
UNIT-II
Linear  Correlation-  Regression  Modelling-  Multivariate  Analysis-
Bayesian  Modelling-  Inference  and  Bayesian  Networks-  Support
vector and Kernel Methods- Analysis of time series- Linear System
Analysis-  Non  Linear  Dynamics-  Rule  Induction-  Basic  Fuzzy  and
Neural Networks

Linear  correlation refers  to  straight-line  relationships  between  two
variables.  A correlation can  range  between  -1  (perfect
negative relationship)  and  +1  (perfect  positive relationship),  with  0
indicating no straight-line relationship.Linear correlation is a measure of
dependence between two random variables.

Definition

Let  X  and  Y  be  two random  variables.  The linear  correlation

coefficient (or  Pearson's  correlation  coefficient)  between X and ,  Y

denoted by Corr[X,Y]   is defined as follows:

where  is  the  covariance  between  and  and  and  are  the standard

deviations Corr[X,Y]=Cov[X,Y]/σ[X]σ[Y]  where  Cov[X,Y]  is  the

Covariance[X,Y] .

Note that, in principle, the ratio is well-defined only if σ[X]and σ[Y] and  are

strictly greater than zero. However, it  is often assumed that Corr[X,Y]=0 

when one of  the  two standard  deviations  is  zero.  This  is  equivalent  to

assuming  that0/0=0  because Cov[X,Y]=0 when one of  the two standard

deviations is zero.

Interpretation

The  interpretation  is  similar  to  the  interpretation  of  covariance:  the

correlation  between X and  Y provides  a  measure  of  how  similar  their

deviations from the respective means are 

Linear correlation has the property of being bounded between  -1 and 1

-1 ≤ Corr[X,Y] ≤ 1

https://www.statlect.com/fundamentals-of-probability/random-variables
https://www.statlect.com/glossary/standard-deviation
https://www.statlect.com/glossary/standard-deviation


Thanks to this property, correlation allows to easily understand the intensity

of the  linear  dependence  between  two  random  variables:  the  closer

correlation is to 1, the stronger the positive linear dependence between 

X and Y is  (and  the  closer  it  is  to -1,  the  stronger  the  negative  linear

dependence between  X and Y is).

Terminology

The following terminology is often used:

1. If Corr[X,Y]>0 then X and Y are  said  to  be positively  linearly

correlated (or simply positively correlated).

2. If  Corr[X,Y]<0 then X and  Y  are  said  to  be negatively  linearly

correlated (or simply negatively correlated).

3. If  Corr[X,Y]≠0 then X and Y are  said  to  be linearly  correlated (or

simply correlated).

4. If  Corr[X,Y]=0 then X and Y are said to be uncorrelated. 

Correlation of a random variable with itself

Let X be a random variable, thencorr[X,X]=1 

Symmetry

The linear correlation coefficient is symmetric:

Corr[X,Y]=Corr[Y,X]



Regression Modelling:
It  includes  many  techniques  for modeling and  analyzing  several

variables,  when  the  focus  is  on  the  relationship  between  a  dependent
variable and one or more independent variables (or 'predictors'). ... In all
cases,  a  function  of  the  independent  variables  called
the regression function is to be estimated.

Correlation and  linear regression are  not  the
same. Correlation quantifies  the  degree  to  which  two  variables  are
related. Correlation does not fit a line through the data points. You simply
are  computing  a correlation coefficient  (r)  that  tells  you  how much  one
variable tends to change when the other one does.

REGRESSION:
                  Data can be smoothed by fitting data to a function such as with 
regression.

Linear regression involves finding the best line to fit two variables or 
attributes so that one attribute can be used to predict the other.

Multiple linear regression:More than two attributes are involved and the 
data are fit to a multidimensional surface. 

Linear  Regression:Straight  line  regression  analysis  involves  a  response
variable  Y  and  a  single  predictor  variable  X.It  is  the  simplest  form  of
regression and models Yas a linear function of X i.e.

Y=b+wx
Where  the  variance  of  Y  is  assumed  to  be  constants  and  b,w  are
regression coefficients specifying the Y-intercept and slope of the line.
Regression coefficient w&b can also be thought of as weight, so that can
equivalently write

Y=W 0 +W1X
These  coefficients  can  be  solved  by  method  of  least  squares,which
estimates the best fitting straight line as the one that minimize the error
between the actual data and the estimate of the line.



Regression coefficient can be estimated using 

w1=
|D|

i=1∑(xi- x)(yi- y)
       ___________________

|D|
i=1∑ (xi - x)2

Example- Straight line regression using method of least squares.

X years experience Ysalary(in$1000s)
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Distance between two binary variables based on the notion of similarity.
For example, the asymmetric binary similarity between the objects ‘i’ and ‘j’,
or sum(i,j) can be computed as

sum(i,j)=q/q+r+s=1-d(i,j)
The coefficient sum(i,j)is called Jaccard coefficient.



MULTIPLE   LINEAR   REGRESSION  

Multiple linear regression model  based  on  2  predictor  attributes  or  
variable  A₁  and  A₂i.e

X₁and  X₂ values of attributes  A₁  and  A₂  in x.

Multiple  regression  problems  are  solved  with  software  packages  such 
as  SAS , Spss  and S-Plus.

CO-RELATION  CO-EFFICIENT

DEFINITION
Let X and Y be two random variables. The linear correlation co-efficient  or 
Pearson’s  Correlation co-efficient  between  X  and Y  denoted  by

INTERPOLATION  :  It  is  similar  to the interpretation of  covariance. The
correlation  between  X  and  Y  provides  a  measure  of  how  similar  their
deviation from the respective means are

TERMINOLOGY

 If  Corr[X,Y] >0  ,then X and Y are said to be positively linearly 
correlated.

 If Corr[X,Y]<0  ,then it is said to be negatively linearly correlated.
 If Corr[X,Y]≠0 ,then X and Y are said to be linearly correlated.
 If Corr[X,Y]=0 ,then X and Y are said to be uncorrelated.



BAYESIAN  CLASSIFICATION

Bayesian  classifications  are  statistical  classifiers.  They can  predict  
class  membership probabilities  ,such as  the probability  that  a  given  
tuple  belongs  to  a particular  class. Bayesian  Classification  have  
exhibited  high  accuracy  and  speed   when applied  to long  database.
Naive  Bayesian  classification  assume  that  the  effect  of  an  attribute  
value  on  given  class  is  independent of  value  of  other  attributes. This  
assumption  is  called  class  conditional  independence.
It is made to simplify the computations involved ->it is called as Naïve.

BAYES  THEOREM

‘ X ’ is  considered  as  evidence.  It is  hypothesis,such  as  that  the  data
tuple ’  X ‘ belongs  to  a specified  class ‘ c ‘.
P(H/X)    represents, looking for  the  probability  that   tuple  ‘   X ‘
belongs  to class   ‘ c ’ , given  that  we   know  the  attribute  description  of
‘ X ’.

P(H/X) is the posterior probability of H conditional in ‘ X ‘.

 FOR EXAMPLE,
A Customer is described by the attribute age and income respectively, and
that  ‘X’   is  a  35 year   old  customer  with  an  income  of  $40,000.
Suppose that ‘H’ is the hypothesis that our customer will buy a computer
given that we know the customer’s age and income.
P(H)   Prior-probability,  for our example, this is the probability that any
given customer will buy a computer regardless of age, income or any other
information.
Similarly, P(X/H) is the posterior probability.
                P(X) prior probability of ‘ X ‘
Above probabilities are   estimated using Bayes Theorem.

                         BAYES THEOREM, 

How Bayes theorem is used in Naive Bayesian classifier



The  Naive  Bayesian  Classifier  or  simple  Bayesian  Classifier  work  as
follows

1. Let  ‘  D ‘  be a training set  of  tuples and their  associated class
labels.  Each  tuple  is  represented  by an  n-dimensional  attribute
vector, X=(x1,x2,…..) depicting  ‘ n ’ measurements made on the
tuple from ‘ n ’ attributes A1,A2…..

2. Suppose there are ‘ m ‘ classes C1,C2,…

Given a tuple‘ X’, the classifier predict that ‘ X’ belongs to the class
having the highest posterior probability , conditioned on ‘ X’ i.e ,
the Naïve Bayesian Classifier predicts the tuple ‘ X ‘ belongs to the
class  if and only if

Thus, we maximize P(/X). The class  for which P(/X) is maximized
is called maximum posterior hypothesis.

          By Bayes Theorem,

3. As  P(X)  is  constant  for  all  classes,  only  P(X/)P()  need  to  be
maximized. If the class prior probabilities are not known, then it is
assumed as

4. If  the  dataset  with  many  attributes  computation  is  extremely
expensive to compute P(X/) to reduce  the computation.

                          Use,   

For each attribute, we look at whether the attribute is categorical or



continuous valued. To compute P(X/) consider the following 
a) If  is categorized, then P(/) is the number of tuples

of class  in ‘D’ having the value  for divided by / ,
D/ , the number of tuples of class  in ‘ D ‘ .

b) If  is  continuous  assumed  to  have  a  Gaussian
distribution with a mean μ and S.D σ defined by

            g(x,μ,σ)=(1/√2ᴨσ)eᶺ-((x-μ)ᶺ2)/2σᶺ2

           P(/)=g(,μ,,σ)

5. In order to predict the class label X , P(X/)P() is evaluated for each
class . 
The classifier predicts the class label of tuple X is the class  if and
only if

                           P(X/)P() > P(X/)P() , for i ≤ j ≤ m , j≠i

In other words, the predicted class label is the class  for which 
                             P(X/)P() is the maximum.

Bayesian Belief Networks Or Belief Networks Or Bayesian Networks
Or Probabilistic Networks 

Bayesian  belief  network  specify  joint  conditional  probability
distributions.  They allow class conditional  independencies to  be defined
between subset of variables. Trained Bayesian belief networks can be used
for classification.

Belief networks is defined by two components – a directed acyclic graph
and a set of probability tables.



A Simple Bayesian Belief Network

If  an  arc  is  drawn  from a  node  Y to  node  Z,  then  Y is  the  parent  or
immediate predecessor of Z, and Z is the descendant of Y. each variable is
conditionally independent  of  its  non-descendants  in  the graph,  given its
parents.
The arcs in  the figure  allow a representation of  casual  knowledge.  For
example, having lung cancer is influenced by a person’s family history of
lung cancer, as well as whether or not the person is a smoker.

 Note that the variable positive X-Ray is independent of whether the
patient has a family history of lung cancer or is a smoker, given that
we know that the patient has lung cancer.

 In  other  words,  once  we  know the  outcome  of  the  variable  lung
cancer, then the variables family history and smoker do not provide
any additional information regarding positive X-Ray.

The arcs also show the variable lung cancer is conditionally independent
of Emphysema, given its parents, family history and smoker.
A belief  network has one conditional  probability table (CPT) for  each
variable. The CPT for a variable Y specifies the conditional distribution
P(Y/parents(Y)), where parents(Y) are the parents of Y.

FH, S FH, ~S ~FH, S ~FH, ~S
 LC 0.8 0.5 0.7 0.1
-LC 0.2 0.5 0.3 0.9

This  shows  a  CPT  for  the  variable  lung  cancer.  The  conditional
probability  for  each  known  value  of  lung  cancer  is  given  for  each



possible  combination  of  values  of  its  parents.  For  instance  from the
table, the upper leftmost and bottom right most entries we see that

P (Lung Cancer=yes /Family History =yes, Smoker =yes) =0.8

P (Lung Cancer=no /Family History =no, Smoker =no) =0.9

Let  X=  (x1,  x2  … xn)  be  a  data  tuple  described  by  the  variables  or
attributes  Y1,  Y2 ….  Ynrespectively.  Recall  that  each  variable  is
conditionally independent of its non-descendants in the network graph,
given  its  parents.  This  allows  the  network  to  provide  a  complete
representation  of  the  existing  joint  probability  distribution  with  the
following equation:

P (x1, x2 …. xn) = n
i=1 P (xi/parents(yi))

Where P (x1, x2  …. xn) is the probability of a particular combination of
values  of  X,  and  the  values  for  P (xi/parents(yi))  corresponds to  the
entries in the CPT for Yi.
A  node  within  the  network  can  be  selected  as  an  “output”  node
representing a class label attribute. There may be more than one output
node.  Rather  than  returning  a  single  class  label,  the  classification
process can return a probability distribution that gives the probability of
each class.

Multi- variate analysis 
It is a set of techniques  used  for  analysis  of  data  sets  that  contain
more  than  one  variable,  and  the  techniques  are  especially  valuable
when working with correlated variables.

 Here  instead  of  looking  at  several  variables  separately,  in
multivariate analysis we will be looking at them simultaneously and
hence we will be able to study the interrelationships between the
variables.

Application areas:
 Social science (gender, age, nationality of an individual).

 Climatology (min temp, max temp, rainfall, humidity) on a day.

 Econometrics (input costs, production, profit) of a firm.



 Medical (BP, pulse rate) of persons.

 Administrative  (admissions,  operations,  discharges,  deaths)  per
day in hospital.

Multivariate analysis is classified as 
 Classification of individuals.

 Dimension reduction.

 Cause -effect relationship

Cluster analysis:

Clusters are homogenous with itself but different from another cluster.  It
tells us how the individuals are similar and dissimilar among themselves.

 How the clusters are different is answered by discriminant analysis.

Discriminant analysis: studies the properties of a given cluster and
thereby it identifies the difference between the different clusters.

 Can a newly arrived individual be assigned to one of the cluster?

        Classification comes into part. This is the problem of assigning
new individual  to  the cluster  and is  referred to as a  classification
problem.

Discriminant analysis and classification graph 



If a new data arrives we should plot the new X and Y data and check in
which cluster it lies.

Dimensionality reduction 
 PCA (K-L method)

 Factor analysis 

PCA searches for K ‘n’ dimensional orthogonal vectors that can best be
used  to  represent  the  data  where  k<=n.  It  combines  the  essence  of
attributes by creating an alternating smaller set of variables. The entire data
can  then  be  projected  into  the  smaller  set.  PCA  often  reveals  the
relationship that were not previously supported.
The basic procedure is as follows:

 The input data are normalized, so that each attribute falls within the
same range. This step helps us to ensure that the entire attribute with
large domain will not dominate attributes with smaller domain. 

 PCA  computes  k  orthogonal  vector  that  provide  a  basis  for
normalized input data. These are unit vectors that each point in the
direction perpendicular to the others. These vectors are referred to as
the principal components. The input data are linear combination of
the principal components.

 The  principal  components  are  sorted  in  the  order  of  decreasing
“significance” or strength. The principal components essentially serve
as the new set of axes for the data, providing important information
about variance.



Figure shows the first two principal components Y1,Y2 for the given set of
data  originally  mapped  to  the  axes  X1  and  X2.  This  information  helps
identify groups or patterns within the data.

 Because  the  components  are  sorted  according  to  the  decreasing
order  of  significance,  the  size  of  the  data  can  be  reduced  by
eliminating the weaker  components (i.e.,)  those with low variance.
Using the strongest principal components, it  should be possible to
reconstruct a good approximation of the original data.

 It can be applied to ordered and unordered attributes, and can handle
sparse and skewed data.

Rule Induction

A decision tree is a structure that includes a root node, branches, and leaf 

nodes. Each internal node denotes a test on an attribute, each branch 

denotes the outcome of a test, and each leaf node holds a class label. The 

topmost node in the tree is the root node. 

The following decision tree is for the concept buys_computer that indicates 

whether a customer at a company is likely to buy a computer or not. Each 

internal node represents a test on an attribute. Each leaf node represents a

class. 

The benefits of having a decision tree are as follows:

 It does not require any domain knowledge. 

 It is easy to comprehend. 



 The learning and classification steps of a decision tree are 
simple and fast. 

Then, for each attribute A, 

where Dj / D is the weight of the jth partition. 

Info A (D) is the expected information required to classify a tuple from D 

based on the partitioning by A. The smaller the expected information, the 

greater the purity of the partitions. 



Tree Pruning 
Tree pruning is performed in order to remove anomalies in the training data
due to noise or outliers. The pruned trees are smaller and less complex. 

Tree Pruning Approaches 
Here is the Tree Pruning Approaches listed below –
Pre-pruning − The tree is pruned by halting its construction early. 
Post-pruning - This approach removes a sub-tree from a fully grown tree.

Cost Complexity
The cost complexity is measured by the following two parameters –
 Number of leaves in the tree, and 
 Error rate of the tree.
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