 122525

= T 37488+ 0.417 [183.258— 120] 27.488+ 0.417 [63.258] 53866 e
1 T

Area & =E[b’ + b, )k = 6400 mm

e'represenis the distance between the centroldal axis and newtral axs. 1.8,
=% —mm = 13091 — 122525 = 8.385mm

we know that ='.rr-:r=lq—tl

A) For case (a) when load passing through cenmar of CLNVamwrs.

My = bending moment about centrold of the section = P x i = 13091 = 10*Nmm

By appiying sign convention:

Myls positive, as the Appllad moment trying fo Increass the radius of curvaturs, the outsr
surface ks under comprasslon and the Inner surface |2 under tanslon. The bending moment

“M" I conaldsred 3 posltive. == M, = 13.091 = 10°Nmm

" considered as posiuve when [ 15 measure in the direcoon towargs the cenrer of
curvaire & neganve when iT 15 measure in the dwrection ourwards from the center of
curvaiure.

For point "A" | iber at inner suface yy = is positive



My L_'|.' ] Hb L Hb ].'_4.] 13061 x 10% 42525
n— ¥4 Ae

Stress due to bending at A = o, =E —¥ Ae & 00 = BI85
n

= 125.742 N jmm?*(tensile)
For peint 8", Nber al outer sUNace vy = [5 negative
¥y =Ty —ry = 2000 — 122535 = 77 ATimm

= Ty =r"—|:—:r‘-_,=r=+_1.-,=ru = 200mmem

Stress due to bending at A = gy, = L_—] m‘ - E—.]

13.091 % 10 rru'.rs
- - = —01 634 N jmm? esxive
G600 = 0,385 | 2080 ] (eompe }

Wrect stress aciing at the seciion “A-B" -

\

Direct stress at secllon “A-8"

Resultant slress-
Ty = Taq + Taq = 1408504 H.ﬂ'mz{tmt[f_‘_l

ap = Oap + Tap = —TEA82 Nfmm? (compressive)




B. Far case (bl when the load shifred by 10 mm Towands inside sUMAce ToMm cenmer
of CLrvamra.

My, = bending moment about centrold of the sectior
=71 —00 =13091 - 10 = 12091
M, =P xx=12.001 x 10°*Nmm

M)
Stress due to bending at A = o, ——b
- ¥
My v ] Hﬂ J".1]
~Ae ln -y,
12091 % 106 [-12..5:5
G600 x B.385
= 116137 N /mm?*(tensile)
M
Stress due t'u:rﬁﬂ:u:l!lh'l.g et & =y, == [L

=~ ¥
e [l = e b
—[—}' ™
1211-;1 o 1 'J?.-!'JS

T G600 x 8,385 [ 2080
—B4.634 N fmm?* (compressive)

Direct stress at section "A-5"
F LD

Tua = Ban = 0y =5 =—00= 15152 N/mm’ (tensile)
Rezultant siress-

Oy = Tpq + Ty = 131289 ¥ /mm({tensile)

@y = Tag + Tap = —69A482 Nfmm® (compressive)

[ For cags [b] when the bead shifted by 10 mm away from center of curyatura.

My, = bending moment about cemirold of the sectior
=7+ 00 = 13091 + 10 = 140918
My =P s x=12001 = 10N mm

Stress due to berding at & = apg =

% =551

=5 [ [’—]
Ae L — ya ra
14091 = 10° [-iz.JL
T 6600 x 8385 L B0
= 135347 N/mm?*(tensile)
M,

Em:sdu:‘!‘-ﬂw!ﬂ.?ﬂ"" Tia _F [r]i ]

'.I-Ll'.'l'?1 * 11]':' . l'i""

GE00 = B3A5 L 2080
= —R634 ¥ mm? [compressive) | B




CWrect stress at section "A-5°

Ty = Ogg = Oy =£=%= 15152 Nfmm® (tensile)

Resultant stress:-
T4 = Taa + Gaa = 150499 Nimm(eensile)
&y = @yg + Tap = —H1.482 ¥ /mm?® (compressive)



WORK SHEET

@2  Piotthe stress distiibution abowt secton A-S of the hook 35 shoan In figure.

Glven data:
I, = S0mm, 1, = 150mm, P = 22X10°N, o = 20mm, h = 150-50 = 100mm
A = bh = 20%100 = 2000mm*

Derermynanion of C.G. of the Sacoon:-

.6 af the sectior situated af @ divtonce

L
# from the bottom of the section = ]

1o
===
Rodius of curvature of certridal aris

50 SRR R

3l me

=mn+=-=50+50=100mm

Fa

bxh h -

[ _Hrz[{‘l'-:l_hz =)

n =

=

=

Lo ol 2 4
— W— - mm
50 _

=1, —r =100 —91.024 = 8.976mm fuwie Paiting Thragh Centar OF Curvature

My = bmding moment chout cemtroid of the section AR =P x g =22 % 107 = 100 = 2.2 % 10" Nmm
My is positive, as the Appled moment trying to increass the radius of curvature, the outer

surface |z under compression and the Inner surface |2 under tansion. The banding moment
“M" Iz consldered as positive.

Direct siress at secilon "A-5"




— — _F_Imm _
Tag = Tyg =0y =7 =7

2
= =T = M Nfmm*{tensile)

For point "A" , iber at inner surface y, = is positive
¥y =5 —r =91024 - 50 = 41.024mm
=Ty =Ty —Ya =n = 50mm

M W Hj Wi Hﬁ _'|-'.1 2.2 %108 41024
Stress dwe to berdi tA = =—[ - [ - ]
e g o = e = e (e =y " A [m—yal ~ A Iyl " 2000 %2976 [ 50
= 100.55 N fmom’ (tensile)

For point 8" , iber al outer surface y, = (s negative
¥g =Ty —ry = 150 — 91024 = 58597 émm

as yg = is negative, ¥p = —58976mm
=}F|:|=Tn—[—]-'|:|—'|'n+‘-"ﬂ—'|'-£l—j 3 mm
Stress due to bending at A = apy = [ H‘ [ L F ]
Az T Ae [r - |:—'.rﬂ:|

22x10% [5R.976
T 2000 8976 | 150

—48.183 N fmm? (compressive)

Resultant stresses are :
gy = gy + @y = 11155 ¥ /mm? (tensile)
Ty = Oy + 04y = —37183 N /mm? (compressive)

Bending stress af any rRdus 775 o = E [ﬁ] Where y=m —

Bending stress arf neutral axis L8 &t " =0, a,, =0
But Resultant stress at neutral auls=m, = o, + o, =11 ¥ /mm? (tensile)

Bending sfress af cenfroldal axis e at "= < =-8.570mm,

a,, =M l_] = r;i[cmpﬂs:mc}

But Resultant stress af centroidal axls <o, = o, +o, = 0

Stress distnbutlon across the cross-seciian “AB"

L]

A

11155 J'I.'..-'m:l-rq_j_:fmwr.ﬂ

133 Myisita®| raTe




Problem on “L'™ fork

Consider 3 saction “Pa° at an anged 8 from honzontal.
Bending moment about the centrodd *C* at the sacilon P& 15 -
M,y =P (MD+WK)l=Px (MDD +0,C cos@ )= F x[L+r.oosd)
Harmial load acting on the cioss- sacion P 16
F=P cos@
Hrect-siess aciing at the secilon | :

P opoz @
A

g =

oo

Whenz “A" | the cmoss-sectional area of the Deam.

The “U° section consists of tw portons:-

A. Siralght portion
B. Cunve poriion

SmalghT pormian

Far calcwating stress n sirigt portan (WMD) gereral pure bending fomula can be appied:
M veraigus
Bending stress O peraigie =—7 R¥

Wher M. 4 =Fxx



x = distance of the section from load P
Where mavimum bending moment Mo peimary = P % L& i (5 occurs af the section CD
Omn putting the value # =90 M, = P < (L+r cos90) =P« L

F P pos 30
AT a4

Direct siTess Taviraight) =

Hence resultant SEress 0y g by = Thireraight) £ Tdistraighty = Tojntraight;

Cune povmon

For calculaning SUess In curved poroon Winkier-batch theory can be applied:
Banding moment about the centreld “C™ at the section “Pa™ Is :

M, =P (MD+0,K)=FPx(MD+0,C cos@)=Px(L+r cosH

My ¥
Chimady =j—: [r, —_‘r]
Direct-strass acting at the section Is
F Pcosd
Fdicwrped) — I: n

Hence resuliant SIress 0 ppd) = Tiiowrved) L Tdicurped)

@.3. Flgure shows a frame of a punching maching and Its vaows dimensions. Delermine the
maximum stress in the frame, If it has to reslst a force of 35KN.
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Ehven data:- }1
E I ]
L=750mm, i A ¥
K y
f,= 250mm, r, = S50mm, P = 85X10°N ) ‘
by = Widmrm, b = T5mm, by = 75mm, K
bz = 225mm, m = 250mm, ;
=250+ 75 = 3125mm, !
Ty, =325+ 225 = 550mm Tk
STE PEGTING THAD LNGH CENTER OF (OB VATUAE

A= (300 x T5) + (225 x 75) = 39375 mm?

(300 % 78) x [ 75/ ) + (225 % 78) x (75 + 2251,
= (300 % 75) + (225 = 75)
r, =1 +§ =250 + 101.785 = 351. T85mm

f"_lj‘_ butn () + ﬁ:b‘ll{::—zjl

=333 21Tmm

= 101. TESmm

Radius of newtral aris"r," =

_ {300 = 75)+(225x 75}

Tn_:nuh{%%ﬁ 15&-{%—5

Dismance of neumal ans 1o cenmodal axis “e”™ = r.- R, = 18.585mm

Banding moement about the centrold “C~ at the ssction 1 -

M,=Px(L+r_cos@lwhen @ =0,

The bending moment is marvimum & the section L5 @t horizontal ir the curved portion
Mp=Px(L+r.co50) = 85x 10" x 1101.785 = 91652 = 10°Nmm

M is positive, as the Applled moment frying to Increass the radius of curvaturs, the cuter surfacs ls
under -::ﬂwnn'qnmuiun and the Inner surface ks under tenslon. The bending moment “M™ Iz consldered
as positive.

Direct-strass acting at the ssction s : .
_f_F‘r-u:ﬂ'_ﬂS:-ciEl cosl N
Ty =g =——— = pre— =216 %/ . (tensile)

Bending siress at "A"




Far point "A" , fiber at inner surface y, = is positive
Yy =1, —n = 333217 - 250 = 83.217Tmm
—}r* =T, _1-', =, = 250mm

"
Stress due ta bending atA = gy, == L—] H b
—}I.*

de Ly
= 42.64 Hfmm*{tmuej
Far point 8" , fiber at outer surface y, = (s negative
¥p =T —Ty = 550— 1333217 = 216.7E3mm
as yp = lsnegative,  yp=-216TESmm
=Ty ='::":_}’u:| =T, +:|.'j.=rIJ = 55I]Im.m
Mol ¥ | M| -1 ] My
Stress due to berding at A = @y = m — _1.-] m l:;, —

93652 % 10° 1216708 i
=~ ImTs<18.568 | 550 | Jman' (compressive)

 GAARZx 0% 32T
T 39375 x 18.568 | 250

Resultant stresses are :
ay = @y + 0y = H4B N fmm? (tensile)
ap = Jpg + 0 = —4833 Hfmmz{n:mpns:hl:}l
Moarimum shear stress 1. = 0.5 8., = —24.165 N/mm*
The befow figure shows the stress distribution.

Banding sress o, =30k 42 Hdman’

st B T
s | 4
Combimed stress o, =-4%. 33 Himm? M!
E | | +
i i et 2. A MATm”
n L ;
|

i
RSTRSYORY il R

b= A0




@4,

The secllon of a crangé hook |6 rectanguiar In shape whose width i 30mm and depth s

G0mm. The centre of cunature of fie seclon |5 at dis@nee of 125mm from the Inside section and

the lkoad line |5 100mm from the same paini. Find the
tenslon Is TSHmm’.

capacity of hook If the allowable siress In

Glven data:
hLIHIm
] L
Do = 15 N (tersion])
-
Point *C" be the center of curnvature

n=125mm, k= 60mm, b= Wimm, P=7
h=r+h=15mm

Dememinarion of C.G&. of the sacoon:-

L6 of the section situated af o divtonce ¥ from the §

h 60
¥ from the bottom of r.|1.1.-:|:'|.-t|.:rr|.:E—T

= Ilmm

h
Radius of cwrvature of certridal aris . = +§

=125+ 30 = 155mm

A bhxh _ h i
QT e
= 153 045mm

e=r.—r, =155 —=153045 = 1 955mm
A =30 x 60 = 1900 mm*

M
= bending moment about certrodd of the section AR
=Prr. =P x155=155F Nmm
My is pasitive, as the Appllad moment trylng to
Increase the radius of curvaturs, the outer
surface I8 under compression and the Innsar
surface ls under tenglon. The bending momant

“M" I8 consldarsd as posltive.

fudw Pazging Thraugh Center O Curvature

Direct siress Gt section “&-5°
FF
g =Wy =0y =7 =

AT LEOD

= 0555 x 10777 N/mm? (tensile)

For point "A" , ber at inner surfaca y, = is positive
¥a=Th—h

= 1535
= =g =y, =5 =115mm

=125 = FE045mm




a3

EE.D-!S]

: P bend 4 My ¥ My ¥a My [¥a 145P
HITESS Bl L0 BERAING AEA = Moa = T ‘H[q—h]‘ﬁ&]‘mmm.@ss 135

=9.862 x 10°*P N/mm® (tensile)

For point 8" , Nber at ouber sUMace yp = iy negative
¥a = —ry = 1B5— 152045 = 31.955mm
asyg = ismegative,  yp =-31.955mm
STy =T, = [—].',,:_=1',.I + ¥y =T = 185mm
O My M w1 Mo 155p 11,955
Strexy dueto bendingarh =o =20 ’F., - ]J ~ e I —{—J-ﬂ] =T [E] = T1m00x 1955 | 185 ]
=-7408 x 10°7P N/mm?(compressive)

Resultant sresses are

8y = s + 0y, = 10437 % 1077P N fmm®{tensile)

Oy = Ty +0gp = —T053 x 107P N /mm® (compressive)
Maximum tensla siress |5 :

N
Omar = TS—s =375 = 10437 x 10°7p
- P=T1B5972 N

2.5 The figure shows 3 loaded offsel bar. What 5 the madmum off-5et distance ¥ T he
alipwable stress In tension ks Imised to SONmAT,

. (Fe3EN

Solution:-




Glven data:-

r (F=JkH

r- = 100mm
ri=r.—RB=50mm BE=50mm P=5x10°N§
Te =T+ & = 150mm

Maximum fenslls strass Is
Tmar = 30 p——
Cemerminanon of C.G. of the s8cDan -
¥ = R = Silhmem
J— I
A ITe + .10
Rodius of nemtrel pols "r," = TN = I"'" u -I-..I '!-I
I+
150 + 50
= u = 93130 1mm
Tr '|
"‘=I ! = i = TH5Y 41 imm®

F=Tr. =Ty = 100 —9% 301 = 6. 9% mm
M,
= bending moment about centrodd of the section AB
=Pxr=5x10" xr =5 = 10°x Nmm
Mpis positive, as the Applisd moment trylng to
Increase the radius of curvaturs, the oufer surface Is =

Ty

under compression and the Inner surface ks under
tenalon. The bending moment “M." 18 conalderad as
mm .Q:H'I.'“'-'-'L'L'Fllllﬂ THEOUGH ST SF SO VTR [~
Direct siress at section “A-B"
P 5x1?
Taa = Tam =04 =4 = 753 902
= 0.637N/mm*{compressive)

For point “&4~ , iber at Inner surface yy = is positive
¥4 =T —r = 93301 — 50 = 43. 30 1mn

STy =Ty =¥y =7, = 5lmm

& M
Errfs:d'u:tubcnd!n.gur.ﬂ.—a“=— F] == ¥a ]:Tb F]
Im — ¥4 e ]

B 5« 107x 43,301
T OTRS3 . ON? x 6699

] 0.0823x ¥ /mm® (tensile)




For point “B , fiber at cuter surface y, = is negative
¥y =Ty — Ty =150 -93.301 = 56 69%mm
s yy = ismegative,  yy = -56.69%9mm

== Ty =Ty—[~¥g =Ty + ¥y =Tp=150mm

My ¥ M, —¥n M, [¥a
Stress due to bending at A = oy =— %] =— Lil =__12 []‘_]
Ae n—F Ae l_{_}ll:l Ae Ty

5x107x 56,699 ; ,
= [ = —0.036x N/mm"(compressive)

T TIBE3. 002 « 6699 | 150

Resultant stresses are :

Ty = Gy — Fgy = [0.0823x — 0. 637N /mm | tensile)

Oy = Opy + 0,9 = —(0.036x + 0.637) N /mm®[compressive)
Maximum tenalle strass I .

Tpgy = S—— == 50 = 0.0823x - 0637

= ¥=615.273 mm

@6. Determine the siresses at point A and B of e spilt ring shown In figure.

Solutlon:-




Glven data:-

r- = Bllmm
ri=re—R=50nrm B=30mm P=20x=10°N
Ta =T+ R =110mm
Dererminanion of C.&. of the sacoon:-

¥ = R = 3lmm

A
Radins of newtred axis ™" =—
I5

_Wme Al

= 77.081mm

™
A =TI'1 = mRT = 2827. 433mm*

£ =T, — Ty, =80—-77.081 = 2.91%mm
My,
= bending moment aboet centrold of the sectiom| ~| =
=Pxr,=20x 10"« 80 = 16 = 10° ¥mm
My is negative, as the Applled mement trylng to
decrease the radius of curvature, the outer =

ANLE PARAWS THE OGN -JTOWTTR &F TUAVATURE

T

surfacs ls under tenglon and the Inner surfacs ls
under compression. The bending momsant <M." la
consldared as negative.

Direct stress at section “A-B"

P 2010’
T AT 2827433
= 7.074 N/mm®{compressive)

Ty = Tag = Tg

For point “B” , Miber at Inner surface y, = is positive
Yg=Tp—r,=77.081- 50 = Z7. 081mm
STy =Ty —¥g =7 = 50mm
Moy ) Mar e ) Ms s
Ae lr,—¥l ™ de lry,—ygl ~ Ae |r,
—16 = 10% 27.081 .
= SaT A =191 | B8 | = =105 N/mm*{compressire)

Stress due to bending ot B = aun =

For point “A™ , Miber at outer swrface y, = is negative
¥a=To—ry =110—TT.081 = 32.919mm




a5 ¥y = isnegative,  y, = -3 91%mm
STy =Ty— {—_1.": =Ty + ¥y =Ta = 11lmm
My ) ks

Stress due to bending ot & = o, =.I_ = r
£ lry — ¥ "

ra—(—yall

—Fa ] My va
de lra

- —16 x 10° r32.919
T T I827.433x 2919 110

= 58.016 N/mm?(TENSILE)

Besultant siresses are :
Ty = ey — Ty = S0.94F H.."mm:(t:'rr_-.'!!f]

Oy = Opy + 0,4y = —112.074 N/mm*{compressive)




STRESSES IN CLOSED RING

Consider 3 thin cireular fng subjected to symmetrical ioad F as shown In the figure.

The nng Is symmetrical and Is loaded symmetrically In vertical direcions. Conslder the horfzontal
gaclion as shown In the A and B, the venlical fonces would be Fi2.

MO honzonial forces would be there at A and B Le H=0. this argument can be proved by
ungerstanding that since Me ring and the external forces are symmetrical, the reactions too must be
symmetrical.

Agsume that two horizontal Inwand forces H, act at A and B In the wpper half, a5 shown In the figure.
In this c3se, e lower half must have forcas H acting oulwards as shown to maintain eguilibrum.

This however, results in violation of symmetry and hence H must e 22ro. B2sides the forcas,
mamenis of egual magnitude My act at A and B. It should b= noted that these moments do not
violate the condition of symmetry. Thus loads on the secion can be reated as that shown In the
figure. The unknown quaniity ks My Agaln Consldering symmetry, we conciude that the tangents at
A and B must be verical and must remaln 0 after defleciion or Mg does not rotate.

By Castigllano’s heprem, the partial dertvative of the strain energy with respect to the load gives the
displacement of the load. In this would De Zero.

il
— =0 ————————— 1
ETTR (1)

The bending moment at any paint C, located at angle “6", 35 shown In figure. Wi be



Ff2

F
M, = H.,—E{FE—R:-JSE]

FR
My =My ——(1-mmsf) ———-—(2)
As per Castiglang's thearem
il
aM,
au _ L b, a-H,
= —
TaMy E.I .Eh'ﬂ'.,::Iﬂ 0

am, A~ (1~ cose]

aM, aM,
& ds = Rdd

T
AU M, M Uz | My — (1 - cos )|
= j:. s |: j:l T = -'Ljn

3y = |, ET\AM,

_+R [H,,——[l —c::-e:ﬂ_']].:[l!il 0

FR FR
=:1-j [H',:,——+—|:-:| E']dl!il 1]

= [H'Dﬂ ——E' +—=.n E']

u x FH':I: FFE 5
== =
o 1 mz gt 3
T
= ”n=?|:5-1:| -------- (3)

As this quantity (M) Is posltive the direcfon assumed for M Is comect and It produces fenslon In the
Inner fiaers and compression on the outer.

it showld be noted Mat these aquations are valld in the reglon, & = 0 o § = 90°. The bending
moment M. at any amfe & from IJIH]H (2] will be:-

FR 2
Hj =—[—— :l—?ﬂ I:IJEE'] T{Cﬂﬁﬂ—; ——————— ["Il]
BEHﬂlﬂg mament will ke e hTiEI'I,
3
asfl=— == =504 ————————— (5]
T

At load palnt, Le. at = n:."li . the bending moment s maximum :

[T —— =F—;[—3] L — (6)

. o

It Is seen Mmat numencaly, M, 15 greater than M.. The stress at any angle & can be found out by
considenng the fonces as shown In the figure.




M- My =3 0o — =

]

sf ;5"” EII,:"-*‘EHM
My W Frza My L L2 A
L]
VEr2 Ve

The vertical force Fi2 can be resalved Inbo two components (creates normal direct stresses)
|cTeales shear siresses ).

F
.I'l':EnusE'
F
5 =?:In!i|

The combined normal sress acress any secion will b= o = 4

it should be noded That In ::al-:1.||a1ng the I:l-Eﬂ-[lﬂg shragsas, | 1 assumed that the radius |E-|-H@E
compared to the depth, or the beam Is almost a stralght beam.



THIN EXTENDED CLOSED LINK

Conslder a thin closed ring subjected to symmetrical load F as shown In the figure. Al the two ends
C and D, the vertical forces would be Fi2.

T

—

Fi2

e Bl ot

Wi horaomtal forces would be there at C and D, 35 discissed eanlker ing. The unknown quantty s
HI:I'

Again conskdaning symmetry, we congude that the tangents at C and D must be vertical and must
remain 50 afer deflection of My does nod rotate.

There are two reglons to be considered In this case:
» The siraight porfon, {0 <y < L] where My =M,
» The curved porion, where bending moment about point “C* a5 shown In figure Is:



F
M, =M, —E[ﬂ'—.ﬂ':usﬂ}

&3 par Casfiglianc's theorem

al al
Ao o MWeragee [ p—
il d My Mg

au ‘Mg (aMy "2 My (3My
—=4 ——}J+I-J——d.:=|]
TR L El \aMg T '{am.jl

I.Hl T
=>4 | —ds+ 4 | —(1)ds=0
,[,,n ;[, mr

T

4M,yl
S
El

ML M,uR FuR® FR

EI ~ 2EI  4El = ZEI
M,xR FnR® FR°
== HqL+T—T+T=
1L +mR] PR [:—2
2 1 2l 2

t
i
i
+ E ];'Ilnn-g[n-nma)] d8=0 asds=RdS :
|
|
|
|

|

== Hq[

It can be coserved that at L = 0 eguation reducas o he same expression as obtalned for a clrewar
Ang. 1.2
FR
= H.] =? [E - 'I.}

The My produces tension In Inner fiber and Compression an the ouler.

The bending moment M, at any angie & wil be:

o FI:F! Reosd) FRRpm=-2
M = Mo =5 (R —Reos) = —- |

FR
—Tli:'l - cos i)

Naoting that the above aguation ks valid in Me region, & =010 & = w2




At& =10, the bending moment at section BE

FR*
My =My ==~

m—2

2L+ wR
At & =mi2, the banding mement at saction
1]

PR m-2

FR
M =— _-—
o I FT

2

The stress at any angie & can b= found by considenng the force a5 shown In the above figure. The
vertical force Fi2 can be resoived In twD cOmponents (creates normal direct stragsss) and S
|L7eates shear siresses).

Nomal foree “N°

N=—omf
& shear siress 5"
§= ;sln f
The combinad nermal straes across any ssction wil be
My F

= lﬂ_:[rl ) + H:u:ﬂ'




Q7. Delemnine the siress Induced In 3 clreular Ang of clrcular cross s2ction of 25 mm dlameter
subjected o a tenslle oad 6500M. The Inner diamater of the nng ks &0 mm.

Soluthon:

Ghven data-

Iy = 6illmm, d = 25mm. r = 12 5mm F = 65008,

rp=3mm, r, =7+ d= 55mm

Cererminanion of C.G. of the sacoon:-
¥=r=12%.5mm

r.=R=r+r=435mm

_ W]

Radius of nentrel ads™r," = i = :
I+
T
W W
= = 41 56mmn
4
“ = ) -
k| =Td' = mr* = 490,874 mm*

e=1c—7n =42.5— 4156 = 0.%4 mm

The bending moment M, at any angle 8

=E[: }——{l—cmﬂj—%[cmﬂ—;]

Ar sacnon B-8, §=0

My = Myn_g =%{’—;— 1)—2—%1—:-::&]
FR  FRy 2
Mog- = (a0 2} =—-(1-)

3

E.SE-I]A‘IE.R( 2
—_— 1

Al Inmer fbar
Mg = = 3lmm,  yu =5 —5=11.5mmi+ee]

HﬁnJ = ¥pi Hb.ll-ﬂ E¥m

“Aelr, —ypd .'h:'rd.
BOZT7.5x 1156

- 190,874 5 0.94 30
= 41987 il
mmt o )

AL puter fier

Mo = & = 55mm, Yag =T — T = 134dmm{—re]

—_—

ANE PARRWS THROUGH DOWRTER OF JOR VETURE

rI




= Map-p * ¥pa _ Mg * ¥ao
A .I1E[F.,|_ - l:_J"E::I] “'Erﬂa
S02TTS = (—13.44)

BETTYED < B-o4 55
= —2h.626 (compressive)

mm?

Ciracr sIrass ar saciion B-6-
At section BB, 8=10
F 65 ;
R i T T T

= 6621 Nfmm? (Tensile)

Resultant siress at saction B-8

api = Oeai + Ogn—g = 40608 N fmm? (T ensile)

Jpp = Tapy + Tgg—p = —20.00% p— [compressive)
Ff2
Ar sacnon 4-4, §=md
FE m Fe FR 2 G500 = 425 !
Hg = Hﬁ,q-,:, = TEE— 1} —T[] —L‘E-E'Hl::' —T[L'l:d | —EJ —T{MQD _Ejl
= —@TU33106 Nmm

At Inner fiber
rg =0 =MWmm, 3, =r—-n=115mm{+ee)

Mog-n XY _ Moacn Xyu _ 8793006 x1156 K
T el —ya) . Arry OB R0 Ay (compressice]

Al outer flber
Mg =Tp = 50mm, o =0 — K = 13ddmm(—ve)
My g% My g % —B7933.106 = (—13.44
T = .'1:'[: = (—i::n] B tg;rﬂh T 490874« n--[H . ss:l = 40568 o (TENSILE)
Diract SITass ar Secion 4-4:
Al section A-A, 8= m2 .
Tyga = ﬂtlﬂﬂ =%mslﬁ =1
Resultant siress at s2cion A-A .
Oy = Opgp + Tgq_g == —?3.433# (compressive])
Tag = Oypo T Ogu_y = W6.568—— (TENSILE)

mm®




2.8, A chalin Ink = made of 40 mm diameter rod 15 creular at each end, the mean dlameter of
which s SDmm. The stralghi sides of the link are also SDmm. | the Ink cames a load of SOk,
ezimate the tenslle and compresslve stress along the section of load line. Alsp find the siness at a

saction 90° from the load line.

i
1N

D, = @lmm, v, = 40mm d = 40mm, r = Z0mm
F=%00008, 1, = 20mm, r, = r; + d = Gillmm

2L = Bl
Dererminanon of C.G. of the sacoon:-
¥ =r =20mm
r. = R = 4lmm
T+ FT
Rodius of newtrel prds"r," = — I.'l.' o -.,"_¢_|
dAd Il
I+
= . =
_ +w il -I;'..I'Il - 37 12mm

N
.|'I=T|:I'2 = mr® = 1256.637 mm?®
e=7.—T, =40—37.32 = Z_ 68 mm
The bending moment b at any angle § will be:
F
My = My ——(R—Rcos@)

FR1 m—2

3L+ Rt __[1_':'“'[':'

Ar secoon 6-8, #=40




My = Mppp =—— —f_:l — oz 0]

[2.‘. + xR

m
Mpga = [21 + =k
90800 x 48° |’L <=2 J: TOGE55.T Nmm

2 2 = 40+ méd
AL Inner fbar
Mgy = 1 = Zilmm, Yo =& — = 1732 mmi{+vre)

Map-p % ¥ _ Mia-g % ymi

e e — ym) | Ae T
TA9EAS.T » 17.32

= 115(..(.31# Z.68 x 20
= 102.768 —— (Tensil
R (T J

At outer foer

Tgo = Ty = B0 mm, ¥ag = Ty — Ty = 2268 mm(—we])

=
3
L 5]
|
|
T _ Myz_n * ¥po _ Map_p X '-"."".:.:;. |
o = Aeln, - (=¥ael) Ae Ty, y
3904557 x (—22.68) |
'115{..{.31;2.{.91.5@ I
_"“'“x

—_ i
= ‘I-'I-.!'I_-'i'mz (compressine]

Direcr sIrass ar secoon 8-8-
Al section B-B,8=0

F p G0 o
T - = 5 — — T
do=8 — 94 2 % 1256637
= 1581 N/mm?* (Tensile) B _||

. J*
Resultant siness at secion B-B | | \( _/|

O = Gam + Oap—p = 130578 N /mm*(Tensle)

Tpo = Tapg + Tygog = —2.047 i [compressiee])

—

-i.|l|2| FREIWY PR CEMTES OF [N KT

Ar secnion A-4, § = w2

FRPp m—12 e FRR T mw—-12 Fg
My = Mya-a =—5~ mj‘ 7 (1 —cos80) = —— [m] T

'E":ll:l'l:ll:lﬂ.-‘lll:l =2 Gl = 40
|Z :| = —1.4 % 10% ¥mm

2% 40+ x = 40 2
At Inner flbar
Tai =T = 2¥mm, ¥ai =T, — ='|.':|.32i':|1.?:|1.l:+:-'{':|
M M —1.4 % 10° x 17.32 N
Bt % Yar _ Moa-a % Vs _ fad = = —160— (compressive)

o S —wa) | Aery 1256637 Z.6B=Z0  mm




AL puter flber

T =Ty = 60 mm, Yag =Ty — Ty = 13 ddmmi—re)

.HM_J . }l.J‘: Hﬂ.".-.‘ . 1I|:J-I= —1 & & jl:li- £ {_E E.{III} N
—] ~ — = - = 15714—— (TENSILE
B P A" AeT,, 1256.637 < 26860 mm® - )

Durecr sIrass ar Secrion A-A:
At section A-A, = m2

F el ]
—— f=— =0
Tad-a S S T AT
Fesultant siress ai sacion 4-4
= = == —T3fl—
Tt = Faai + Tag-a 5 [compressive])

N
—_ —_ 4
Tiy = Tpadin + Tgi—a = 15714 3 I:TFNSJLE}

2.8, A stesl ing of reciangular secilon 5 mm width 0y 5 mm thickness has a mean diameter of 30
oM. A namow saw cut was made and tangential separating force of 0.5 kg each are applied at the
cutin the plana of the nng. Find the additional separation due to these forcas. [E=2x10° kgicm® )

Solution:-
Glven data:-

R= 15 cm =150mm
o= & mm, t= Smm
P=(.5 kg

E=2u10° kgiom?

r
-

o

— e — - -— -

-

Ril-co Amm




1 4
I =1zb ¢! = 83331 mm

Bending moment at any secion X-X at any angie & Is "M
M = PR{1 — cos @)

Rdl'il
~E J'

a
A5 — = B(1— cos @)

ar
Z': p'qJJ'.:j mos ) (1 — cos @) 40
pR2 o

_t - z =_ -
= .:.[1 oo 37 8 ] J;|:1+|:-:|==E' 2 cos @4

_FE dnZ@®  IxPR
[-E—Esu.'lﬂ+— B = _gsimm
t - E

Ag per castgllano's theorem :

210, A stesl spring ASC of radius R=50mm & AS of length 120mm Is irmily Mxed at point °c™ a5

shown In figure. Find the veriical deflecion at point "A" negieciing the efMact of shear, where take
Em2x 10" kgiom’.

Amm

Soluton:-
Ghven data:-



R=50mm, L=120mm, E=2x10° kg/cm®.

flt"— EI.'H.E"' 45 mm* = 45 = 10—+ cm?

u,,,.: = Uy + .'.r,f
Vertical def lection at "A" is &

Al Al AUy,

3F . aP = aF

FOR the portion "AB"™ [D<x<L)

Sending mament at any distance “x” from point A Is:

i, =

Myp = Fx

dMyy

FT

au,, a-u',, 1 gt pia
.E'IIJ- AR —E-L.F'Iﬂ.lil'—m

FOR the portion “BC™ (D<d<m)

Bending moment at any distance “x* from poind A Is:

My = P(L + Rsind)

-
FTR

Allpe _ 1 EH M ds 1IFF'.L Rein®) x (L + Brinf ) 49 AS ds = BdS
F—EHHT] =T J, Flb+ Retn@)ox (L + Ra T

= (L + Rsin®)

r on gag _ Hisin2é
(E + Risin?f + 2RLsind) df = — |i%8 — 2RLcash + z
=Bl El 7
1]
PR 2n 2 ane
= = |Pm+ +—
P PR R%n P R
5, =it — |[Pm 4+ 4RL +—| = —+PR L2 +lm'.+—
LBET-TIATI il 2 Er (= )
10715244

1 1
— [ = — & -
= g7 [1152 + 12(452.309 + 288 + 56.548)] = = [10T152M] = ey

= 1. 19 cm

@.11. A stegl spring ABCD made of from a rod of diameter 0™, the semi-circular portion B 1o C of
rafius R & stralght porion AB and CD of length L Is loaded by end loads P as shown In figure. Find
the Increase In distance ASD dus io loads.



Solution:-
Fertical def bection fseparction between Al ix San
Due 0 symmetric
fap = 2y where & (s the verical deflectior of the point A for the beam from A tof
Al g Al A, gy
- = =2 —
b =g =ingp =iGF tap T

Allyy  Allpr
5 = [ + Zw]
. ap ap
FOR the porilon “A5" [J<x<L)
Bending moment at any distance “x" from point & |6

Myp = Px

£

=2

g 1 #Map 1+ Pt
=— | M }d::—-fp dr=—

ap .'Jl; '"'liap By T AE]

FOR the portion "BC™ (D<3<m2)
Bending moment at any distance “x” from poind A Is:
My = PiL + Rsind)

dMg
ar = (L + Rsinf)

ay,, 1 p* My 1 Yz
== M ds=— L+ Rsind) % (L + Reinf)R 48 AS ds = Rd
P EJJl; s (557 E‘l'.L PO+ Kot} x {1+ Rotne) ’



FR
=F7 -r- (L* + BPsin® + JRLsind) df = — |1*0 — 2RLcosh +
o

.1=

Sam

PR

El | 2
F'L’+FR
3El  El

1
1

Er

R:I
il PR 7 +T"l

+ PR{GT + 24RL + IR%m)]

R 5in2i
e

2

Rx 1
25 s 2mL + 4PL? + PR{6LPx + 24RL + 307
3 TI 1767 | (6L7= =]

- oy



