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4.1 Derivation of equation of energy

1. Equation of mechanical energy

2. Equation of thermal energy

Equation of mechanical energy

For understanding the nature of mechanical energy, consider a simple case of a single particle
moving in one direction as shown in Fig. 30.1. Assume the particle has mass m and is located at
height h from a reference plane and moving upward with velocity ¥ Gravity is the only force

working on the particle.

11

Z=0
Starting with Newton’s second law of motion, we have

Force = mass x acceleration

where
F = ma
or
v
}f‘ = —=
dt

By taking dot product of equation (30.2) with velocity , we find that

1. |:F = 172 n"_}-‘:|
- - ar

or

dv
vFE =myv.—
dt
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Using vector identity, we have

d(vy) dv dv L dv
=y, ===y —
dt dit it df

or

dt

Voo o

v id{:“z}
dar 2

where, v is the magnitude of the velocity vector E

By substituting
e Y
-'i-l
d ‘ —
vF=m—_<
dt

ot )
rf‘ —

. o
vl +v,F,+v.F, = }”—...rff :

For the example given above, we have ,

F1=0,F2 =0, F3=-mg
and

vi=0,v2=0,v3=v

i _‘it.? b
(2
)
—Vvilg = i —=
[ ]
dt

Substitute v = (dz/dt). Thus we obtain,
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d ‘ . ‘

dz

—mg—="m
dt rfi'

Since, m and g are constants. We may rewrite above equation as,

r 20
3
d ‘ — ‘
d(mg ) L 2 )
a
or
4 3 &
mgs +m— ‘_(J
{fr
TE‘
Thus Mgz +m—_-= constant
I
V| P g VP -V
. Dt = e
As before,
£
n
D‘ b ‘
Dv |2,
V. =
T Dt Dt

(Note: substantial derivatives behave like normal derivatives.). Thus,
P—\ - \— pgy—v.(VP)-1. (V1)

The following vector and tensor identities may be used for simplifying Equation (30.14)
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V.(Pv) = P(Vy) + v(VP)

= .
and if = is a second order symmetric tensor then we also have

V(Ty) = vYIZ+z:Vy

Thus, we obtain

D I./-‘I"E \.I : . e b f W ; " . o
’05‘5\?; =v.(pg) | V-(Pr)+(=P (V) |-[ V-(22)+(-2: V)]
H%[é]:ll g )=V (Pv)+ P(Vy)=-V.(za)+z: V1

Equation is called the equation of mechanical energy for fluids.

Significance of each term is given below.

nif |1|c:rfk done bv gravitv |
00— hue‘r‘rf energy = (; b
Dt | ‘ | Jorce on the svstem |
(reversible coiversion of
| work done by pressure \
— + P(V.v) kinetic energy info
| Jforce on the system I
# | the ;r;u?emﬂf energy |
( | work done by viscous | = [n'rewrﬂbfe comversion of ]
~V.(z.¥ -+ 7 Ve

|\ forces on system | : | kinetic energy in to the hem‘|
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| Rate of change of . § . . )
D ({" ) ' | Heat transferred | [Hem‘ generated / removed |
o ———« internal energy  + =-V.q _ Lo R _ .
Dt ‘ o ‘ “ = | by condhction | | by source or sink |

| per unit yolume . ? E s

reversible comversion of | " : g 2
[:rrm'embfe comversion of |

(27

-P(‘F.V}Jk?'neri'{: energy into HETL L R ;
AT 7| kinetic energy in to the heat |

the internal energy ‘

4.2 FLOW THROUGH PACKED BED

__.rf"—!(ﬁ % € =Bed Poraosity
d

% » =Particle size

20 f

Q—DT—i

Vo

For the theoretical analysis to calculate pressure—drop, actual flow channels are
replaced with parallel cylindrical conduits of constant cross—section. Particles are

assumed to be of the same size and shape having constant sphericity, s,
Pressure—drop occurs due to inertial and viscous effects. At high Reynolds number,

inertial effects prevail, whereas the viscous effects are important at low Reynolds

number. In general,
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["ﬁpjtntal = Lﬁp]*ﬂs:nus + [ﬁpjmerﬂﬂl

Drag over the channel — walls
Fp  consiting of packed bed particles

As  Total surface area of particles

v
=K, (”L) +K, (p,V?)

.V eV
orTa —
r I',

. . Total cross — section of conduits
r, = hydraulic radius =

Wetted parameter

As = Np X Sp
L d
Total # of particles Surface areaaf one particle
5, L(1—¢€) .
= ——— X sp, where v, = volume of one partide
Vp
Vp 6 v

= :v = — ,where v, = superficial velocity
sp Ppdp =
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Ve Therefore, Pressure-drop in

Similarly, pressure—drop at high Reynolds number, 2P % Ps
packed beds is related to pressure—drop due to viscous and inertial effects via two empirical

constants, *1311d Ky

B Total volume of voids
Total surface area of particles (multiply both numerator and denominator by L)

_ (S L)e
As | So= cross sectional area of packed-bed
Fp Fpdp dp B Hev,  S,L(1—g)6 " v_§
1 & s L $p dp 2P’z

As S L(1l—e)x6

Pgvz B (1—¢)
=1 [5}{1‘—4—}{2
vn'fp‘s d]J pF

-

e2

Fp = drag — force = (Ap),oe X S, €

gy TECLLIN

("ﬁ‘pjtatal ES-:-":-::l cbs dP -
¢"s d‘PVD pF

S,L(1—€) X6

FEE

/ 3 ° .
EE(:E :)(¢gdp): 36K ue(1-9)
; cbz! d ]Jvcn p[—‘ -

L 1—€ pFVD:

A = d 150(1 — e
—p( ) (% f): C j“E+ 1.75
pF "U";. {bs I:1']3""?-.3 pF

o .

_Ap b, dpe’
e T Lo i \ 1= 9
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G

P Friction

150(1 — €)? !.l.Fv,:,L+ 1.75 (1 —€) V2L
3 I:]'11: ‘:I:'gz F:"[: € EI}E d]}

4.3 SUDDEN ENLARGEMENT

An incompressible fluid flows from a small circular tube into a large tube in turbulent flow,
as shown in Fig. 7.6-1. The cross-sectional areas of the tubes are S, and S,. Obtain an expres-
sion for the pressure change between planes 1 and 2 and for the friction loss associated with
the sudden enlargement in cross section. Let B = S5,/5,, which is less than unity.

Plane 1 Plane 2

.

|

Ce 3
Cylindrical tube 5 = :
of cross-sectional \‘\“Washer-shaped“ \

area 5; surface of area Cylindrical tube
S, -5, of cross-sectional
area S,
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(a) Mass balance. For steady flow the mass balance gives
w, =w, or pS; = pnsS;
For a fluid of constant density, this gives

U _ 1

B
(b) Momentum balance. The downstream component of the momentum balance is

F_ir—"i = [U]w] - 1’2w2) + (p15| — p252)

The force F,_,, is composed of two parts: the viscous force on the cylindrical surfaces parallel
to the direction of flow, and the pressure force on the washer-shaped surface just to the right
of plane 1 and perpendicular to the flow axis. The former contribution we neglect (by intu-
ition) and the latter we take to be p,(S; — 5,) by assuming that the pressure on the washer-
shaped surface is the same as that at plane 1.

_P](Sz - S]) = p3}252(b‘1 - vg} + (P|S| - p-_:S'g)
Solving for the pressure difference gives
P2 — p1 = pUa(v) — v3)

or, in terms of the downstream velocity,

_ — 1(1_1)
P2~ P W2B

(c) Angular momentum balance. This balance is not needed. If we take the origin of coor-
dinates on the axis of the system at the center of gravity of the fluid located between
planes 1 and 2, then [r; X w;] and [r, X u,] are both zero, and there are no torques on the
fluid system.

(d) Mechanical energy balance. There is no compressive loss, no work done via moving
parts, and no elevation change, so that

E, =30t - + 5 (p — p)

Insertion of Eq. 7.6-6 for the pressure rise then gives, after some rearrangement,

. 1 2
)

10
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4.4 LIQUID - LIQUID EJECTOR

A diagram of a liquid-liquid ejector is shown in Fig. It is desired to analyze the mixing
of the two streams, both of the same fluid, by means of the macroscopic balances. At plane 1
the two fluid streams merge. Stream 1a has a velocity v, and a cross-sectional area 3S,, and
stream 1b has a velocity 3v, and a cross-sectional area 35,. Plane 2 is chosen far enough down-
stream that the two streams have mixed and the velocity is almost uniform at v,. The flow is

vo/ 2 Us

. —r
e — . —
p—— J——— f _;_, Uy E E
—F \ =
/ | \ 1
Plane 1 Stream la Plane 2

Stream 1b

(@) Mass balance. At steady state, Eq. (A) of Table 7.6-1 gives
Wy, + Wy = W
or
pue(3S)) + pGuGS)) = pv,S;
Hence, since S; = S,, this equation gives
v, = 30,
for the velocity of the exit stream. We also note, for later use, that w,, = w, = 3Ws.

(b) Momentum balance. From Eq. (B) of Table 7.6-1 the component of the momentum bal-
ance in the flow direction is

(0, + U0y, + P1S) — (aw, + puSy) =0
or using the relation at the end of (a)
(p2 = P05 = Gloy, + vy) — v,
= Glvy + 309 — 300 (pGuY)S,)
from which
pPo—p = 6PV
This is the expression for the pressure rise resulting from the mixing of the two streams.

() Angular momentum balance. This balance is not needed.

11
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(d) Mechanical energy balance. Equation (D) of Table 7.6-1 gives

9 P2 - p'l
(%vfawm + év%&'wlb) - (%UE + p )wz =E,

or, using the relation at the end of (a), we get

(%v]‘?n(::.wzj + %(%U[J)E(%wﬂ} - ':%':%U[])z + J_svﬁ)wz =E,

Hence

4.5 ISOTHERMAL FLOW OF AN LIQUID THROUGH AN ORIFICE

A common method for determining the mass rate of flow through a pipe is to measure the pres-
sure drop across some “obstacle” in the pipe. An example of this is the orifice, which is a thin
plate with a hole in the middle. There are pressure taps at planes 1 and 2, upstream and down-
stream of the orifice plate.

12
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S, = cross section of pipe = 5,

|

@ " -

L
pL

|
|
|
|
|
|
|
Plane 1 Manometer plane 2
|
I
|

b)) ———— - — S

I L
|

Plane 0 Plane 2

13
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(a) Mass balance. For a fluid of constant density with a system for which §, = §, = §, the
mass balance in Eq. 7.1-1 gives

(v} = (v2)
With the assumed velocity profiles this becomes
S

[ =§'Un

and the volume rate of flow is w = pv,S.

(b) Mechanical energy balance, For a constant-density fluid in a flow system with no eleva-

tion change and no moving parts, Eq. 7.4-5 gives
1¢v)  1(v) +&2_Pl

+n_|=
2oy 2(y P B0

The viscous loss é is neglected, even though it is certainly not equal to zero. With the as-
sumed velocity profiles, Eq.

7 P~ P
op — o) + 5 =0

S \/i(i’l _Pz} 1
‘ P (S/S)*—1
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