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1.1 Introduction to Momentum Transport
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Momentum transport deals with the transport of momentum which is responsible for flow in 
fluids. Momentum transport describes the science of fluid flow also called fluid dynamics. A few
basic assumptions are involved in fluid flow and these are discussed below.
 
No slip boundary condition
 
This is the first basic assumption used in momentum transport. It deals with the fluid flowing 
over a solid surface, and states that whenever a fluid comes in contact with any solid boundary, 
the adjacent layer of the fluid in contact with the solid surface has the same velocity as the solid 
surface. Hence, we assumed that there is no slip between the solid surface and the fluid or the 
relative velocity is zero at the fluid–solid interface. For example, consider a fluid flowing inside 
a stationary tube of radius R as shown in Fig 7.1. Since the wall of the tube at r=R is stationary, 
according to the no-slip condition implies that the fluid velocity at r=R is also zero.
 
 

Fig 7.1 Fluid flow in a circular tube of radius R
 
In the second example as shown in Fig. 7.2, there are two plates which are separated by a 
distance h, and some fluid is present between these plates. If the lower plate is forced to move 
with a velocity V in x direction and the upper plate is held stationary, no-slip boundary 
conditions may be written as follows 
 

Fig 7.2 Two parallel plates at stationary condition
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Thus, every layer of fluid is moving at a different velocity. This leads to shear forces which are 
described in the next section.
 
1.2 Newton’s Law of Viscosity
 
Newton’s law of viscosity may be used for solving problem for Newtonian fluids. For many 
fluids in chemical engineering the assumption of Newtonian fluid is reasonably acceptable. To 
understand Newtonian fluid, let us consider a hypothetical experiment, in which there are two 
infinitely large plates situated parallel to each other, separated by a distance h. A fluid is present 
between these two plates and the contact area between the fluid and the plates is A. 
A constant force F1 is now applied on the lower plate while the upper plate is held stationary. 
After steady state has reached, the velocity achieved by the lower plate is measured as V1. The 
force is then changed, and the new velocity of the plate associated with this force is measured. 
The experiment is then repeated to take sufficiently large readings as shown in the following 
table.
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If the F/A is plotted against V/h, we may observe that they lie on a straight line passing through 
the origin.
 

Fig 7.4 Shear stress vs. shear stain
 
Thus, it may be said that F/A is proportional to v/h for a Newtonian fluid.

 
It may be noted that it is the velocity gradient which leads to the development of shear forces. 
The above equation may be re-written as
 

 
In the limiting case, as h → 0, we have
 

where, µ is a constant of proportionality, and is called as the viscosity of the fluid. The quantity 

F/A represents the shear forces/stress. It may be represented as , where the subscript x 
indicates the direction of force and subscript y indicates the direction of outward normal of the 
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surface on which this force is acting. The quantity or the velocity gradient is also called 
the shear rate. µ is a property of the fluid and is measured the resistance offered by the fluid to 
flow. Viscosity may be constant for many Newtonian fluids and may change only with 
temperature.
 
 
 
Thus, the Newton’s law of viscosity, in its most basic form is given as
 

 
Here, both ‘+’ or ‘–’ sign are valid. The positive sign is used in many fluid mechanics books 
whereas the negative sign may be found in transport phenomena books. If the positive sign is 

used then may be called the shear force while if the negative sign is used may be 
referred to as the momentum flux which flows from a higher value to a lower value. 
 

 

The reason for having a negative sign for momentum flux in the transport phenomena is to have 
similarities with Fourier's law of heat conduction in heat transport and Ficks law of diffusion in 
mass transport. For example, in heat transport, heat flows from higher temperature to lower 
temperature indicating that heat flux is positive when the temperature gradient is negative. Thus, 

a minus sign is required in the Fourier's law of heat conduction. The interpretation of as 
the momentum flux is that x directed momentum flows from higher value to lower value in y 
direction. 

The dimensions of viscosity are as follows:
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The SI unit of viscosity is kg/m.s or Pa.s. In CGS unit is g/cm.s and is commonly known as poise
(P). where 1 P = 0.1 kg/m.s. The unit poise is also used with the prefix centi-, which refers to 
one-hundredth of a poise, i.e. 1 cP = 0.01 P. The viscosity of air at 25oC is 0.018 cP, water at 
25oC is 1 cP and for many polymer melts it may range from 1000 to 100,000 cP, thus showing a 
long range of viscosity. 
 
 
1.3 Laminar and turbulent flow
 
Fluid flow can broadly be categorized into two kinds: laminar and turbulent. In laminar flow, the 
fluid layers do not inter-mix, and flow separately. This is the flow encountered when a tap is just 
opened and water is allowed to flow very slowly. As the flow increases, it becomes much more 
irregular and the different fluid layers start mixing with each other leading to turbulent flow. 
Osborne Reynolds tried to distinguish between the two kinds of flow using an ingenious 
experiment and known as the Reynolds’s experiment. The basic idea behind this experiment is 
described below.
 
1.4 Reynolds’s experiment
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Fig 7.5 Reynolds’s experiments
 
The experiment setup used for performing the Reynolds's experiment is shown in Fig. 7.5. The 
average velocity of fluid flow through the pipe diameter can be varied. Also, there is an 
arrangement to inject a colored dye at the center of the pipe. The profile of the dye is observed 
along the length of the pipe for different velocities for different fluids. If this experiment is 
performed, it may be seen that for certain cases the dye shows a regular thread type profile, 
which is seen at low fluid velocity and flow is called laminar flow. when the fluid velocity is 
increased the dye starts to mixed with the fluid and for larger velocities simply disappears. At 
this point fluid flow becomes turbulent.
For the variables average velocity of fluid vz avg, pipe diameter D, fluid density ρ, and the fluid 
viscosity µ, Reynolds found a dimensionless group which could be used to characterize the type 
of fluid flow in the tube. This dimensionless quantity is known as the Reynolds number. From 
the experiment, It was observed that if Re >2100, the dye simply disappeared and the flow has 
changed to laminar to turbulent flow.
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Thus, for Re <2100, we have laminar flow, i.e., no mixing in the radial direction leading to a 
thread like flow and for Re >2100, we have the turbulent flow, i.e., mixing in the radial direction 
between layers of fluid.
 
 
 
In laminar flow, the fluid flows as a stream line flow with no mixing between layers. In turbulent
flow, the fluid is unstable and mixes rapidly due to fluctuations and disturbances in the flow. The 
disturbance might be present due to pumps, friction of the solid surface or any type of noise 
present in the system. This makes solving fluid flow problem much more difficult. To understand
the difference in the velocity profile in two kinds of fluid flows, we consider a fluid flowing to a 
horizontal tube in z direction under steady state condition. Then, we can intuitively see the 
velocity profile may be shown below 
 
For laminar flow, it is observed that fluid flows as smooth stream line and all other components 
of velocity are zero. Thus

For turbulent flow, if we observe the fluid flows at a local point. It is observed that fluid flows in 
very random manner in all directions where these local velocities may be the function of any 
dimensions.

 
Thus, we see that for laminar flow there is only one component of velocity present and it 
depends only on one coordinate whereas the solution of turbulent flow may be vary complex. 
For turbulent flow, one can ask the question that if the fluid is flowing in the z direction then why
are the velocity components in r and θ direction non-zero? The mathematical answer for this 
question can be deciphered from the equation of motion. The equation of motion is a non-linear 
partial differential equation. This non-linear nature of the equation causes instability in the 
system which produces flow in other directions. The instability in the system may occur due to 
any disturbances or noise present in the environment. On the other hand, if the velocity of fluid is
very low the deviation due to disturbances may decay with time, and becomes negligible after 
that. Thus the flow remains in laminar region. Consider a practical example in which some cars 
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are moving on the highway in the same direction but in the different lanes at different speeds. If 
suddenly, some obstacle comes on the road, then if the car's speed is sufficiently low, it can move
on to other lane smoothly and come back to its original lane after the obstacle is crossed. This is 
the regular laminar case. On the other hand, if the car is moving at a high speed and suddenly 
encounters an obstacle, then the driver may lose control, and this car may move haphazardly and 
hit other cars and after that traffic may never return to normal traffic conditions. This is the 
turbulent case.
 
 
1.4.1 Internal and external flows
 
Depending on how the fluid and the solid boundaries contact each other, the flow may be 
classified as internal flow or external flow. In internal flows, the fluid moves between solid 
boundaries. As is the case when fluid flows in a pipe or a duct. In external flows, however, the 
fluid is flowing over an external solid surface, the example may be sited is the flow of fluid over 
a sphere as shown in Fig. 8.1. 
 

Fig 8.1 External flow around a sphere
 
Boundary layers and fully developed regions
 
Let us now consider the example of fluid flowing over a horizontal flat plate as shown in Fig. 

8.2. The velocity of the fluid is before it encounters the plate. As the fluid touches the 
plate, the velocity of the fluid layer just adjacent to the plate surface becomes zero due to the no 
slip boundary condition. This layer of fluid tries to drag the next fluid layer above it and reduces 
its velocity. As the fluid proceeds along the length of the plate (in x-direction), each layer starts 
to drag adjacent fluid layer but the effect of drag reduces as we go further away from the plate in 
y-direction. Finally, at some distance from the plate this drag effect disappears or becomes 
insignificant. This region where the velocity is changing or where the velocity gradients exists, is
called the boundary layer region. The region beyond boundary layer where the velocity gradients
are insignificant is called the potential flow region.
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Fig 8.2 External flow over a flat plate
 
As depicted in Fig. 8.2, the boundary layer keeps growing along the x-direction, and may be 
referred to as the developing flow region. In internal flows (e.g. fluid flow through a pipe), the 
boundary layers finally merge after flow over a distance as shown in Fig. 8.3 below.
 

Fig 8.3 Developing flow and fully developed flow region
 
The region after the point at which the layers merge is called the fully developed flow region and
before this it is called the developing flow region. In fact, fully developed flow is another 
important assumption which is taken for finding solution for varity of fluid flow problem. In the 
fully developed flow region (as shown in Figure 8.3), the velocity vz is a function of r direction 
only. However, the developing flow region, velocity vz is also changing in the z direction.
 
Main axioms of transport phenomena 
 
The basic equations of transport phenomena are derived based on following five axioms.

 Mass is conserved, which leads to the equation of continuity.

 Momentum is conserved, which leads to the equation of motion.

 Moment of momentum is conserved leads to an important result that the 2nd order stress 

tensor is symmetric.
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 Energy is conserved, which leads to equation of thermal energy.

 Mass of component i in a multi-component system is conserved, which leads to the 
convective diffusion equation.

The solution of equations, resulting from axiom 2, 4 and 5 leads to the solution of velocity, 
temperature and concentration profiles. Ones these profiles are known, all other important 
information needed can be determined. We first take the axiom -1. Other axioms will be taken up
one by one letter on. 
There are three types of control volumes (CV) which may be chosen for deriving the equations 
based these axioms. 

 Rectangular shaped control volume fixed in space 

In this case, the control volume is rectangular volume element and is fixed in space. This method
is the easiest to understand but requires more number of steps. 

 Irregular shaped control volume element fixed in space 

In this case, the control volume can be of any shape, but it is again fixed in space. This method is
somewhat more difficult than the previous method as it requires little better understanding vector
analysis and surface and volume integrals.

 Material volume approach 

In this case, the control volume can be of any shape but moves with the velocity of the flowing 
fluid. This method is most difficult in terms of mathematics, but requires least number of steps 
for deriving the equations. 
 
All three approaches when applied to above axiom, lead to the same equations. In this web 
course, we follow the first approach. Other approaches may be found elsewhere.
Axioms-1
 
Mass is conserved

Consider a fluid of density ρ flowing with velocity as shown in Fig. 8.4. Here, ρ and 
are functions of space (x,y,z) and time (t). For conversion of mass, the rate of mass entering and 
leaving from the control volume (net rate of inflow) has to be evaluated and this should be equal 
to the rate of accumulation of mass in the control volume (CV). Thus, conservation of mass may 
be written in words as given below 
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Fig 8.4 Fixed rectangular volume element through which fluid is flowing
 
The equation is then divided by the volume of the CV and converted into a partial differential 
equation by taking the limit as all dimensions go to zero. This limit effectively means that CV 
collapses to a point, thereby making the equation valid at every point in the system. 
 
Let m and m+Δm be the mass of the control volume at time t and t+Δt respectively. Then, the 
rate of accumulation, 
 

 
In order to evaluate the rate of inflow of mass into the control volume, we need to inspect how 
mass enters the control volume. Since the fluid velocity has three components vx, vy and vz, we 
need to identify the components which cause the inflow or the outflow at each of the six faces of 
the rectangular CV. For example, it is the component vx which forces the fluid to flow in the x 
direction, and thus it makes the fluid enter or exit through the faces having area ΔyΔz at x = x 
and x = x+Δx respectively. The component vy forces the fluid in y direction, and thus it makes 
the fluid enter or exit through the faces having area ΔxΔz at y = y and y = y+Δy respectively. 
Similarly, the component vz forces the fluid to flow in z direction, and thus it makes fluid enter 
or exit through the faces having area ΔxΔy at z = z and z = z+Δ z respectively. 
 
The rate mass entering in x direction through the surface ΔyΔz is (ρvxΔyΔz|x), the rate of mass 
entering in y direction through the surface ΔxΔz is (ρvyΔxΔz|y) and the rate of mass entering 
from z direction through the surface ΔxΔy is (ρvzΔxΔy|z). In a similar manner, expressions for 
the rate of mass leaving from the control volume may be written.
 
Thus, the conservation of mass leads to the following expressions 
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Dividing the Equation (8.1) by the volume ΔxΔyΔz, we obtain 

 
Note that each term in Equation (8.2) has the unit of mass per unit volume per unit time. Now, 
taking the limits Δx→0, Δy→0 and Δz→0, we get
 

 
and using the definition of derivative, we finally obtain
 

 
Equation (8.4) is applicable to each point of the fluid. Rearranging the terms, we get the equation
of continuity, may be written as given below.
 
 
 

 
We need not to derive the equation of continuity again and again in other coordinate system (that 
is, spherical or cylindrical). The idea is to rewrite Equation (8.5) in vector and tensor form. Once 
it is written in this form, the same equation may be applied to other coordinate system as well. 
Thus, the Equation (8.5) may be rewritten in vector and tensor form as shown below.
 

 
Vector and tensor analysis of cylindrical and spherical coordinate systems is not done here, and 
can be looked up elsewhere. Thus, the final expressions in cylindrical and spherical coordinates 
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are given as below.
 
cylindrical coordinates (r, θ, z)
 

 
Spherical coordinates (r, θ, φ)
 

 
Equation of continuity in terms of substantial derivative 
 
The second term in Equation (8.6) may be broken into two parts as shown below. Partial 
derivative present in the Equation (8.6) can be converted into substantial derivative using vector 
and tensor identities.
 

 
In the above equation, the first two terms may be combined using the definition of substantial 
derivative to obtain the following equation. 

 
In some cases, the fluid may be incompressible, i.e. density ρ is a constant with time as well as 
space coordinates. For example, water may be assumed as an incompressible fluid under 
isothermal conditions. In fact, all liquids may be assumed as incompressible fluids under 
isothermal conditions. For this special case, the equation of continuity may be further simplified 
as shown below
 

The above equation for an incompressible fluid does not mean that the system is under steady 
state conditions. The velocity of the fluid may still be a function of time. It only implies that if 
the velocity of the fluid changes in a particular direction (x, y or z) then it should also change in 
the other directions such that mass is conserved without changing its density. The equation of 
continuity provides additional information about the velocity profile and helps in solution of
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 1.5 EQUATION OF MOTION. 
Internal and external flows
 
Depending on how the fluid and the solid boundaries contact each other, the flow may be 
classified as internal flow or external flow. In internal flows, the fluid moves between solid 
boundaries. As is the case when fluid flows in a pipe or a duct. In external flows, however, the 
fluid is flowing over an external solid surface, the example may be sited is the flow of fluid over 
a sphere as shown in Fig. 8.1. 
 

Fig  External flow around a sphere
 
Boundary layers and fully developed regions
 
Let us now consider the example of fluid flowing over a horizontal flat plate as shown in Fig. 

8.2. The velocity of the fluid is before it encounters the plate. As the fluid touches the 
plate, the velocity of the fluid layer just adjacent to the plate surface becomes zero due to the no 
slip boundary condition. This layer of fluid tries to drag the next fluid layer above it and reduces 
its velocity. As the fluid proceeds along the length of the plate (in x-direction), each layer starts 
to drag adjacent fluid layer but the effect of drag reduces as we go further away from the plate in 
y-direction. Finally, at some distance from the plate this drag effect disappears or becomes 
insignificant. This region where the velocity is changing or where the velocity gradients exists, is
called the boundary layer region. The region beyond boundary layer where the velocity gradients
are insignificant is called the potential flow region.
 

Fig  External flow over a flat plate
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As depicted in Fig. 8.2, the boundary layer keeps growing along the x-direction, and may be 
referred to as the developing flow region. In internal flows (e.g. fluid flow through a pipe), the 
boundary layers finally merge after flow over a distance as shown in Fig. 8.3 below.
 

Fig  Developing flow and fully developed flow region
 
The region after the point at which the layers merge is called the fully developed flow region and
before this it is called the developing flow region. In fact, fully developed flow is another 
important assumption which is taken for finding solution for varity of fluid flow problem. In the 
fully developed flow region (as shown in Figure 8.3), the velocity vz is a function of r direction 
only. However, the developing flow region, velocity vz is also changing in the z direction.
 
Main axioms of transport phenomena 
 
The basic equations of transport phenomena are derived based on following five axioms.

 Mass is conserved, which leads to the equation of continuity.

 Momentum is conserved, which leads to the equation of motion.

 Moment of momentum is conserved leads to an important result that the 2nd order stress 

tensor is symmetric.

 Energy is conserved, which leads to equation of thermal energy.

 Mass of component i in a multi-component system is conserved, which leads to the 
convective diffusion equation.

The solution of equations, resulting from axiom 2, 4 and 5 leads to the solution of velocity, 
temperature and concentration profiles. Ones these profiles are known, all other important 
information needed can be determined. We first take the axiom -1. Other axioms will be taken up
one by one letter on. 
There are three types of control volumes (CV) which may be chosen for deriving the equations 
based these axioms. 
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 Rectangular shaped control volume fixed in space 

In this case, the control volume is rectangular volume element and is fixed in space. This method
is the easiest to understand but requires more number of steps. 

 Irregular shaped control volume element fixed in space 

In this case, the control volume can be of any shape, but it is again fixed in space. This method is
somewhat more difficult than the previous method as it requires little better understanding vector
analysis and surface and volume integrals.

 Material volume approach 

In this case, the control volume can be of any shape but moves with the velocity of the flowing 
fluid. This method is most difficult in terms of mathematics, but requires least number of steps 
for deriving the equations. 
 
All three approaches when applied to above axiom, lead to the same equations. In this web 
course, we follow the first approach. Other approaches may be found elsewhere.
Axioms-1
 
Mass is conserved

Consider a fluid of density ρ flowing with velocity as shown in Fig. 8.4. Here, ρ and 
are functions of space (x,y,z) and time (t). For conversion of mass, the rate of mass entering and 
leaving from the control volume (net rate of inflow) has to be evaluated and this should be equal 
to the rate of accumulation of mass in the control volume (CV). Thus, conservation of mass may 
be written in words as given below 
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Fig 8.4 Fixed rectangular volume element through which fluid is flowing
 
The equation is then divided by the volume of the CV and converted into a partial differential 
equation by taking the limit as all dimensions go to zero. This limit effectively means that CV 
collapses to a point, thereby making the equation valid at every point in the system. 
 
Let m and m+Δm be the mass of the control volume at time t and t+Δt respectively. Then, the 
rate of accumulation, 
 

 
In order to evaluate the rate of inflow of mass into the control volume, we need to inspect how 
mass enters the control volume. Since the fluid velocity has three components vx, vy and vz, we 
need to identify the components which cause the inflow or the outflow at each of the six faces of 
the rectangular CV. For example, it is the component vx which forces the fluid to flow in the x 
direction, and thus it makes the fluid enter or exit through the faces having area ΔyΔz at x = x 
and x = x+Δx respectively. The component vy forces the fluid in y direction, and thus it makes 
the fluid enter or exit through the faces having area ΔxΔz at y = y and y = y+Δy respectively. 
Similarly, the component vz forces the fluid to flow in z direction, and thus it makes fluid enter 
or exit through the faces having area ΔxΔy at z = z and z = z+Δ z respectively. 
 
The rate mass entering in x direction through the surface ΔyΔz is (ρvxΔyΔz|x), the rate of mass 
entering in y direction through the surface ΔxΔz is (ρvyΔxΔz|y) and the rate of mass entering 
from z direction through the surface ΔxΔy is (ρvzΔxΔy|z). In a similar manner, expressions for 
the rate of mass leaving from the control volume may be written.
 
Thus, the conservation of mass leads to the following expressions 
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Dividing the Equation (8.1) by the volume ΔxΔyΔz, we obtain 

 
Note that each term in Equation (8.2) has the unit of mass per unit volume per unit time. Now, 
taking the limits Δx→0, Δy→0 and Δz→0, we get
 

 
and using the definition of derivative, we finally obtain
 

 
Equation (8.4) is applicable to each point of the fluid. Rearranging the terms, we get the equation
of continuity, may be written as given below.
 
 
 

 
We need not to derive the equation of continuity again and again in other coordinate system (that 
is, spherical or cylindrical). The idea is to rewrite Equation (8.5) in vector and tensor form. Once 
it is written in this form, the same equation may be applied to other coordinate system as well. 
Thus, the Equation (8.5) may be rewritten in vector and tensor form as shown below.
 

 
Vector and tensor analysis of cylindrical and spherical coordinate systems is not done here, and 
can be looked up elsewhere. Thus, the final expressions in cylindrical and spherical coordinates 
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are given as below.
 
cylindrical coordinates (r, θ, z)
 

 
Spherical coordinates (r, θ, φ)
 

 

1.6 Equation of continuity in terms of substantial derivative 
 
The second term in Equation (8.6) may be broken into two parts as shown below. Partial 
derivative present in the Equation (8.6) can be converted into substantial derivative using vector 
and tensor identities.
 

 
In the above equation, the first two terms may be combined using the definition of substantial 
derivative to obtain the following equation. 

 
In some cases, the fluid may be incompressible, i.e. density ρ is a constant with time as well as 
space coordinates. For example, water may be assumed as an incompressible fluid under 
isothermal conditions. In fact, all liquids may be assumed as incompressible fluids under 
isothermal conditions. For this special case, the equation of continuity may be further simplified 
as shown below
 

The above equation for an incompressible fluid does not mean that the system is under steady 
state conditions. The velocity of the fluid may still be a function of time. It only implies that if 
the velocity of the fluid changes in a particular direction (x, y or z) then it should also change in 
the other directions such that mass is conserved without changing its density. The equation of 
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continuity provides additional information about the velocity profile and helps in solution of 
equation of motion. 
Solution of momentum transport problem by shell momentum balances 
 
Here, we solve few simple problems of fluid mechanics with simple geometries by using the 
shell momentum balance approach. This will lead to greater understanding of various terms 
involved in the application of conservation of momentum in fluid given in Equation (9.1) 
 
Flow through circular tube
Flow of fluids through a circular tube is a common problem, encountered frequently in different 
fields of engineering. Consider an incompressible, Newtonian fluid, flowing through a horizontal
circular tube as shown in Fig. (10.1). Assume that the fluid flow is laminar and under steady state
conditions. Determine the velocity profile and average velocity of the fluid using shell 
momentum balance approach.
 
solution procedure 
 
Assumptions
 

 Fluid density and viscosity are constants.

 System is in steady state. 

 Laminar flow (simple shear flow). 

 Newton's law of viscosity is applicable. 

 Fully developed flow. 

 

Fig  Laminar flow in a horizontal pipe
 
Intuitively guess the velocity profile
 
Since the flow is steady and laminar, we may intuitively say that the velocities in r direction and 
θ direction are zero. Due to steady state conditions, the fluid velocity in z direction, vz, is not 
dependent on time t. Furthermore, due to the axisymmetric geometry fluid flow the velocity vz is
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independent of θ. Thus,
 

By applying the equation of continuity in cylindrical coordinates
 

Hence,

 
Since the fluid is flowing in z direction, we may conclude the following. 
 

 Since vr=0, r directional momentum balance is not important.

 Since vθ=0 , θ directional momentum balance is again not important.

 Since vz≠0, z directional momentum balance is most important.

 
1.7 Equation for circular pipe:
The control volume should be decided very carefully. The geometry and size of the control 
volume should be taken according to the geometry of the system and based on the conditions 
given in the problem. In this case, the geometry of the pipe is cylindrical, hence we use the 
cylindrical control volume. The fluid is flowing in the z direction but velocity is changing only in
r direction. Therefore, the control volume is taken in such a way that the variable thickness of the
control volume is in the r direction. As the flow is not dependent on z and θ coordinates, we may 
choose any dimension in z or θ directions. This means that z may be any length. It may be L/4, 

L/2 or L. In a similar manner, any value of θ may be taken. It may be 2  or or /2 or /4. 
However, in the r direction, we need to take the differential thickness dr. These arguments leads 
us to a control volume as shown in Fig. (10.2). The length of the cylindrical shell is L which is 
equal to length of pipe and thickness is dr. 
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Fig 10.2 Control volume for flow through pipe 
 
Momentum balance 
 
As discussed earlier, the shear stress/forces may be written in two ways:

 Taking shear stress as actual shear forces. 

 Taking shear stress as momentum flux. 

Here, we show that both methods lead to the same final results for velocity profile.
 
Momentum balance using shear stress as shear force
 
Momentum flux entering the control volume by convection 
=

Momentum flux leaving the control volume by convection 
=

 
Since the pipe is horizontal, the force due to gravity is zero. No other body forces are acting on 
the control volume. 
 
Surface forces
 

 Pressure force: Fluid is flowing in z direction only. So pressure forces which are working 
on the surface normal to z direction are 

Pressure force at z=0 is
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Pressure force at z=L is

 Shear forces: The shear stress tensor in cylindrical coordinate is given below. 

 
Among all 9 components the first column of stresses are important for r directional flow, the 
second column of stresses are important for θ directional flow, and the third column are 
important for z directional flow. Since the fluid is flowing in the z direction, only the third 
column needs to be considered. Since the Velocity gradient is present only in the r-direction, only

needs to be considered, the remaining two terms are not significant. Now, we need to decide 
the direction in which the shear forces are acting. Recall 
 

 

Where the unit vector is the outer normal of a surface and if it is in positive direction then

is also positive while if it is in negative direction then is shown as negative direction. 

Therefore, (as a force) is positive at r+dr and negative at r as shown in Fig. 10.2.(Note: the 

first index, z, in from right to left indicates the direction of force and second index, r, 
indicates the surface on which it acts). 
 
Accumulation term: Due to steady state system, the rate of accumulation of momentum equals to
zero .
General momentum balance is given below 
 

or in this case
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Since the velocity is constant along the axial direction as shown in Equation (10.2), the first two 
terms in Equation (10.8) are cancel out and we are left with following Equation.
 

 

Dividing by , we have 
 

 
As dr→0, the Equation (10.10) may be rewritten as given below. 

(Note that, is a function of r only which means we get the total derivative instead of the 
partial derivative.)
 

 
Further integrating the Equation (10.11) once with respect to the variable r, we obtain 
 

or

 

Here, c1 is a constant of integration. Equation (10.12) shows that if r=0, the value of will be 
infinite, which is physically not possible. Therefore, c1 must be zero. Hence,
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Now, by applying Newton’s law of viscosity, and taking as force, we obtain
 

 
Momentum balance using shear stress as momentum flux
 
Now, we will employ the second method where shear force are considered as momentum flux. 
To indicate the direction of momentum flux, we draw the arrow in r direction and find where this
arrow enters the control volume and also leaves the control volume as shown in Fig (10.3). Thus,

the momentum flux enters the control volume through the surface 2 rL at r=r and leaves 

through the surface 2 rL at r=r+dr. 
 

Fig 10.3 Momentum flux applied on control volume
 
 
Thus,
Momentum flux at r = r is

 
Momentum flux at r = r +Δr is

 
 

(Note: when we consider as the momentum flux, first index, z, indicates the direction of 
momentum flux, while the second index, r, indicates the direction of flow of momentum flux 
from higher to lower value. Subsequently, it will become clear that if we follow the coordinate 
system’s directions and assume momentum is flowing in this direction, the sign convention for 
momentum flux is automatically taken place.)
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In this case, momentum balance in Equation (9.2) may be modified as shown below
 

Here, the shear stress are taken into account as momentum flux. The pressure and gravity are the 
only applied forces. 
 
Substituting various terms in above equation, we obtain
 

 

Dividing by , we obtain 
 

 
Again as dr→0 Equation (10.17) leads to 
 

 
or
 

 
By integrating the Equation (10.18), we have 
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As we discussed earlier, c1 should be zero. Therefore, 
 

 
Now applying Newton’s law of viscosity where shear stress is taken as momentum flux, we 
obtain 
 
 

 
Equation (10.14) and (10.20) are identical and hence show that both methods finally lead to the 
same result.
To obtain velocity profile we further integrating the Equation (10.21) 
 

Here c2 is the second constant of integration which may be determined by using appropriate 
boundary condition. 
 
Boundary condition
 
By no-slip boundary condition
vz=0 at r=R 
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Substituting the value of c2 in Equation (10.22), we finally get
 

 
Note: c1 can also be calculated by using the boundary condition in terms of velocity vz: i.e., vz is
finite at r=0 

or (since the velocity profile is symmetric about r=0).
Thus, the velocity profile for flow through pipe is given by the following expression

The maximum velocity of the fluid will be exhibited at the centre of the pipe and is given by 
 

Alternatively, the velocity profile may also be expressed in terms of the maximum velocity as
 

 
The average velocity of the fluid in the pipe is the average of all local velocities. Thus, this may 
be calculated by estimating the volumetric flow rate through the pipe and then dividing it by the 
cross sectional area of the pipe. The total volumetric flow in the system is 
 

where, dQ is the volumetric flow rate from small cylindrical strip of thickness dr.
 

 
 
By substituting the value of v z from equation (10.27), we have 
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By integrating the equation (10.30) from r=0 to r=R, we obtain

or

 
Thus,

 
and average velocity is
 

or

 
The velocity profile for laminar flow in a circular tube is shown in Fig. 10.5.
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Fig 10.5 Velocity profile in horizontal pipe
 
We can also find the radial distance at which the local velocity of fluid flow equals the average 

velocity. For this, substitute  into Equation (10.26), we obtain 
 

 
 
Finally , the volumetric flow rate in terms of pressure drop is as follows
 

 
Equation (10.36) is known as the Hagen – Poiseuille equation. Thus, if the pressure drop is 
given, we can calculate the volumetric flow rate in the pipe and vice-versa. This equation can 
also be used for the calculation of viscosity in capillary flow viscometer. However, it may be 
noted that Hagen – Poiseuille equation is valid only for fully developed laminar flow. Therefore, 
when this equation is used for various calculations there may be some errors due to developing 
and exiting flow at both ends of the pipe. Hence, this equation has to be modified for real 
situations.
Friction factor
 
The friction factor is a dimensionless number, which provides an idea about the magnitude of 
shear stress produced by a solid boundary as fluid flows. This is defined as the ratio of shear 

stress at the wall and the kinetic energy head of the fluid, . Here, ρ is the density 
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and is the average velocity of fluid. The friction factor is thereby defined as 
 

where, is the shear force per unit area on the wall of the tube. This may be calculated as 
shown below 
 

Here, first minus sign is used as the inside surface of the tube wall has outer normal in the 

negative r direction and second minus sign is used because is treated here as momentum 

flux. If is treated as actual shear force then positive sign would have to be taken. For fully 
developed laminar flow, the velocity profile is parabolic and is given by 
 

Evaluating the velocity gradient at the wall (r=R), we have 
 

Thus, the shear stress considered as momentum flux is given by 
 

 
or
 

 
The friction factor may now be calculated as shown below 
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or
 

 
Equation (11.7) shows that the friction factor in laminar flow region depends only on the 
Reynolds number. Clearly, the friction factor is also a dimensionless number.
 
Friction factor in turbulent flow
 

Fig 11.1 Smooth and rough surface of pipe 
 
In turbulent flow, the friction factor also depends on the surface of the pipe. A rough pipe leads to
higher turbulence than a smoother pipe, so that the friction factor for smoother pipes is less than 
that for rougher pipes. The ratio of surface roughness height (∈) to pipe diameter (D) is used to 
quantify the “roughness” of the pipe surface. In practice, the shear stress on the wall may be 
calculated by measuring the pressure drop across the pipe for a given flow rate. Thus, friction 
factor may be calculated as the function of Reynolds number and plotted on a log-log plot for a 
given surface roughness. The curves are different for different surface roughness as shown in 
figure. (11.2). The collection of these f-Re plots is called Moody Chart as shown in figure below,
and can be used for estimating the friction factor for given flow parameters.
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Ref: http://www.brighthub.com/engineering/civil/articles
 
Solution of some more fluid flow problems by shell momentum balance approach
 
In this section, we solve a few more fluid mechanics problems in simple geometries using the 
shell momentum balance approach. The detail procedure, which was also used in previous 
example, is outlined below.
 
1) Make a diagram of the flow geometry with the appropriate coordinate system 
 
2) Specify all necessary assumptions 
 
3) Intuitively assume the velocity profile 
 
This is an important step for solving these problems. In laminar flow, the fluid flows in parallel 
layer without mixing. Thus, it is easy to guess the non-zero components of velocities by 
intuition.
 
4) Apply of the equation of continuity to modify the velocity profile 
 
5) Determine the non-zero shear stress component(s)
 
Since the shear stress components depend on the velocity profile, the non-zero shear stress 
components may now be determine.
 
6) Determine control volume and make shell momentum balance for the control volume
 
Draw control volume in system diagram according to system shape, size and problem statement. 
The selection of proper control volume is very important to solve problem correctly. The control 
volume should be select in such way that it can be easily integrated for whole system. The 
differential length of control volume should be taken in direction of changing velocity.
Write momentum balance equation for the control volume. The shear stress may be considered as
shear force or as momentum flux, both provide the same results as shown in previous example . 
Write down all surface and body force acting on the fluid carefully. Finally obtain a appropriate 
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differential equation and integrate. 
 
7) Boundary conditions 
 
Use appropriate boundary conditions which help us to determine the constant of integration in 
above step.
 
1.8 Falling film on an inclined flat surface
 
An inclined surface of length L and width W is situated at an angle Β to the vertical direction as 
shown in Fig. (11.3). A Newtonian fluid is freely falling on the surface as a film of thickness δ. 
Assuming the flow to be laminar, determine the velocity profile, flow rate and shear force on the 
surface by the fluid.
 
Solution

Fig 11.3 Laminar flow on an inclined surface
 
Assumptions
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 Constant density, viscosity 

 Steady state 

 Laminar flow (simple shear flow) 

 Fully developed flow 

 Newton's law of viscosity is applicable 

 
Assume velocity profile 
The fluid is flowing in the z direction, hence only the z component of velocity is non-zero. Thus, 
we may assume
 

, and

 
We may further assume that vz does not depends upon y coordinate. Since the flow is steady, vz 
does not depend on time. Thus,
 
 

Using the equation of continuity in the cartesian coordinates for constant fluid density, we have
 

 
which reduces to
 

 
Equation (11.11) indicates that vz does not depend on the z coordinate. Thus,
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There are nine components of the shear stress as shear force or momentum flux, namely
 

 

Since vz is only the non-zero velocity, and also it is the function of x coordinate , is the only
significant component of shear stress and we need to write momentum balance only in z 
direction. Because the pressure is same at both ends of the inclined plane, there is no pressure 
force on the fluid. Now, we can solve this problem by assuming shear stress as a shear force or 
shear stress as momentum flux.
 

Assuming as momentum flux 
Draw a control volume of length L, width W and differential thickness dx.
 

Fig 11.3 Control volume for falling film problem
 
Momentum balance in x direction
 
Rate of momentum flux entering CV due to viscous transport at 
 

 
Rate of momentum flux leaving CV due to viscous transport at
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Gravity force acting on fluid in z direction 
 

 
Rate of momentum flux entering in CV due to convective transport 
 

 
Rate of momentum flux leaving from CV due to convective transport
 

 
Now, when above terms are substituted for z-momentum balance, we obtain
 

 
Since the velocity vz does not depends on z coordinate, the first two terms cancel out and we 
obtain
 

Dividing Equation (11.19) by volume of the control volume (LWΔx), we have 
 

 
As Δx→0 , The Equation (11.20)simplified to 
 

 
The Newton’s law of viscosity (here, shear stress is defined as momentum flux) is given by
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By integrating the Equation (11.25), we have 
 

or
 

 
The above equation requires two boundary conditions for determining c1 and c2.
 
Boundary conditions
 
1 At x=0 the liquid surface is in contact with air where the shear stresses at both gas liquid 
phases should be equal. Thus,
 

 
Since both may be assumed Newtonian fluids, we have 
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where ρg is the density and µg is the viscosity of air. Thus 
 

 
Since, µg and ρg is much smaller than µ and ρ, and Equation (11.30) may be approximately 
written as 
 

 
Substituting above boundary condition in Equation (11.26), we obtain 
 

 
 2. At x=δ no slip boundary condition may be applied, i.e.,
 
at

 
Thus, from Equation (11.27), we get 
 

 
or
 

 
Finally the velocity profile is obtained as
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or
 

Falling film "Assuming as shear force"
 
Now, we again solve the same problem (falling film over an inclined plane) by treating shear 
stress as a shear force. For this purpose, we take the same control volume as before.
For momentum balance in z direction, all terms are same as before except the terms for shear 

forces. Here, represents the force in z direction acting on the surfaces which have normal in 
x direction. Shear force is positive if the outward normal is in positive direction and negative if 
normal is in negative direction. Thus,
 
shear force at x=x is

 
Shear force at x=x+Δx is

;
 
The z momentum balance for this case is as follows
 

 
Dividing Equation (12.3) by the volume of control volume WLΔx, we have
 

 
As Δx→0 Equation (12.4) leads to 
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Now, substituting the Newton’s law of viscosity for shear stress as a force
 

 
Therefore,
 

 
Equations (11.24) and (12.7) are the same, which show that both approaches provide the same 
answer.
 
Maximum velocity
 
It is clear from Equation (11.37) that the maximum velocity is given by
 

 
Average velocity and volumetric flow rate of falling film
 
vz is the linear velocity in z direction. Hence, the volumetric flow rate can be determined by 
integrating it over the cross section of flow (Wδ).Thus , 

 
From Equation (11.37), we get 
 

 
By integrating Equation (12.10), we find
 

 
To obtain the average velocity, we divide the volumetric flow rate by the cross sectional area.
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or
 

 
Equation (12.12) may also be written as
 

 
Force acting on solid surface due to the fluid
 

 
(Note: in Equation (12.14), first ‘+’ sign shows the direction of the normal of the inclined surface
and second ‘+’ sign is taken since shear stress is defined as shear force). Thus,
 

 
In this lecture, we have once again seen that the shear stress tensor may be assumed as a shear 
force or as a momentum flux. In either case, we finally obtain the same expression for the 
velocity profile. The only difference is that when we treat shear stress as a shear force, it is 
included in the summation of all forces term in the momentum balance equation, while when we 
treat shear stress as momentum flux, it is written as momentum entering and leaving by the 
viscous transport. From now onwards, we will treat shear stress as momentum flux as it is more 
consistent with what we see in heat transfer as Fourier’s law of heat conduction and in mass 
transfer as Fick’s law of diffusion. Thus, in transport phenomena (Momentum transport, Heat 
transport, and Mass transport) for the basic transport laws we have minus sign in front the 
relevant gradient implying fluxes flow from higher values to lower values. 
 
Falling film on the outside of a circular shell
In an experiment, a fluid flows upward through a small circular shell and then flows downward 
out side the tube under laminar conditions as shown in Fig. 12.2. We need to set up a relevant 
momentum balance and determine the velocity profile, mass flow rate and the force acting on 
outer surface of the tube.
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Fig 12.2 Falling film outside the circular tube 
 
Assumptions

 Density and viscosity are constants.

 Steady state.

 Fully developed laminar flow.

 Newton’s law of viscosity is applicable. 

 
Non-zero velocities
Fluid is flowing in the z direction due to gravity. There is no driving force in the θ direction and a
solid surface is present in the r direction. Therefore, we may intuitively assume that 
 

 
Now, using the equation of continuity in cylindrical coordinate system, we have 
 

 
or
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From Equation (12.18), we obtain that vz is independent to z. Therefore, 
 

 
Choose a control volume in the film of differential thickness dr and length L (it is a cylindrical 
shell).
 

Fig 12.3 Control volume for falling film outside the circular tube
 
There are nine components of shear stress tensor. Since the fluid is flowing in z direction and it is

a function of r only, we may argue as before is the only important component of the shear 
stress tensor. The other components are insignificant for momentum balance in z direction. The 
momentum balance in z-direction is given below.
 
Momentum balance for control volume 
Convective momentum entering the control volume at z=0 is

 
Convective momentum leaving the control volume at z=L is

 
Shear stress as momentum flux entering the control volume at r= r is
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Shear stress as momentum flux entering the control volume at r= r + Δr is

 
{Note: If you consider shear stress as momentum flux, then it always flows in the positive 
direction of axes}
 
Fluid is flowing only due to gravity and may be written as

Substituting above terms, we obtain
 

 
Since velocity, vz, is not dependent on the z, the first two terms in above equation are equal and 
cancel out, leaving the following equation for momentum balance. 
 

 

Dividing Equation (12.26) by volume of control volume , we obtain 
 

 
As dr→0, Equation (12.27) reduces to 
 

 
or
 

 
After integration we obtain
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and

 

Here, and are the constants of integration.
 
Boundary conditions
 
1. r=aR we have the air water interface where we may assume that 

(The explanation is given earlier in Lecture 11.)
Substituting the above boundary condition in Equation (12.31), we obtain 

 
2. At r = R, no slip boundary condition is applicable. Thus, 
 

Using this boundary condition, we obtain 

or,

 
Therefore, the velocity profile is given by
 

 
or
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Maximum velocity
 
At r = aR, the velocity is maximum. Thus,
 

1.9 Flow through Annulus
 
A Newtonian fluid is flowing in a narrow slit (B<<W<<L ), formed by two parallel plates as 
shown in Fig. (13.1), due to the combined effect of both gravity and pressure. Determine the 
velocity profile, average velocity, and mass flow rate for laminar and steady flow.
 

Fig 13.1 Laminar flow in narrow slit
 
Assumptions

 Density and viscosity are constant.

 Steady state. 

 Laminar Flow(simple shear flow). 
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 Newton's law of viscosity is applicable. 

 
Fluid is flowing in the z direction due to both gravity and pressure difference. Therefore, vz is 
the only important velocity component. As the slit is very narrow (B<<W<<L ), we may assume 
that end effects are negligible in y direction and vz is not a function of y.
 
Thus, intuitively we assume the velocity profile as, 
 

Now, using the equation of continuity in cartesian coordinate system
 

 
or
 

 
Therefore,
 

 

From above velocity profile, we may conclude that is the only important shear stress 
component. We now select a cuboidal control volume of dimensions L, W, Δx, as shown in Fig. 
13.2 (Note: differential thickness is chosen in x direction)
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Fig 13.2 Control volume for laminar flow in narrow slit.
 
Momentum balance in z direction 
 
Convective momentum entering the CV at z=0 is

Convective momentum leaving the CV at z=L is

Momentum entering CV by viscous transport at x=x is

Momentum leaving the CV by viscous transport at x=x+Δx is

Pressure force at z=0 is

Pressure force at z=L is

Gravity force on CV is

Substituting these terms into the momentum balance in z direction, we get
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Since, vz is not a function of z, the first two convective momentum terms represented by 
Equations (13.5) and (13.6) are equal and hence cancel out from the above equation and we get 
 

 
Dividing Equation (13.13) by the volume of the control volume ΔxLW , we obtain
 

 
Combining the pressure force with gravity, and taking the limit as Δx→0, we have
 

 
or
 

 

where, 
 

 
Substituting Newton’s law of viscosity, we have 
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or
 

and finally after integration, we get 
 

 
Boundary conditions are 
 

1. At x=0 , the velocity profile must be symmetric. Therefore,
or
 

 

2. At x=B , no slip boundary condition is applicable. Thus, 
 
or
 

 
Thus, velocity profile may be written as
 

 
Equation (13.23) describes the velocity profile in the narrow slit.
 
Mass flow rate and average velocity
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Mass flow rate = Volumetric flow rate × Density 
 

 
By substituting the value of velocity from Equation (13.23), we have 
 

 
or
 

 
Average velocity = Volumetric flow rate/ Area of cross section 
 

 
or
 

 
Annular flow with inner cylinder moving axially
 
In a wire coating machine, a wire of radius kR is moving into a cylindrical hollow die. The 
radius of the die is R , and the wire is moving with a velocity v0 along the axis. The die is filled 
with a Newtonian fluid, a coating material. The pressure at both ends of the die is same. Find the 
velocity distribution in the narrow annular region. Obtain the viscous force acting on the wire of 
length L . Also, find the mass flow rate through the annular region.
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Fig 13.3 Annular flow with the inner cylinder moving axially
 
Assumptions

 density and viscosity are constant 

 steady state. 

 laminar (simple shear flow). 

 Newton's law of viscosity is applicable.

 
Velocity components
 
The fluid is moving due to the motion of the wire in z direction so vz is the only important 
velocity component. There is no solid boundary in θ direction, and the flow is steady, therefore 
vz will not depend on θ and t. Hence,
 

 
Now, applying the equation of continuity in cylindrical coordinates
 

 
or
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Thus,
 

 

This result indicates that is the only significant shear stress among the 9 components for 
momentum balance in z direction. Now, consider a control volume of differential thickness dr 
and length L at a distance r away from the center. We may write the momentum balance in z 
direction.
 

Fig 13.4 Control volume for annular flow with the inner cylinder moving axially
 
Convective momentum entering at z=0 is 
 

 
Convective momentum leaving at z=L is 
 

 
Momentum entering control volume by viscous transport at r = r is 
 

 
Momentum leaving control volume by viscous transport at at r = r +Δr is 
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Now, the momentum balance over the control volume is below 
 

 
Since velocity vz is not dependent on z coordinate therefore the convective terms represented by 
equations (13.29) and (13.30) are equal and hence cancelled out. Leaving with the following 
equation, 
 

 

Dividing equation (13.34) by volume of the control volume, 
 

 
Taking the limit as dr→0, we have 
 

 
and after integration
 

 

where is an integration constant. Now, using Newton’s law of viscosity, we get 
 

 
or
 

 
where is another integration constant.
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Boundary conditions are
 

at r = kR , 
 
or
 

 

and at r = R, 
 
or
 

 
From Equation (13.41)
 

 
or
 

 
or
 

By substituting the value of c1 into Equation (13.39), the velocity profile may be obtained as
 

 
or
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Mass flow rate in the annular region
 

 
or
 

 
or
 

 
Drag force acting on the wire may be calculated as 

 
or
 

 
By substituting the value of velocity vz, we obtain
 

Finally, we obtain the expression for drag force as 
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1.10 Flow of two immiscible fluids between two parallel plates 
 
Two immiscible liquids are flowing in between two adjacent, parallel plates. Solve the problem 
for velocity profile and mass flow rate.
 

Fig 14.1 Flow of two immiscible fluids between a pair of horizontal plates
 
Assumptions

 Density and viscosity are constants.

 Steady state.

 Laminar (simple shear flow) fully developed.

 Newton’s law of viscosity is applicable.

 
Since fluid is flowing in z direction only, therefore vz is the only non-zero velocity component. 
We can assume that end effects are negligible in y direction and hence, vz is not a function of y. 
thus, 
 

 
Now using equation of continuity for Cartesian coordinate system
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which implies that
 

 

As before, we may concluded that is only important shear stress component for momentum 
balance in z direction. Choosing a differential strip of thickness dx and length L as a control 
volume, we have
 

Fig 14.2 Control volume for Flow of two immiscible fluid between a pair of horizontal plates
 
Momentum balance in control volume
 
Convective momentum entering CV at z=0 is

61



SCH1309     TRANSPORT PHENOMENA             UNIT  I

 
Convective momentum leaving CV at z=0 is

Momentum entering CV by viscous transport at x=x is 
 

Momentum leaving CV by viscous transport at x=x+Δx is
 
Pressure force at z=0 is

 
Pressure force at z=L is

The equation for momentum balance can be written as
 

 
As before, convective terms cancel out and Equation (14.11) reduces to the following equation. 
 

 
Dividing Equation (14.12) by volume of control volume ΔxLW, we obtain 
 

 
Now, as Δx →0 Equation (14.13) becomes
 

 
After substituting Newton’s law of viscosity in Equation (14.14) and integrating it, we obtain
 

 
This equation is valid for both regions. Therefore,
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Here, superscript (1) represents the phase-1 and superscript (2) represents the phase-2. 
 
Boundary conditions
 
There are four boundary conditions needed to solve the problem and given below
 

 
This leads to the solution 
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1.11 Derivation of equation of motion
 
In this section, we derive the equation of motion, which may be used for solving any fluid 
mechanics problem. This equation is based on axiom 2, i.e., the momentum is conserved. We 
consider a control volume having volume Δx,Δy,Δz fixed in space.
 
According to the momentum conservation equation,
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Fig 15.1 Cubical control volume fixed in space
Momentum balance in x direction 
 
Rate of accumulation of x directed momentum in control volume 
 

 
Net rate of inflow of x directed momentum into CV by convection from x-phases 
 

 
Net rate of inflow of x-momentum into CV from y-phases
 

 
Net rate of inflow of x-momentum into CV from z-phases
 

 
Net rate of inflow of momentum into CV due to viscous transport
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In all shear stress component, the second index shows the direction of momentum flux and first 

index shows the direction in which the momentum is flowing. For example,  denotes the x 
directed momentum flowing in y direction. Therefore, the x directed momentum fluxes are

and . Thus,
 
Net rate of inflow of x directed momentum by viscous transport from x phase are 
 

 
Net rate of inflow of x directed momentum by viscous transport from y phase are 
 

 
Net rate of inflow of x directed momentum by viscous transport from z phase are 
 

 
Net pressure force in x direction =

 
Gravity force in x direction =

 
Adding all the above terms and dividing by the volume of control volume Δx,Δy,Δz and finally 
taking the limits, 
Δx→0, Δy→0,and Δz→0, we obtain 
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The above equation is the x component of equation of motion in cartesian coordinate system.
Similarly, for y-direction
 

 
and for z-direction
 

 
The above three equation may be combined in vector tensor form as
 

In above form, the equation of motion may be used in any coordinate system.
 
 
Equation (15.14) may be written in substantial derivative form as shown below 
 

 

if and are the two vectors. We may use the following vector identity. 
 

 

Now, replace by and by then we have 
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also,

 
After substituting Equations (15.17) and (15.18) in Equation (15.14), the equation of motion 
reduces to 
 

 
Rearranging the terms on the left hand side, we have
 

 
But from the equation of continuity
 

 
or
 

Equations (15.20) and (15.21) are the generalized form of equation of motion without any 
assumption and may be applied to any coordinate system. The detailed form of this equation in 
cartesian, cylindrical and spherical coordinate system is given in Appendix-3. 
Navier Stokes Equation for incompressible Newtonian fluid
 
The equation of motion may be further simplified by substituting the Newton’s law of viscosity 
for the momentum flux term appearing in the equation of motion.
For a one-dimensional system where 
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vy=0,vz=0......................................................................................................................................
(16.1)
 
we have seen that the Newton's law of viscosity may be written as,
 

 

where, represents x directed momentum flowing in the y direction However, in general, for 
a three dimensional flow, all 9 components of shear stress may be important. Thus, 
 
 
 

 

Here, , and are the normal stresses and the remaining are shear stress. 
 
Axiom 3: Moment of momentum is conserved
 
This axiom 3 leads to a very simple conclusion that the shear stress tensor is symmetric in nature.

The derivative itself is lengthy and is not reproduced here. is symmetric implies that
 

 
Newton’s law of viscosity may now be generalized as given below. Again, the basis for this 
representation is not shown here, but it may be found in any standard books in fluid mechanics. 
 

 
where,
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Hence, we have the nine components of shrear stress as
 

 
The detail form of Newtons law of viscosity in all coordinate system is given in Appendix- 01.
Now, consider the situation when an incompressible fluid is flowing only in x direction and 

depends on y coordinate only. In such a case, we have , and . We can 
easily see that for this case,
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and only significant components of stress are and . Also, the expression for is
the same as given earlier as Newton’s law of viscosity. For rectangular coordinate system, 

substituting the value of in the x component of equation of motion, we obtain 
 

 
Assuming that ρ and µ are constant, we obtain
 

 
or
 

 
or
 

 
But from equation of continuity for an incompressible fluid, we have 
 

 
Therefore,
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or
 

 
or

 
similarly 
 

 
Therefore, in vector and tensor form
 

 
Thus, the equation of motion reduce to
 

 
Equation (16.25) is known as the Navier Stokes equation and is used for solving problems 
involving Newtonian fluids of constant density and viscosity. For non-Newtonian and 
compressible fluids, the generalized form of equation of motion given earlier must be used. The 
detailed forms of the equations of motion along with Navier Stokes equations in cartesian, 
cylindrical and spherical coordinates are given in the Appendix-03.
Solution of momentum transport problems using Navier Stokes equation
 
In this section, transport problems involving Newtonian fluids are solved by making use of the 
equation of motion or Navier Stokes equation. We will firstly solve the falling film problem and 
flow through a circular tube for comparing the solutions obtained earlier by using the shell 
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momentum balance method. We will then proceed to solve some more fluid mechanics problems.
 
1.12 Falling film on an inclined surface

Fig 17.1 Falling film on inclined surface
 
This problem was solved earlier by the shell momentum balance technique. We will now try to 
solve this problem by using the Navier Stokes equations.
We are again required to make the same necessary assumptions as done earlier using the shell 
momentum balance technique. We postulate the non- zero components of the velocity and from 
there, determine the non-zero components of the shear stress tensor. These steps are the same as 

earlier and lead us to conclude that and is the only important component of 
shear stress. We now use the Navier Stokes equation in cartesian coordinates as given in 
Appendix-03. 

x component is                                          
 
y component is

                                                               
 
z component is 
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where
 

 
Integrating Equation (17.3), we have 
 

 
and
 

 
The boundary conditions are also the same as used earlier,
 
at

 
and
 
at

This leads to the solution for velocity profile, as
 

 
which is same as obtain earlier using shell momentum balance approach.
 
Fluid flow through a vertical tube
 
A Newtonian fluid is flowing inside a vertical tube having circular cross section due to pressure 
difference and gravity. Solve the problem using the Navier Stokes equations.
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Fig 17.2 Flow through a vertical circular tube
 
A similar type of problem (for a horizontal pipe) was solved earlier using the shell momentum 
balance technique. Therefore, the initial steps are the same and include making appropriate 
assumptions and postulating the non- zero velocity components. As shown earlier, it leads to the 

conclusion that 
Now using the Navier Stokes equation for cylindrical co-ordinates, after eliminating all zero 
terms, we have r- component of Navier Stokes equation 

 
component 

 

 
z - component 
 

 
We can combine gravity and pressure forces as to rewrite Equation (17.11) as,
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where, Pc is the effective pressure including the gravity, and is defined as,

 
Note that since pressure changes in only z direction and vz is a function of r only the partial 
derivative may be converted to total derivative. Furthermore, in Equation (17.12), the first term 
is only a function of z and the second term is only a function of r, i.e.,
 

 
This leads to result that F1 and F2 both are constants as Equation (17.13) is true for all values of 
z and r.
 

 
Therefore,
 

 
By integrating the Equation (17.15)
 

 
Boundary conditions are 
 
at

 
and 
 
at

This leads to the following solution
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By substituting in Equation (17.12)
 

 
or
 
 

 
Boundary conditions are 
 
at r= 0, is finite 
 
and
 
at r = R,

This leads to 
 

 
which is again similar to what we have seen for a horizontal tube except for pressure difference 
term. In fact, it can be shown that the velocity profile given in Equation (17.22) is valid for any 
configuration, horizontal, vertical, or inclined, with effective pressure is defined as 
 

Radial flow between two parallel discs
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A part of a lubrication system consists of two circular discs and the lubricant flows in the radial 
direction. The flow takes place because of modified pressure (p1- p2) between the inner and outer 
radii r1 and r2 respectively. Formulate the problem for velocity profile and mass flow rate 
through the system.
 

Fig 19.1 Radial flow in space between two parallel circular discs
 
Assumptions

 Density and viscosity are constant

 Steady state. 

 Laminar flow (simple shear flow). 

 Newton's law of viscosity is applicable. 

 
Velocity profile
 
The fluid is flowing in the r direction. Hence, the only non-zero component of velocity is vr and 
it depends on the both r and z. It will not depend on the θ coordinate due to cylindrical 
symmetry. i.e., 
 

 
Applying the equation of continuity in cylindrical coordinates 
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or
 

 
or
 

 

Thus, is a constant and which may be a function of the z,
 

 
Using the r-component of the Navier–Stokes equation in cylindrical co-ordinate systems, we 
have
 

 
By substituting Equation (19.5), we get 
 

 
Equation (19.7) is a second order partial differential equation and may not solve analytically. 
However, we may obtain an analytical solution for the limiting case when the flow is very slow 
(also called a creeping flow). In such a scenario, we may neglect the convective term (on the left 
hand side) in Equation (19.7) and thus, we have
 

 
Multiplying r on both sides, we have
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or
 

 
In Equation (19.9), the left hand side is a function of r only, while the right hand side is a 
function of z only. Since this equation is valid for all possible values of r and z, both the terms 

should be equal to each other, and in turn equal to a constant, , independent of r and z. 
Therefore,
 

 
or
 

 
From Equation (19.10), we get 
 

 
or
 

 
Substituting Equation (19.13) into Equation (19.11), we find
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or
 

 
Boundary conditions 
 
No-slip is valid at both the plates. Thus,
 
at

 
By substituting these boundary conditions in Equation (19.15), we have 
 

 
At z=0, the velocity profile is symmetric. Therefore, this is the second required boundary 
condition for the problem 
 

 
This leads to the solution 
 

 
and
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or
 

 
Finally, we obtain the velocity profile
 

 
The mass flow rate of at any r in the system must be the same (in fact that was the reason, why 

we got constant for a given in the first place). Select the surface at to obtain mass 
flow rate
 

 
or
 

 
Parallel – disc viscometer
 
A fluid is placed in a gap (of thickness B) between two parallel discs of radius R. The lower disc 
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is kept stationary while the upper disc is made to rotate at a constant angular velocity . 
Formulate the problem for determining the viscosity at low shear rates.
 

Fig 19.2 Front view of two-plate viscometer
 
Assumptions

 Density and viscosity are constant.

 Steady state. 

 Laminar flow (simple shear flow). 

 Newton's law of viscosity is applicable. 

 
Velocity profile
 
The fluid is sheared in the θ direction; hence, vθ is the non-zero component of velocity. Applying 
the equation of continuity in cylindrical coordinate, we obtain 
 

 
Thus, vθ, does not depend on the θ coordinate, or 
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For simplifying the problem further, we may assume that for low shear rates
 

 
Using the θ component of the Navier – Stokes equation for cylindrical co-ordinate systems
 

 
By substituting Equation (19.25), we get 
 

 
or 
 

 
After integration, we finally obtain 
 

 

where and are the integral constant.
 
Boundary conditions are 

at , or 
 
thus,
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and at  or 
 

This boundary condition leads to the solution
 

 
and
 

 
Finally, we obtain the velocity profile 
 

 
Now, the z-component of the torque exerted on the fluid by the upper rotating disc, may be 
calculated as 
 

 
or
 

 
Finally, we obtain the value of torque.
 

Thus, by plotting the angular velocity vs torque Tz, the viscosity may be determined.
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Non-Newtonian fluids
 
Non-Newtonian fluids are the fluids which do not obey Newton’s law of viscosity. For 
describing Non-Newtonian fluids, let’s recall the Newton's law of viscosity experiment. There 
are two long parallel plate situated at distance h to each other. Top plate is stationary and bottom 

plate is moving with velocity as shown in Fig. (20.1).
 

Fig 20.1 Non-Newtonian flow between two parallel plates
 

If a force, F, is applied to move plate, then ( ) 
 

and under steady state conditions when h is small and when 
 

 

Now, we calculate by repeating experiments for different applied forces and velocity 
achieved by the bottom plate and plotting a graph as shown in Fig. (20.2). Depending on the 
nature of fluid, different types of curves may be obtained. 
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Fig 20.2 Shear stress vs. shear strain diagram for Newtonian and non-Newtonian fluids
1.13 Rheological behaviour of fluids
 
If fluid shows the behaviour like curve (1) then it is a Newtonian fluid. Other fluids are non-
Newtonian fluids. Curve (2) represents a Pseudo-plastic fluid, curve (3) represents a Dilatant 
fluid, and curve (4) represents a Bingham plastic fluid. There are several Theoretical and 
empirical models available to describe the rheological behaviour of non-Newtonian fluids. Here, 
we discuss some of them, which come under the group of generalized Newtonian models. Basic 
equation for a generalized non-Newtonian fluid is given below 
 

 

Here, is the apparent viscosity, which is clearly a function of shear rate as may be seen from 
Fig. (20.2). Therefore,
 

 

If the apparent viscosity increases with increase in shear rate, , then the fluid is called 

Dilatant fluid and if it decreases with increase in shear rate, then fluid is called Pseudo-
plastic fluid. Some fluids require a critical shear stress to initiate the flow. These fluids are called 
Bingham fluids. Some important rheological models for non-Newtonian fluids are given below. 
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1 Power Law or Ostwald De Waele model
 
Power law or Ostwald De Waele model is the most generalized model for non-Newtonian fluids. 
The expression of this model is given in Equation (20.3)
 

Here, apparent viscosity is defined as,

 
This is a two-parameter model where m and n are the two parameters. 

If n = l then = m 
where m is similar to the viscosity of the fluid and model shows the Newtonian behaviour .

If n>1, then increases with increasing shear rate and the model shows the Dilatant behaviour. 
 

If n<1, then decreases with increasing shear rate and the model shows the Pseudo-plastic 
behaviour.
 
Modulus sign
 
In power law model, modulus sign can be removed according to the value of shear rate.
 

1. If is positive, then 
 

 

2. If is negative, then 
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Several fluids do not show single type of rheological behaviour. They show Newtonian 
behaviour for a range of shear stress and Non-Newtonian behaviour for some other ranges of 
shear stresses. Several models have been suggested for these types of fluids. Some popular 
models like Eyring model, Ellis model, Reiner Philipp off model and Bingham Fluid model are 
discussed here. 
 
2. Eyring model
 
Eyring model is a two-parameter model. The equation of Eyring model is as follow
 

 
where A, B are the two parameters.
 

In Eyring model, if → 0 which means very low shear forces, we have

 

Therefore, as → 0, the model shows Newtonian behaviour 

 

Here, viscosity = 
 

If is very large, the model shows Non-Newtonian behaviour as shown Fig. 20.3 
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Fig 20.3 Shear stress vs. shear strain diagram for Eyring model
 
Therefore, Eyring model may be used for a fluid which shows Newtonian behaviour at low shear
rates and non- Newtonian behaviour at high shear rates.
 
3. Ellis model
 
Ellis model is a three-parameter model. The equation of this model is as follows
 

Here, , and are the three parameters .
 
Here, we consider some special cases, 
 

1. If then Equation (20.11) reduce to 
 

 
or
 

 

which is same as Newton’s law of viscosity with as the viscosity of the fluid.
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2. If , then 
 

 
which is similar to a Power law model
 

3. If >1 and is small then the second term is approximately zero and equation reduces to
 

 
which is similar to Newton’s law of viscosity.
 

4. If <1 and is very large, then again, second term is negligible and we have
 
 

 
Which again shows Newtonian behaviour. Therefore, Ellis model may be used for fluids which 
show Newtonian behaviour at very low and very high shear stresses, but non-Newtonian 
behaviour at intermediate value of shear stresses.
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Fig 20.4 Shear stress vs. shear strain diagram for Ellis model
 
This type of behaviour may be shown by some polymer melts 
 
4. Reiner Philipp off model
 
This is also a three-parameter model. The equation of Reiner Philipp off model is as follows,
 

 

where, , and are the three parameters.

In Reiner Philipp off model, if is very large, the equation reduces to,

 
or
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which is same as the Newton’s law of viscosity,
 

If is very small then equation reduces to 
 

 
or
 

 
which is also same as the Newton’s law of viscosity. Therefore, Reiner Philipp off model may be 
used for a fluid which shows Newtonian behaviour at very low and very high shear stresses but 

non-Newtonian behaviour for intermediate values of shear stress. Here, and represent 
the viscosity of fluid at very low and very high shear stress conditions respectively.
 
5. Bingham Fluid model
 
Bingham fluid is special type of fluid which require a critical shear stress to start the flow.
The equation of Bingham fluid model are given below 
 

if
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if or

 
A typical shear stress vs. shear rate diagram for a Binghum model is shown below
 

Fig 20.5 Shear stress vs. shear strain diagram for Bingham model
Momentum transport problems involving Power law and Bingham fluids:
 
In this section, we will solve fluid mechanics problem for Power law and Bingham plastic fluids.
These problems have been earlier solved for Newtonian fluids. We have chosen the same 
problems here for better understanding.
 
Falling film on inclined plane
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Fig 21.1 Falling film problem for non-Newtonian fluid
 
Initial steps, such as making appropriate assumptions, finding important velocity components, 
applying equation of continuity, and determining important shear stress components are similar 

as steps seen for Newtonian fluid in lecture 11 and 17. As before and is the only 

non-zero velocity component and is the only important shear stress component.

(Note: Since the forms of shear stress for Newtonian and non-Newtonian fluids are same, the
only difference is the viscosity μ for Newtonian fluids and apparent viscosity η for non-
Newtonian fluids and furthermore as non-zero components of velocities are also same, the same 

components of shear stress are significant for both Newtonian and non- Newtonian fluids.) 

To solve the problem, we start with the generalized equation of motion in terms of . Since 
the fluid is moving in z direction, discarding all terms which are zero, z-component of the 
equation of motion reduces to 
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where
 

 
therefore,
 

 
For Power law fluids 
 

 

 
Since vz is decreasing with increasing value of x , the negative sign should be used for removing 
the modulus sign, i.e. , 
 

 
or
 

 
By substituting Equation (21.7) in Equation. (21.1), we obtain
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By applying the boundary condition, at 
which simplifies to 
 

 
as disused in lecture 11 
 

By substituting this boundary condition in Equation (21.8), we get . Therefore, 
 

 
or
 

Here, is another integral constant. 
 

Now, using the second boundary condition, at , we finally obtain

 
Tube flow problem for Power law fluid

97



SCH1309     TRANSPORT PHENOMENA             UNIT  I

 

Fig 21.1 Flow through pipe for non-Newtonian fluid
 
As we discussed in lecture 10, the only non-zero component of velocity is vz, which depends on 

r only. The important component of shear stress is .
 
By applying general equation of motion in cylindrical co-ordinate, we get
 

Equation (21.11) may be further simplified as before

 
or
 

 
By applying the boundary condition, at r=0, velocity is finite, we obtain
 

and for power law fluids

(Note: Since vz is decreasing with increasing value of r, the negative sign should be used for 
removing the modulus sign.)
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By substituting Equation (21.13) to Equation (21.12), we get 
 

 
Integrating above equation, we obtain 
 

 

Now, by applying the no-slip boundary condition at, , we obtain 

Thus,
 

 
Equation (21.15) represents the velocity profile of freely falling film on an inclined surface for a 
Power law non-Newtonian fluid. If we substitute the n=1 and m=μ in this expression, we get 
Equation (10.25) which was derived earlier for a Newtonian fluid. 
Tube Flow Problem for a Bingham Fluid
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Fig 22.1 Flow through pipe for Bingham fluid
 

As mentioned in the previous lecture, the forms of shear stress for Newtonian and non-
Newtonian fluids are the same. Therefore, Equation (21.12) is applicable for a Bingham fluids 
also, i.e.,

 
Equations (20.19) and (20.20) may be written for this system 
 

1. For ( ), where is to be determine latter, 

, or

 

2. For ( )
 

 

In Equation (22.2), is negative. Therefore, after removing the modulus sign, we obtain
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Thus, 
 

 
or
 

 
Condition for movement of fluid 
 
As we start to pressurize the fluid by imposing pressure difference , fluid does not move initially. 
As we continue to increase the pressure difference the fluid may start to move at some critical 

pressure difference ( ). This critical value may be determined by setting

. Thus,
 

Thus, the fluid will flow if 
 

 
Suppose the pressure difference across the tube exceeds this critical value of pressure (

) then the fluid will start to flow. Now, under this condition we may calculate the 

value of (r0) where the value of . For r<r0, the velocity gradient is zero and the 
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fluid flows with a constant velocity. The detail calculation for two different regions r<r0 and r>r0
are given below.
 

 

At . Thus, 
 

 
or
 

 
For r<r0, we equate Equations (21.12) and (22.4), that is 

 
Finally, we obtain,
 

 

No slip Boundary condition at r=R , may be used to calculate c1 as shown below
 
Substituting this value in Equation (22.11), we get 
 

 
Finally, the velocity profile is given by
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Equation (22.12) gives the velocity profile is region as shown in Fig. 22.2. Equation

(22.9) shows that as we keep increasing the pressure difference , the value of r0 keep 
on decreasing and the velocity profile changes as shown in Fig. 22.2.

The value of r0 also depends on and reduces with it. If we substitute in Equation 
(22.12), we obtain the same expression for velocity profile as we had earlier obtain for 

Newtonian fluids. This result implies that if the value of pressure difference is 
significantly high then the Bingham fluid may show behaviour similar to Newtonian fluids.

Fig 22.2 Effect of differential pressure flow through pipe for Bingham fluid
Now, we may determine the velocity profile in the plug flow region (r>r0) by substituting r= r0 
in Equation (22.12) 
 

 
 
 
Falling film problem for Bingham fluid
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Fig 22.3 Flow on inclined surface for Bingham fluid 
 
As we discussed earlier, the expression of shear stress is same, as we had derived for Newtonian 
fluids and Power law fluids in lecture 11 and lecture 21. Therefore, from Equation (21.3)
 

 
For this system, Bingham fluid model may be written as, 
 

1. For , 
 

 

2. For ,
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As the critical thickness of film is unknown, (the fluid flows only when ) we may 
calculated from Equation (22.17), i.e., 
 

at or, 
 

 
or
 

 

From region (1) where and , we have
 

or

 

For region (2) where and , we have 
 

 

Here is negative. Therefore, after removing the modulus sign and substituting the value 
of η in Generalized Newton’s law of viscosity. we obtain,
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or
 

 
or
 

 
Finally, we obtain the velocity profile, as given below 
 

 

where c2 is an integral constant. By using no slip boundary condition at , , we 
obtain 
 

 
Therefore,
 

 

Equation (22.22) shows the velocity profile in region . From Equation(22.22), we 

may also calculate the velocity of plug flow region by substituting the value . Thus,
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