
SELECT

SQL SELECT statement is used to fetch the data from a database table which returns data in the form

of result table. These result tables are called result-sets.

Syntax:

The basic syntax of SELECT statement is as follows:

SELECT column1, column2, columnN FROM table_name;

Here, column1, column2...are the fields of a table whose values you want to fetch. If you want to fetch

all the fields available in the field, then you can use the following syntax:

SELECT * FROM table_name;

Example:

Consider the CUSTOMERS table having the following records:

+----+----------+-----+-----------+----------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+-----------+----------+

| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 6 | Komal | 22 | MP | 4500.00 |

| 7 | Muffy | 24 | Indore | 10000.00 |

+----+----------+-----+-----------+----------+

Following is an example, which would fetch ID, Name and Salary fields of the customers available in

CUSTOMERS table:

SQL> SELECT ID, NAME, SALARY FROM CUSTOMERS;

This would produce the following result:

+----+----------+----------+

| ID | NAME | SALARY |

+----+----------+----------+

| 1 | Ramesh | 2000.00 |

| 2 | Khilan | 1500.00 |

| 3 | kaushik | 2000.00 |

| 4 | Chaitali | 6500.00 |

| 5 | Hardik | 8500.00 |

| 6 | Komal | 4500.00 |

| 7 | Muffy | 10000.00 |

+----+----------+----------+

If you want to fetch all the fields of CUSTOMERS table, then use the following query:

SQL> SELECT * FROM CUSTOMERS;

This would produce the following result:

+----+----------+-----+-----------+----------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+-----------+----------+

| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 6 | Komal | 22 | MP | 4500.00 |

| 7 | Muffy | 24 | Indore | 10000.00 |

+----+----------+-----+-----------+----------+

The SQL WHERE clause is used to specify a condition while fetching the data from single table or

joining with multiple tables.

If the given condition is satisfied then only it returns specific value from the table. You would use

WHERE clause to filter the records and fetching only necessary records.

The WHERE clause is not only used in SELECT statement, but it is also used in UPDATE, DELETE

statement, etc., which we would examine in subsequent chapters.

Syntax:

The basic syntax of SELECT statement with WHERE clause is as follows:

SELECT column1, column2, columnN

FROM table_name

WHERE [condition]

You can specify a condition using comparison or logical operators like >, <, =, LIKE, NOT, etc. Below

examples would make this concept clear.

http://www.tutorialspoint.com/sql/sql-operators.htm

Example:

Consider the CUSTOMERS table having the following records:

+----+----------+-----+-----------+----------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+-----------+----------+

| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 6 | Komal | 22 | MP | 4500.00 |

| 7 | Muffy | 24 | Indore | 10000.00 |

+----+----------+-----+-----------+----------+

Following is an example which would fetch ID, Name and Salary fields from the CUSTOMERS table

where salary is greater than 2000:

SQL> SELECT ID, NAME, SALARY

FROM CUSTOMERS

WHERE SALARY > 2000;

This would produce the following result:

+----+----------+----------+

| ID | NAME | SALARY |

+----+----------+----------+

| 4 | Chaitali | 6500.00 |

| 5 | Hardik | 8500.00 |

| 6 | Komal | 4500.00 |

| 7 | Muffy | 10000.00 |

+----+----------+----------+

Following is an example, which would fetch ID, Name and Salary fields from the CUSTOMERS table for

a customer with name Hardik. Here, it is important to note that all the strings should be given inside

single quotes ('') where as numeric values should be given without any quote as in above example:

SQL> SELECT ID, NAME, SALARY

FROM CUSTOMERS

WHERE NAME = 'Hardik';

This would produce the following result:

+----+----------+----------+

| ID | NAME | SALARY |

+----+----------+----------+

| 5 | Hardik | 8500.00 |

+----+----------+----------+

The SQL AND and OR operators are used to combine multiple conditions to narrow data in an SQL

statement. These two operators are called conjunctive operators.

These operators provide a means to make multiple comparisons with different operators in the same

SQL statement.

The AND Operator:

The AND operator allows the existence of multiple conditions in an SQL statement's WHERE clause.

Syntax:

The basic syntax of AND operator with WHERE clause is as follows:

SELECT column1, column2, columnN

FROM table_name

WHERE [condition1] AND [condition2]...AND [conditionN];

You can combine N number of conditions using AND operator. For an action to be taken by the SQL

statement, whether it be a transaction or query, all conditions separated by the AND must be TRUE.

Example:

Consider the CUSTOMERS table having the following records:

+----+----------+-----+-----------+----------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+-----------+----------+

| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 6 | Komal | 22 | MP | 4500.00 |

| 7 | Muffy | 24 | Indore | 10000.00 |

+----+----------+-----+-----------+----------+

Following is an example, which would fetch ID, Name and Salary fields from the CUSTOMERS table

where salary is greater than 2000 AND age is less tan 25 years:

SQL> SELECT ID, NAME, SALARY

FROM CUSTOMERS

WHERE SALARY > 2000 AND age < 25;

This would produce the following result:

+----+-------+----------+

| ID | NAME | SALARY |

+----+-------+----------+

| 6 | Komal | 4500.00 |

| 7 | Muffy | 10000.00 |

+----+-------+----------+

The OR Operator:

The OR operator is used to combine multiple conditions in an SQL statement's WHERE clause.

Syntax:

The basic syntax of OR operator with WHERE clause is as follows:

SELECT column1, column2, columnN

FROM table_name

WHERE [condition1] OR [condition2]...OR [conditionN]

You can combine N number of conditions using OR operator. For an action to be taken by the SQL

statement, whether it be a transaction or query, only any ONE of the conditions separated by the OR

must be TRUE.

Example:

Consider the CUSTOMERS table having the following records:

+----+----------+-----+-----------+----------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+-----------+----------+

| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 6 | Komal | 22 | MP | 4500.00 |

| 7 | Muffy | 24 | Indore | 10000.00 |

+----+----------+-----+-----------+----------+

Following is an example, which would fetch ID, Name and Salary fields from the CUSTOMERS table

where salary is greater than 2000 OR age is less tan 25 years:

SQL> SELECT ID, NAME, SALARY

FROM CUSTOMERS

WHERE SALARY > 2000 OR age < 25;

This would produce the following result:

+----+----------+----------+

| ID | NAME | SALARY |

+----+----------+----------+

| 3 | kaushik | 2000.00 |

| 4 | Chaitali | 6500.00 |

| 5 | Hardik | 8500.00 |

| 6 | Komal | 4500.00 |

| 7 | Muffy | 10000.00 |

+----+----------+----------+

JOINS

• JOINs can be used to combine tables

• There are many types of JOIN

• CROSS JOIN

• INNER JOIN

• NATURAL JOIN

• OUTER JOIN

• OUTER JOINs are linked with NULLs - more later

A CROSS JOIN B

• returns all pairs of rows from A and B

A NATURAL JOIN B

• returns pairs of rows with common values for identically named columns and without

duplicating columns

A INNER JOIN B

• returns pairs of rows satisfying a condition

Student

ID Name

123 John

124 Mary

125 Mark

126 Jane

Enrolment

ID Code

123 DBS

124 PRG

124 DBS

126 PRG

SELECT * FROM Student CROSS JOIN Enrolment

ID Name ID Code

123 John 123 DBS

124 Mary 123 DBS

125 Mark 123 DBS

126 Jane 123 DBS

123 John 124 PRG

124 Mary 124 PRG

125 Mark 124 PRG

126 Jane 124 PRG

123 John 124 DBS

124 Mary 124 DBS

NATURAL JOIN

Student

ID Name

123 John

124 Mary

125 Mark

126 Jane

Enrolment

ID Code

123 DBS

124 PRG

124 DBS

126 PRG

SELECT * FROM Student NATURAL JOIN Enrolment

ID Name Code

123 John DBS

124 Mary PRG

124 Mary DBS

126 Jane PRG

CROSS and NATURAL JOIN

SELECT * FROM A CROSS JOIN B

• is the same as

SELECT * FROM A, B

SELECT * FROM A NATURAL JOIN B

• is the same as

SELECT A.col1,… A.coln, [and all other columns apart from B.col1,…B.coln] FROM A, B

WHERE A.col1 = B.col1 AND A.col2 = B.col2...AND A.coln = B.col.n

(this assumes that col1… coln in A and B have common names)

INNER JOIN

• INNER JOINs specify a condition which the pairs of rows satisfy

SELECT * FROM A INNER JOIN B ON <condition>

• Can also use

SELECT * FROM A INNER JOIN B USING (col1, col2,…)

• Chooses rows where the given columns are equal

Student

ID Name

123 John

124 Mary

125 Mark

126 Jane

Enrolment

ID Code

123 DBS

124 PRG

124 DBS

126 PRG

SELECT * FROM Student INNER JOIN Enrolment USING (ID)

ID Name ID Code

123 John 123 DBS

124 Mary 124 PRG

124 Mary 124 DBS

126 Jane 126 PRG

Buyer

Name Budget

Smith 100,000

Jones 150,000

Green 80,000

Property

Address Price

15 High St 85,000

12 Queen St 125,000

87 Oak Row 175,000

SELECT * FROM Buyer INNER JOIN Property ON Price <= Budget

Name Budget Address Price

Smith 100,000 15 High St 85,000

Jones 150,000 15 High St 85,000

Jones 150,000 12 Queen St 125,000

SELECT * FROM A INNER JOIN B ON <condition>

• is the same as

SELECT * FROM A, B WHERE <condition>

SELECT * FROM A INNER JOIN B USING(col1, col2,...)

• is the same as

SELECT * FROM A, B WHERE A.col1 = B.col1 AND A.col2 = B.col2 AND ...

 JOINs vs WHERE Clauses

• JOINs (so far) are not needed

• You can have the same effect by selecting from multiple tables with an appropriate

WHERE clause

• So should you use JOINs or not?

• Yes, because

• They often lead to concise queries

• NATURAL JOINs are very common

• No, because

• Support for JOINs varies a fair bit among SQL dialects

This Lecture in Exams

Track

cID Num Title Time aID

1 Violent 239 1

2 Every Girl 410 1

3 Breather 217 1

4 Part of Me 279 1

1 Star 362 1

2 Teaboy 417 2

 CD

cID Title Price

1 Mix 9.99

2 Compilation 12.99

 Artist

aID Name

1 Stellar

2 Cloudboy

OPERATIONS IN SQL PLUS

What is an Operator in SQL?

An operator is a reserved word or a character used primarily in an SQL statement's WHERE clause to

perform operation(s), such as comparisons and arithmetic operations.

Operators are used to specify conditions in an SQL statement and to serve as conjunctions for multiple

conditions in a statement.

 Arithmetic operators

 Comparison operators

 Logical operators

 Operators used to negate conditions

SQL Arithmetic Operators:

Assume variable a holds 10 and variable b holds 20, then:

Show Examples

Operator Description Example

+ Addition - Adds values on either side of the operator a + b will
give 30

- Subtraction - Subtracts right hand operand from left hand
operand

a - b will
give -10

* Multiplication - Multiplies values on either side of the
operator

a * b will
give 200

/ Division - Divides left hand operand by right hand operand b / a will
give 2

% Modulus - Divides left hand operand by right hand
operand and returns remainder

b % a
will give
0

SQL Comparison Operators:

Assume variable a holds 10 and variable b holds 20, then:

Show Examples

Operator Description Example

= Checks if the values of two operands are equal or not, if yes
then condition becomes true.

(a = b) is
not true.

!= Checks if the values of two operands are equal or not, if
values are not equal then condition becomes true.

(a != b)
is true.

<> Checks if the values of two operands are equal or not, if
values are not equal then condition becomes true.

(a <> b)
is true.

> Checks if the value of left operand is greater than the value
of right operand, if yes then condition becomes true.

(a > b) is
not true.

http://www.tutorialspoint.com/sql/sql-arithmetic-operators.htm
http://www.tutorialspoint.com/sql/sql-comparison-operators.htm

< Checks if the value of left operand is less than the value of
right operand, if yes then condition becomes true.

(a < b) is
true.

>= Checks if the value of left operand is greater than or equal
to the value of right operand, if yes then condition becomes
true.

(a >= b)
is not
true.

<= Checks if the value of left operand is less than or equal to
the value of right operand, if yes then condition becomes
true.

(a <= b)
is true.

!< Checks if the value of left operand is not less than the value
of right operand, if yes then condition becomes true.

(a !< b)
is false.

!> Checks if the value of left operand is not greater than the
value of right operand, if yes then condition becomes true.

(a !> b)
is true.

SQL Logical Operators:

Here is a list of all the logical operators available in SQL.

Show Examples

Operator Description

ALL The ALL operator is used to compare a value to all values in another
value set.

AND The AND operator allows the existence of multiple conditions in an
SQL statement's WHERE clause.

ANY The ANY operator is used to compare a value to any applicable value in
the list according to the condition.

BETWEEN The BETWEEN operator is used to search for values that are within a
set of values, given the minimum value and the maximum value.

EXISTS The EXISTS operator is used to search for the presence of a row in a
specified table that meets certain criteria.

IN The IN operator is used to compare a value to a list of literal values that
have been specified.

http://www.tutorialspoint.com/sql/sql-logical-operators.htm

LIKE The LIKE operator is used to compare a value to similar values using
wildcard operators.

NOT The NOT operator reverses the meaning of the logical operator with
which it is used. Eg: NOT EXISTS, NOT BETWEEN, NOT IN, etc. This is a
negate operator.

OR The OR operator is used to combine multiple conditions in an SQL
statement's WHERE clause.

IS NULL The NULL operator is used to compare a value with a NULL value.

UNIQUE The UNIQUE operator searches every row of a specified table for
uniqueness (no duplicates).

SQL FUNCTIONS

SQL has many built-in functions for performing calculations on data.

SQL Aggregate Functions

SQL aggregate functions return a single value, calculated from values in a column.

Useful aggregate functions:

 AVG() - Returns the average value

 COUNT() - Returns the number of rows

 FIRST() - Returns the first value

 LAST() - Returns the last value

 MAX() - Returns the largest value

 MIN() - Returns the smallest value

 SUM() - Returns the sum

SQL Scalar functions

SQL scalar functions return a single value, based on the input value.

Useful scalar functions:

 UCASE() - Converts a field to upper case

 LCASE() - Converts a field to lower case

 MID() - Extract characters from a text field

 LEN() - Returns the length of a text field

 ROUND() - Rounds a numeric field to the number of decimals specified

 NOW() - Returns the current system date and time

 FORMAT() - Formats how a field is to be displayed

SQL numeric functions are used primarily for numeric manipulation and/or mathematical calculations.

The following table details the numeric functions:

Name Description

ABS() Returns the absolute value of numeric expression.

ACOS() Returns the arccosine of numeric expression. Returns NULL if the

value is not in the range -1 to 1.

ASIN() Returns the arcsine of numeric expression. Returns NULL if value is

not in the range -1 to 1

ATAN() Returns the arctangent of numeric expression.

ATAN2() Returns the arctangent of the two variables passed to it.

BIT_AND() Returns the bitwise AND all the bits in expression.

BIT_COUNT() Returns the string representation of the binary value passed to it.

BIT_OR() Returns the bitwise OR of all the bits in the passed expression.

CEIL() Returns the smallest integer value that is not less than passed

numeric expression

CEILING() Returns the smallest integer value that is not less than passed

numeric expression

CONV() Convert numeric expression from one base to another.

COS() Returns the cosine of passed numeric expression. The numeric

expression should be expressed in radians.

COT() Returns the cotangent of passed numeric expression.

DEGREES() Returns numeric expression converted from radians to degrees.

EXP() Returns the base of the natural logarithm (e) raised to the power of

passed numeric expression.

FLOOR() Returns the largest integer value that is not greater than passed

numeric expression.

FORMAT() Returns a numeric expression rounded to a number of decimal

places.

GREATEST() Returns the largest value of the input expressions.

http://www.tutorialspoint.com/sql/sql-numeric-functions.htm#function_abs
http://www.tutorialspoint.com/sql/sql-numeric-functions.htm#function_acos
http://www.tutorialspoint.com/sql/sql-numeric-functions.htm#function_asin
http://www.tutorialspoint.com/sql/sql-numeric-functions.htm#function_atan
http://www.tutorialspoint.com/sql/sql-numeric-functions.htm#function_atan2
http://www.tutorialspoint.com/sql/sql-numeric-functions.htm#function_bit_and
http://www.tutorialspoint.com/sql/sql-numeric-functions.htm#function_bit_count
http://www.tutorialspoint.com/sql/sql-numeric-functions.htm#function_bit_or
http://www.tutorialspoint.com/sql/sql-numeric-functions.htm#function_ceil
http://www.tutorialspoint.com/sql/sql-numeric-functions.htm#function_ceiling
http://www.tutorialspoint.com/sql/sql-numeric-functions.htm#function_conv
http://www.tutorialspoint.com/sql/sql-numeric-functions.htm#function_cos
http://www.tutorialspoint.com/sql/sql-numeric-functions.htm#function_cot
http://www.tutorialspoint.com/sql/sql-numeric-functions.htm#function_degrees
http://www.tutorialspoint.com/sql/sql-numeric-functions.htm#function_exp
http://www.tutorialspoint.com/sql/sql-numeric-functions.htm#function_floor
http://www.tutorialspoint.com/sql/sql-numeric-functions.htm#function_format
http://www.tutorialspoint.com/sql/sql-numeric-functions.htm#function_greatest

INTERVAL() Takes multiple expressions exp1, exp2 and exp3 so on.. and returns

0 if exp1 is less than exp2, returns 1 if exp1 is less than exp3 and so

on.

LEAST() Returns the minimum-valued input when given two or more.

LOG() Returns the natural logarithm of the passed numeric expression.

LOG10() Returns the base-10 logarithm of the passed numeric expression.

MOD() Returns the remainder of one expression by diving by another

expression.

OCT() Returns the string representation of the octal value of the passed

numeric expression. Returns NULL if passed value is NULL.

PI() Returns the value of pi

POW() Returns the value of one expression raised to the power of another

expression

POWER() Returns the value of one expression raised to the power of another

expression

RADIANS() Returns the value of passed expression converted from degrees to

radians.

ROUND() Returns numeric expression rounded to an integer. Can be used to

round an expression to a number of decimal points

SIN() Returns the sine of numeric expression given in radians.

SQRT() Returns the non-negative square root of numeric expression.

STD() Returns the standard deviation of the numeric expression.

STDDEV() Returns the standard deviation of the numeric expression.

TAN() Returns the tangent of numeric expression expressed in radians.

TRUNCATE() Returns numeric exp1 truncated to exp2 decimal places. If exp2 is

0, then the result will have no decimal point.

SQL string functions are used primarily for string manipulation. The following table details the

important string functions:

Name Description

ASCII() Returns numeric value of left-most character

http://www.tutorialspoint.com/sql/sql-numeric-functions.htm#function_interval
http://www.tutorialspoint.com/sql/sql-numeric-functions.htm#function_least
http://www.tutorialspoint.com/sql/sql-numeric-functions.htm#function_least
http://www.tutorialspoint.com/sql/sql-numeric-functions.htm#function_log10
http://www.tutorialspoint.com/sql/sql-numeric-functions.htm#function_mod
http://www.tutorialspoint.com/sql/sql-numeric-functions.htm#function_oct
http://www.tutorialspoint.com/sql/sql-numeric-functions.htm#function_pi
http://www.tutorialspoint.com/sql/sql-numeric-functions.htm#function_pow
http://www.tutorialspoint.com/sql/sql-numeric-functions.htm#function_power
http://www.tutorialspoint.com/sql/sql-numeric-functions.htm#function_radians
http://www.tutorialspoint.com/sql/sql-numeric-functions.htm#function_round
http://www.tutorialspoint.com/sql/sql-numeric-functions.htm#function_round
http://www.tutorialspoint.com/sql/sql-numeric-functions.htm#function_sqrt
http://www.tutorialspoint.com/sql/sql-numeric-functions.htm#function_std
http://www.tutorialspoint.com/sql/sql-numeric-functions.htm#function_stddev
http://www.tutorialspoint.com/sql/sql-numeric-functions.htm#function_tan
http://www.tutorialspoint.com/sql/sql-numeric-functions.htm#function_truncate
http://www.tutorialspoint.com/sql/sql-string-functions.htm#function_ascii

BIN() Returns a string representation of the argument

BIT_LENGTH() Returns length of argument in bits

CHAR_LENGTH() Returns number of characters in argument

CHAR() Returns the character for each integer passed

CHARACTER_LENGTH() A synonym for CHAR_LENGTH()

CONCAT_WS() Returns concatenate with separator

CONCAT() Returns concatenated string

CONV() Converts numbers between different number bases

ELT() Returns string at index number

EXPORT_SET() Returns a string such that for every bit set in the value

bits, you get an on string and for every unset bit, you get

an off string

FIELD() Returns the index (position) of the first argument in the

subsequent arguments

FIND_IN_SET() Returns the index position of the first argument within

the second argument

FORMAT() Returns a number formatted to specified number of

decimal places

HEX() Returns a string representation of a hex value

INSERT() Inserts a substring at the specified position up to the

specified number of characters

INSTR() Returns the index of the first occurrence of substring

LCASE() Synonym for LOWER()

LEFT() Returns the leftmost number of characters as specified

LENGTH() Returns the length of a string in bytes

LOAD_FILE() Loads the named file

LOCATE() Returns the position of the first occurrence of substring

LOWER() Returns the argument in lowercase

LPAD() Returns the string argument, left-padded with the

specified string

http://www.tutorialspoint.com/sql/sql-string-functions.htm#function_bin
http://www.tutorialspoint.com/sql/sql-string-functions.htm#function_bit-length
http://www.tutorialspoint.com/sql/sql-string-functions.htm#function_char-length
http://www.tutorialspoint.com/sql/sql-string-functions.htm#function_char
http://www.tutorialspoint.com/sql/sql-string-functions.htm#function_character-length
http://www.tutorialspoint.com/sql/sql-string-functions.htm#function_concat-ws
http://www.tutorialspoint.com/sql/sql-string-functions.htm#function_concat
http://www.tutorialspoint.com/sql/sql-string-functions.htm#function_conv
http://www.tutorialspoint.com/sql/sql-string-functions.htm#function_elt
http://www.tutorialspoint.com/sql/sql-string-functions.htm#function_export-set
http://www.tutorialspoint.com/sql/sql-string-functions.htm#function_field
http://www.tutorialspoint.com/sql/sql-string-functions.htm#function_find-in-set
http://www.tutorialspoint.com/sql/sql-string-functions.htm#function_format
http://www.tutorialspoint.com/sql/sql-string-functions.htm#function_hex
http://www.tutorialspoint.com/sql/sql-string-functions.htm#function_insert
http://www.tutorialspoint.com/sql/sql-string-functions.htm#function_instr
http://www.tutorialspoint.com/sql/sql-string-functions.htm#function_lcase
http://www.tutorialspoint.com/sql/sql-string-functions.htm#function_left
http://www.tutorialspoint.com/sql/sql-string-functions.htm#function_length
http://www.tutorialspoint.com/sql/sql-string-functions.htm#function_load-file
http://www.tutorialspoint.com/sql/sql-string-functions.htm#function_locate
http://www.tutorialspoint.com/sql/sql-string-functions.htm#function_lower
http://www.tutorialspoint.com/sql/sql-string-functions.htm#function_lpad

LTRIM() Removes leading spaces

MAKE_SET() Returns a set of comma-separated strings that have the

corresponding bit in bits set

MID() Returns a substring starting from the specified position

OCT() Returns a string representation of the octal argument

OCTET_LENGTH() A synonym for LENGTH()

ORD() If the leftmost character of the argument is a multi-byte

character, returns the code for that character

POSITION() A synonym for LOCATE()

QUOTE() Escapes the argument for use in an SQL statement

REGEXP Pattern matching using regular expressions

REPEAT() Repeats a string the specified number of times

REPLACE() Replaces occurrences of a specified string

REVERSE() Reverses the characters in a string

RIGHT() Returns the specified rightmost number of characters

RPAD() Appends string the specified number of times

RTRIM() Removes trailing spaces

SOUNDEX() Returns a soundex string

SOUNDS LIKE Compares sounds

SPACE() Returns a string of the specified number of spaces

STRCMP() Compares two strings

SUBSTRING_INDEX() Returns a substring from a string before the specified

number of occurrences of the delimiter

SUBSTRING(), SUBSTR() Returns the substring as specified

TRIM() Removes leading and trailing spaces

UCASE() Synonym for UPPER()

UNHEX() Converts each pair of hexadecimal digits to a character

UPPER() Converts to uppercase

http://www.tutorialspoint.com/sql/sql-string-functions.htm#function_ltrim
http://www.tutorialspoint.com/sql/sql-string-functions.htm#function_make-set
http://www.tutorialspoint.com/sql/sql-string-functions.htm#function_mid
http://www.tutorialspoint.com/sql/sql-string-functions.htm#function_oct
http://www.tutorialspoint.com/sql/sql-string-functions.htm#function_octet-length
http://www.tutorialspoint.com/sql/sql-string-functions.htm#function_ord
http://www.tutorialspoint.com/sql/sql-string-functions.htm#function_position
http://www.tutorialspoint.com/sql/sql-string-functions.htm#function_quote
http://www.tutorialspoint.com/sql/sql-string-functions.htm#operator_regexp
http://www.tutorialspoint.com/sql/sql-string-functions.htm#function_repeat
http://www.tutorialspoint.com/sql/sql-string-functions.htm#function_replace
http://www.tutorialspoint.com/sql/sql-string-functions.htm#function_reverse
http://www.tutorialspoint.com/sql/sql-string-functions.htm#function_right
http://www.tutorialspoint.com/sql/sql-string-functions.htm#function_rpad
http://www.tutorialspoint.com/sql/sql-string-functions.htm#function_rtrim
http://www.tutorialspoint.com/sql/sql-string-functions.htm#function_soundex
http://www.tutorialspoint.com/sql/sql-string-functions.htm#operator_sounds-like
http://www.tutorialspoint.com/sql/sql-string-functions.htm#function_space
http://www.tutorialspoint.com/sql/sql-string-functions.htm#function_strcmp
http://www.tutorialspoint.com/sql/sql-string-functions.htm#function_substring-index
http://www.tutorialspoint.com/sql/sql-string-functions.htm#function_substring
http://www.tutorialspoint.com/sql/sql-string-functions.htm#function_trim
http://www.tutorialspoint.com/sql/sql-string-functions.htm#function_ucase
http://www.tutorialspoint.com/sql/sql-string-functions.htm#function_unhex
http://www.tutorialspoint.com/sql/sql-string-functions.htm#function_upper

SET OPERATORS

Set operators are used to join the results of two (or more) SELECT statements.The SET operators

available in Oracle 11g are UNION,UNION ALL,INTERSECT,and MINUS.

The UNION set operator returns the combined results of the two SELECT statements.Essentially,it

removes duplicates from the results i.e. only one row will be listed for each duplicated result.To

counter this behavior,use the UNION ALL set operator which retains the duplicates in the final

result.INTERSECT lists only records that are common to both the SELECT queries; the MINUS set

operator removes the second query's results from the output if they are also found in the first query's

results. INTERSECT and MINUS set operations produce unduplicated results.

All the SET operators share the same degree of precedence among them.Instead,during query

execution, Oracle starts evaluation from left to right or from top to bottom.If explicitly parentheses are

used, then the order may differ as parentheses would be given priority over dangling operators.

Points to remember -

 Same number of columns must be selected by all participating SELECT statements.Column

names used in the display are taken from the first query.

 Data types of the column list must be compatible/implicitly convertible by oracle. Oracle will

not perform implicit type conversion if corresponding columns in the component queries

belong to different data type groups.For example, if a column in the first component query is of

data type DATE, and the corresponding column in the second component query is of data type

CHAR,Oracle will not perform implicit conversion, but raise ORA-01790 error.

 Positional ordering must be used to sort the result set. Individual result set ordering is not

allowed with Set operators. ORDER BY can appear once at the end of the query. For example,

 UNION and INTERSECT operators are commutative, i.e. the order of queries is not important; it

doesn't change the final result.

 Performance wise, UNION ALL shows better performance as compared to UNION because

resources are not wasted in filtering duplicates and sorting the result set.

 Set operators can be the part of sub queries.

 Set operators can't be used in SELECT statements containing TABLE collection expressions.

 The LONG, BLOB, CLOB, BFILE, VARRAY,or nested table are not permitted for use in Set

operators.For update clause is not allowed with the set operators.

UNION

When multiple SELECT queries are joined using UNION operator, Oracle displays the combined result

from all the compounded SELECT queries,after removing all duplicates and in sorted order (ascending

by default), without ignoring the NULL values.

Consider the below five queries joined using UNION operator.The final combined result set contains

value from all the SQLs. Note the duplication removal and sorting of data.

SELECT 1 NUM FROM DUAL

UNION

SELECT 5 FROM DUAL

UNION

SELECT 3 FROM DUAL

UNION

SELECT 6 FROM DUAL

UNION

SELECT 3 FROM DUAL;

NUM

1

3

5

6

To be noted, the columns selected in the SELECT queries must be of compatible data type. Oracle

throws an error message when the rule is violated.

SELECT TO_DATE('12-OCT-03') FROM DUAL

UNION

SELECT '13-OCT-03' FROM DUAL;

SELECT TO_DATE('12-OCT-03') FROM DUAL

 *

ERROR at line 1:

ORA-01790: expression must have same datatype as corresponding expression

UNION ALL

UNION and UNION ALL are similar in their functioning with a slight difference. But UNION ALL gives

the result set without removing duplication and sorting the data. For example,in above query UNION

is replaced by UNION ALL to see the effect.

Consider the query demonstrated in UNION section. Note the difference in the output which is

generated without sorting and deduplication.

SELECT 1 NUM FROM DUAL

UNION ALL

SELECT 5 FROM DUAL

UNION ALL

SELECT 3 FROM DUAL

UNION ALL

SELECT 6 FROM DUAL

UNION ALL

SELECT 3 FROM DUAL;

NUM

1

5

3

6

3

INTERSECT

Using INTERSECT operator, Oracle displays the common rows from both the SELECT statements, with

no duplicates and data arranged in sorted order (ascending by default).

For example,the below SELECT query retrieves the salary which are common in department 10 and

20.As per ISO SQL Standards, INTERSECT is above others in precedence of evaluation of set operators

but this is not still incorporated by Oracle.

SELECT SALARY

FROM employees

WHERE DEPARTMENT_ID = 10

INTRESECT

SELECT SALARY

FROM employees

WHERE DEPARTMENT_ID = 20

SALARY

1500

1200

2000

MINUS

Minus operator displays the rows which are present in the first query but absent in the second query,

with no duplicates and data arranged in ascending order by default.

SELECT JOB_ID

FROM employees

WHERE DEPARTMENT_ID = 10

MINUS

SELECT JOB_ID

FROM employees

WHERE DEPARTMENT_ID = 20;

JOB_ID

HR

FIN

ADMIN

Matching the SELECT statement

There may be the scenarios where the compound SELECT statements may have different count and

data type of selected columns. Therefore, to match the column list explicitly, NULL columns are

inserted at the missing positions so as match the count and data type of selected columns in each

SELECT statement. For number columns, zero can also be substituted to match the type of the columns

selected in the query.

In the below query, the data type of employee name (varchar2) and location id (number) do not match.

Therefore, execution of the below query would raise error due to compatibility issue.

SELECT DEPARTMENT_ID "Dept", first_name "Employee"

FROM employees

UNION

SELECT DEPARTMENT_ID, LOCATION_ID

FROM departments;

ERROR at line 1:

ORA-01790: expression must have same datatype as corresponding expression

Explicitly, columns can be matched by substituting NULL for location id and Employee name.

SELECT DEPARTMENT_ID "Dept", first_name "Employee", NULL "Location"

FROM employees

UNION

SELECT DEPARTMENT_ID, NULL "Employee", LOCATION_ID

FROM departments;

Using ORDER BY clause in SET operations

The ORDER BY clause can appear only once at the end of the query containing compound SELECT

statements.It implies that individual SELECT statements cannot have ORDER BY clause. Additionally,

the sorting can be based on the columns which appear in the first SELECT query only. For this reason,

it is recommended to sort the compound query using column positions.

The compund query below unifies the results from two departments and sorts by the SALARY column.

SELECT employee_id, first_name, salary

FROM employees

WHERE department_id=10

UNION

SELECT employee_id, first_name, salary

FROM employees

WHERE department_id=20

ORDER BY 3;

SUBQU SUBQUERIES

• A subquery is a query within a query.
• Subqueries enable you to write queries that select data rows for criteria that are actually

developed while the query is executing at run time.

Example:

SELECT emp_last_name "Last Name", emp_first_name "First Name", emp_salary "Salary" FROM
employee WHERE emp_salary = (SELECT MIN(emp_salary) FROM employee);

Last Name First Name Salary

--------------- --------------- --------

Markis Marcia $25,000

Amin Hyder $25,000

Prescott Sherri $25,000

SUBQUERY TYPES

• There are three basic types of subqueries. We will study each of these in the remainder of this
chapter.

1. Subqueries that operate on lists by use of the IN operator or with a comparison operator
modified by the ANY or ALL optional keywords. These subqueries can return a group of values,
but the values must be from a single column of a table.

2. Subqueries that use an unmodified comparison operator (=, <, >, <>) – these subqueries must
return only a single, scalar value.

3. Subqueries that use the EXISTS operator to test the existence of data rows satisfying specified
criteria.

SUBQUERY – General Rules

A subquery SELECT statement is very similar to the SELECT statement used to begin a regular or
outer query. The complete syntax of a subquery is shown below.

(SELECT [DISTINCT] subquery_select_argument FROM {table_name | view_name} {table_name |
view_name} ... [WHERE search_conditions] [GROUP BY aggregate_expression [, aggregate_expression]
...] [HAVING search_conditions])

Rules Cont’d

• The SELECT clause of a subquery must contain only one expression, only one aggregate
function, or only one column name.

• The value(s) returned by a subquery must be join-compatible with the WHERE clause of the
outer query.

Example

SELECT emp_last_name "Last Name", emp_first_name "First Name" FROM employee WHERE emp_ssn
IN (SELECT dep_emp_ssn FROM dependent);

Last Name First Name

------------- ---------------

Bock Douglas

Zhu Waiman

Joyner Suzanne

Rules Cont’d

• In addition to concerns about the domain of values returned from a subquery, the data type of
the returned column value(s) must be join-compatible.

• Join-compatible data types are data types that the Oracle Server will convert automatically
when matching data in criteria conditions.

• The Oracle Server will automatically convert among any of the following ANSI numeric data
types when making comparisons of numeric values because they all map into the Oracle
NUMBER data type.

• int (integer)
• smallint (small integer)
• decimal
• float

• Oracle does not make comparisons based on column names.
• Columns from two tables that are being compared may have different names as long as they

have a shared domain and the same data type or convertible data types.

 There are additional restrictions for subqueries.

• The DISTINCT keyword cannot be used in subqueries that include a GROUP BY clause.
• Subqueries cannot manipulate their results internally. This means that a subquery cannot

include the ORDER BY clause, the COMPUTE clause, or the INTO keyword.

SUBQUERIES AND THE IN Operator

• Subqueries that are introduced with the keyword IN take the general form:
– WHERE expression [NOT] IN (subquery)

• The only difference in the use of the IN operator with subqueries is that the list does not
consist of hard-coded values.

Example

SELECT emp_last_name "Last Name", emp_first_name "First Name" FROM employee WHERE emp_ssn
IN (SELECT dep_emp_ssn FROM dependent WHERE dep_gender = 'M');

Last Name First Name

--------------- ---------------

Bock Douglas

Zhu Waiman

Joyner Suzanne

• Conceptually, this statement is evaluated in two steps.
• First, the inner query returns the identification numbers of those employees that have male

dependents.

SELECT dep_emp_ssn FROM dependent WHERE dep_gender = 'M';

DEP_EMP_S

999444444

999555555

999111111

• Next, these social security number values are substituted into the outer query as the listing
that is the object of the IN operator. So, from a conceptual perspective, the outer query now
looks like the following.

SELECT emp_last_name "Last Name", emp_first_name "First Name" FROM employee WHERE emp_ssn
IN (999444444, 999555555, 999111111);

Last Name First Name

--------------- ---------------

Joyner Suzanne

Zhu Waiman

Bock Douglas

The NOT IN Operator

• Like the IN operator, the NOT IN operator can take the result of a subquery as the operator
object.

SELECT emp_last_name "Last Name", emp_first_name "First Name" FROM employee WHERE emp_ssn
NOT IN (SELECT dep_emp_ssn FROM dependent);

Last Name First Name

--------------- ---------------

Bordoloi Bijoy

Markis Marcia

Amin Hyder

more rows are displayed . . .

• The subquery shown above produces an intermediate result table containing the social
security numbers of employees who have dependents in the dependent table.

• Conceptually, the outer query compares each row of the employee table against the result
table. If the employee social security number is NOT found in the result table produced by the
inner query, then it is included in the final result table.

MULTIPLE LEVELS OF NESTING

• Subqueries may themselves contain subqueries.
• When the WHERE clause of a subquery has as its object another subquery, these are termed

nested subqueries.
• Oracle places no practical limit on the number of queries that can be nested in a WHERE clause.
• Consider the problem of producing a listing of employees that worked more than 10 hours on

the project named Order Entry.

Example

SELECT emp_last_name "Last Name", emp_first_name "First Name" FROM employee WHERE emp_ssn
IN (SELECT work_emp_ssn FROM assignment WHERE work_hours > 10 AND work_pro_number IN
(SELECT pro_number FROM project WHERE pro_name = 'Order Entry'));

Last Name First Name

--------------- ---------------

Bock Douglas

Prescott Sherri

Understanding SUBQUERIES

• In order to understand how this query executes, we begin our examination with the lowest
subquery.

• We will execute it independently of the outer queries.

 SELECT pro_number FROM project WHERE pro_name = 'Order Entry';

PRO_NUMBER

 1

• Now, let's substitute the project number into the IN operator list for the intermediate subquery
and execute it.

• The intermediate result table lists two employee social security numbers for employees that
worked more than 10 hours on project #1.

SELECT work_emp_ssn FROM assignment WHERE work_hours > 10 AND work_pro_number IN (1);

WORK_EMP_SSN

999111111

999888888

• Finally, we will substitute these two social security numbers into the IN operator listing for the
outer query in place of the subquery.

SELECT emp_last_name "Last Name", emp_first_name "First Name" FROM employee WHERE emp_ssn
IN (999111111, 999888888);

Last Name First Name

--------------- ---------------

Bock Douglas

Prescott Sherri

SUBQUERIES AND COMPARISON OPERATORS

• The general form of the WHERE clause with a comparison operator is similar to that used thus
far in the text.

• Note that the subquery is again enclosed by parentheses.

WHERE <expression> <comparison_operator> (subquery)

• The most important point to remember when using a subquery with a comparison operator is
that the subquery can only return a single or scalar value.

• This is also termed a scalar subquery because a single column of a single row is returned by the
subquery.

• If a subquery returns more than one value, the Oracle Server will generate the “ ORA-01427:
single-row subquery returns more than one row ” error message, and the query will fail to
execute.

• Let's examine a subquery that will not execute because it violates the "single value" rule.
• The query shown below returns multiple values for the emp_salary column.

SELECT emp_salary FROM employee WHERE emp_salary > 40000; EMP_SALARY

 55000

 43000

 43000

• If we substitute this query as a subquery in another SELECT statement, then that SELECT
statement will fail.

• This is demonstrated in the next SELECT statement. Here the SQL code will fail because the
subquery uses the greater than (>) comparison operator and the subquery returns multiple
values.

SELECT emp_ssn FROM employee WHERE emp_salary > (SELECT emp_salary FROM employee
WHERE emp_salary > 40000);

ERROR at line 4:

ORA-01427: single-row subquery returns more than one row

Aggregate Functions and Comparison Operators

• The aggregate functions (AVG, SUM, MAX, MIN, and COUNT) always return a scalar result table.
• Thus, a subquery with an aggregate function as the object of a comparison operator will always

execute provided you have formulated the query properly.

SELECT emp_last_name "Last Name", emp_first_name "First Name", emp_salary "Salary" FROM
employee WHERE emp_salary > (SELECT AVG(emp_salary) FROM employee);

Last Name First Name Salary

--------------- --------------- ----------

Bordoloi Bijoy $55,000

Joyner Suzanne $43,000

Zhu Waiman $43,000

Joshi Dinesh $38,000

Comparison Operators Modified with the ALL or ANY Keywords

• The ALL and ANY keywords can modify a comparison operator to allow an outer query
to accept multiple values from a subquery.

• The general form of the WHERE clause for this type of query is shown here.

 WHERE <expression> <comparison_operator> [ALL | ANY] (subquery)

• Subqueries that use these keywords may also include GROUP BY and HAVING clauses.

The ALL Keyword

• The ALL keyword modifies the greater than comparison operator to mean greater than
all values.

SELECT emp_last_name "Last Name", emp_first_name "First Name", emp_salary "Salary" FROM
employee WHERE emp_salary > ALL (SELECT emp_salary FROM employee WHERE emp_dpt_number
= 7);

Last Name First Name Salary

--------------- --------------- --------

Bordoloi Bijoy $55,000

• The ANY keyword is not as restrictive as the ALL keyword.
• When used with the greater than comparison operator, "> ANY" means greater than

some value.

Example

SELECT emp_last_name "Last Name", emp_first_name "First Name", emp_salary "Salary" FROM
employee WHERE emp_salary > ANY (SELECT emp_salary FROM employee WHERE emp_salary >
30000);

Last Name First Name Salary

--------------- --------------- --------

Bordoloi Bijoy $55,000

Joyner Suzanne $43,000

Zhu Waiman $43,000

An "= ANY" (Equal Any) Example

• The "= ANY" operator is exactly equivalent to the IN operator.
• For example, to find the names of employees that have male dependents, you can use either IN

or "= ANY" – both of the queries shown below will produce an identical result table.

SELECT emp_last_name "Last Name", emp_first_name "First Name" FROM employee WHERE emp_ssn
IN (SELECT dep_emp_ssn FROM dependent WHERE dep_gender = 'M');

SELECT emp_last_name "Last Name", emp_first_name "First Name" FROM employee WHERE emp_ssn
= ANY (SELECT dep_emp_ssn FROM dependent WHERE dep_gender = 'M');

OUTPUT

Last Name First Name

--------------- ---------------

Bock Douglas

Zhu Waiman

Joyner Suzanne

A "!= ANY" (Not Equal Any) Example

• The "= ANY" is identical to the IN operator.
• However, the "!= ANY" (not equal any) is not equivalent to the NOT IN operator.
• If a subquery of employee salaries produces an intermediate result table with the salaries

$38,000, $43,000, and $55,000, then the WHERE clause shown here means "NOT $38,000"
AND "NOT $43,000" AND "NOT $55,000".

 WHERE NOT IN (38000, 43000, 55000);

• However, the "!= ANY" comparison operator and keyword combination shown in this next
WHERE clause means "NOT $38,000" OR "NOT $43,000" OR "NOT $55,000".

CORRELATED SUBQUERIES

• A correlated subquery is one where the inner query depends on values provided by the outer
query.

• This means the inner query is executed repeatedly, once for each row that might be selected by
the outer query.

SELECT emp_last_name "Last Name", emp_first_name "First Name", emp_dpt_number "Dept",
emp_salary "Salary" FROM employee e1 WHERE emp_salary = (SELECT MAX(emp_salary) FROM
employee WHERE emp_dpt_number = e1.emp_dpt_number);

Output

Last Name FirstName Dept Salary

---------- ---------- ----- --------

Bordoloi Bijoy 1 $55,000

Joyner Suzanne 3 $43,000

Zhu Waiman 7 $43,000

• The subquery in this SELECT statement cannot be resolved independently of the main query.
• Notice that the outer query specifies that rows are selected from the employee table with an alias

name of e1.
• The inner query compares the employee department number column (emp_dpt_number) of the

employee table to the same column for the alias table name e1.
• The value of e1.emp_dpt_number is treated like a variable – it changes as the Oracle server

examines each row of the employee table.
• The subquery's results are correlated with each individual row of the main query – thus, the

term correlated subquery.

Subqueries and the ORDER BY Clause

• The SELECT statement shown below adds the ORDER BY clause to specify sorting by first name
within last name.

• Note that the ORDER BY clause is placed after the WHERE clause, and that this includes the
subquery as part of the WHERE clause.

SELECT emp_last_name "Last Name", emp_first_name "First Name" FROM employee WHERE EXISTS
(SELECT * FROM dependent WHERE emp_ssn = dep_emp_ssn) ORDER BY emp_last_name,
emp_first_name;

Output:

Last Name First Name

---------- ---------------

Bock Douglas

Joyner Suzanne

Zhu Waiman

LOCK TABLE

Lock:

A lock is a mechanism to control concurrent access to a data item

Lock Manager: Managing locks on data items.

Types of Locks

1. Binary locks
2. Shared/Exclusive locks

Binary Locks

A binary lock can have two states

Locked (1)

Unlocked (0)

Rules to be followed by Transactions

– Transaction must lock data item before read_item or write_item operations

– Transaction must unlock data item after all read(x)and write(x) operation are

completed in T

– A transaction T will not issue a lock_item(x) operation if it already holds the lock

on item(x)

– A transaction T will not issue an unlock_item(x) operation unless it already holds

the lock on item(x)

The following code performs the lock operation:

B: if LOCK (X) = 0 (*item is unlocked*)

 then LOCK (X) 1 (*lock the item*)

 else begin

 wait (until lock (X) = 0) and

 the lock manager wakes up the transaction);

 goto B

 end;

The following code performs the unlock operation:

 LOCK (X) 0 (*unlock the item*)

 if any transactions are waiting then

 wake up one of the waiting the transactions;

Managing User privileges-

