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3.1Linear Discriminant Analysis:

Linear Discriminant Analysis (LDA) is most commonly used as dimensionality reduction
technique in the pre-processing step for pattern-classification and machine learning applications.
The goal is to project a dataset onto a lower-dimensional space with good class-separability in
order avoid overfitting (“curse of dimensionality”) and also reduce computational costs.

Ronald  A.  Fisher  formulated  the Linear  Discriminant in  1936  (The  Use  of  Multiple
Measurements in Taxonomic Problems), and it also has some practical uses as classifier. The
original  Linear  discriminant  was  described  for  a  2-class  problem,  and  it  was  then  later
generalized as “multi-class Linear Discriminant Analysis” or “Multiple Discriminant Analysis”
by C. R. Rao in 1948.

The general LDA approach is very similar to a Principal Component Analysis, but in addition to
finding the component axes that maximize the variance of our data (PCA), we are additionally
interested in the axes that maximize the separation between multiple classes (LDA).

So, in a nutshell, often the goal of an LDA is to project a feature space (a dataset n-dimensional
samples)  onto  a  smaller  subspace kk (where k≤n−1k≤n−1)  while  maintaining  the  class-
discriminatory  information. 
In general, dimensionality reduction does not only help reducing computational costs for a given
classification task,  but it  can also be helpful to avoid overfitting by minimizing the error in
parameter estimation (“curse of dimensionality”).

Logistic  regression  is  a  classification  algorithm  traditionally  limited  to  only  two-class

classification problems.If you have more than two classes then Linear Discriminant Analysis is

the  preferred  linear  classification  technique.LDA is  a  simple  model  in  both  preparation  and

application. 
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Limitations of Logistic Regression

Logistic regression is a simple and powerful linear classification algorithm. It also has limitations

that suggest at the need for alternate linear classification algorithms.

 Two-Class Problems. Logistic regression is intended for two-class or binary classification
problems. It can be extended for multi-class classification, but is rarely used for this purpose.
 Unstable With Well Separated Classes.  Logistic regression can become unstable when
the classes are well separated.
 Unstable With Few Examples.  Logistic regression can become unstable when there are
few examples from which to estimate the parameters.

Linear Discriminant Analysis does address each of these points and is the go-to linear method for

multi-class classification problems. Even with binary-classification problems, it is a good idea to

try both logistic regression and linear discriminant analysis.

Representation of LDA Models

 The representation of LDA is straight forward.
 It consists of statistical properties of your data, calculated for each class. For a single
input variable (x) this is the mean and the variance of the variable for each class. For multiple
variables,  this  is  the  same  properties  calculated  over  the  multivariate  Gaussian,  namely  the
means and the covariance matrix.
 These statistical properties are estimated from your data and plug into the LDA equation
to make predictions. These are the model values that you would save to file for your model.
 Let’s look at how these parameters are estimated.

LDA makes some simplifying assumptions about your data:
 That your data is Gaussian, that each variable is is shaped like a bell curve when plotted.
That each attribute has the same variance, that values of each variable vary around the mean by
the same amount on average.

With these assumptions, the LDA model estimates the mean and variance from your data for

each class. It is easy to think about this in the univariate (single input variable) case with two

classes.
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The mean (mu) value of each input (x) for each class (k) can be estimated in the normal way by

dividing the sum of values by the total number of values.

muk = 1/nk * sum(x)

Where muk is the mean value of x for the class k, nk is the number of instances with class k. The

variance is calculated across all classes as the average squared difference of each value from the

mean.

sigma^2 = 1 / (n-K) * sum((x – mu)^2)

Where  sigma^2 is  the variance across all  inputs (x),  n is  the number  of  instances,  K is  the
number of classes and mu is the mean for input x.

Making Predictions with LDA

LDA makes predictions by estimating the probability that a new set of inputs belongs to each

class. The class that gets the highest probability is the output class and a prediction is made.

The model  uses Bayes  Theorem to estimate the probabilities.  Briefly Bayes’     Theorem can be

used to estimate the probability of the output class (k) given the input (x) using the probability of

each class and the probability of the data belonging to each class:

P(Y=x|X=x) = (PIk * fk(x)) / sum(PIl * fl(x))

Where PIk refers to the base probability of each class (k) observed in your training data (e.g. 0.5

for a 50-50 split in a two class problem). In Bayes’ Theorem this is called the prior probability.

PIk = nk/n

The f(x) above is the estimated probability of x belonging to the class. A Gaussian distribution

function is used for f(x). Plugging the Gaussian into the above equation and simplifying we end

up with the equation below. This is called a discriminate function and the class is calculated as

having the largest value will be the output classification (y):
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Dk(x) = x * (muk/siga^2) – (muk^2/(2*sigma^2)) + ln(PIk)

Dk(x) is the discriminate function for class k given input x, the muk, sigma^2 and PIk are all

estimated from your data.

How to Prepare Data for LDA

This section lists some suggestions you may consider when preparing your data for use with

LDA.

 Classification  Problems.  This  might  go  without  saying,  but  LDA  is  intended  for
classification problems where the output variable is categorical. LDA supports both binary and
multi-class classification.
 Gaussian Distribution.  The standard implementation of the model assumes a Gaussian
distribution  of  the  input  variables.  Consider  reviewing  the  univariate  distributions  of  each
attribute  and  using  transforms  to  make  them more  Gaussian-looking  (e.g.  log  and  root  for
exponential distributions and Box-Cox for skewed distributions).
 Remove Outliers. Consider removing outliers from your data. These can skew the basic
statistics used to separate classes in LDA such the mean and the standard deviation.
 Same Variance. LDA assumes that each input variable has the same variance. It is almost
always a good idea to standardize your data before using LDA so that it has a mean of 0 and a
standard deviation of 1.

Extensions to LDA

Linear Discriminant Analysis is a simple and effective method for classification. Because it is

simple and so well understood, there are many extensions and variations to the method. Some

popular extensions include:

 Quadratic Discriminant Analysis (QDA): Each class uses its own estimate of variance (or
covariance when there are multiple input variables).
 Flexible Discriminant Analysis (FDA): Where non-linear combinations of inputs is used
such as splines.
 Regularized Discriminant Analysis (RDA): Introduces regularization into the estimate of
the variance (actually covariance), moderating the influence of different variables on LDA.
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The original development was called the Linear Discriminant or Fisher’s Discriminant Analysis.

The multi-class version was referred to Multiple Discriminant Analysis.  These are all simply

referred to as Linear Discriminant Analysis now.

3.2 Discriminant Analysis

Discriminant  analysis  is  a  classification  method that  uses statistical  measures  such as
covariance and geometrical measurements such as Euclidean distance to determine which group
an unknown data point belongs to. Using discriminant analysis requires two main steps: finding
the discriminant coefficients from a well-understood set of data and applying the coefficients to
unknown data to yield group classifications.

It builds a predictive model for group membership. The model is composed of a discriminant
function  (or,  for  more  than  two  groups,  a  set  of  discriminant  functions)  based  on  linear
combinations of the predictor variables that provide the best discrimination between the groups.
The functions are generated from a sample of cases for which group membership is known; the
functions can then be applied to new cases that have measurements for the predictor variables
but have unknown group membership.

Example to show Discriminant analysis can be used:

On average, people in temperate zone countries consume more calories per day than people in
the tropics, and a greater proportion of the people in the temperate zones are city dwellers. A
researcher wants to combine this information into a function to determine how well an individual
can discriminate between the two groups of countries. The researcher thinks that population size
and economic information may also be important. Discriminant analysis allows you to estimate
coefficients of the linear discriminant  function,  which looks like the right side of a multiple
linear regression equation. That is, using coefficients a, b, c, and d, the function is:

D = a * climate + b * urban + c * population + d * gross domestic product per capita

If  these  variables  are  useful  for  discriminating  between  the  two  climate  zones,  the  values
of D will differ for the temperate and tropic countries. If you use a stepwise variable selection
method, you may find that you do not need to include all four variables in the function.
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Instruction for using Discriminant Analysis:

1.  Decide  on  the  variables  you  wish  to  include  in  the  study.  These  variables  should  be
characteristics that you believe will help classify data points into specific, mutually exclusive
groups. For example,  if your groups are to be "men and women,"  possible variables include
number of children, years of schooling and yearly income.

2. Collect  a  set  of  data  that  can be classified into mutually  exclusive  groups (e.g.,  men and
women, buyers and sellers, or Chinese and Taiwanese). Collect data on the variables that you
have previously decided on for each data point.

3. Calculate the centroids for each group. The calculation of the centroids depends on the number
of variables you have chosen to include in the analysis. For example, if you have decided to
investigate only two variables, then your centroids will exist in Euclidean 2-space.

4. Calculate the distance between the two centroids, and denote this distance as a vector, "d." The
vector will be as many dimensions as the number of variables of interest. In the case that you are
investigating two variables, your vector, "d," will be two-dimensional.

 5. Compute the within-group sum of squares matrices for each group. Call these matrices "W1"
and "W2."

 6. Pool the within-group sum of square matrices to yield a within-group covariance matrix. Call
this matrix "Cw."

7. Compute the inverse of "Cw." Call this inverse matrix "Cw-1."

8. Multiply "Cw-1" and "d." Call  this  vector  "Cw-1d." Its  dimension should be equal  to the
number of variables you have included in the analysis.

9. Calculate the discriminant function coefficients. These coefficients are proportional to "Cw-
1d."
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10. Collect  data  of  interest  (data  you  wish  to  classify  into  groups).  To  properly  apply
discriminant analysis, only collect data on the variables of interest; knowing the classifications
beforehand defeats the purpose of performing discriminant analysis.

11. Write  each  data  point  as  a  vector.  The  dimensions  of  the  vectors  are  the  same  as  the
dimensions of the original set of data.

12. Classify each data point. Multiply each data point by the discriminant function coefficients.
The output will give you the classification of the data point. For example, if you are using years
of schooling and yearly income as variables to predict the gender of the data points, the resulting
number will either be closer to "male" or "female." The group the point is closer to is the group it
is classified as.

3.3 K-Nearest Neighbour Classifier

k-nearest neighbors algorithm. In pattern recognition, the k-nearest neighbors 
algorithm (k-NN) is a non-parametricmethod used for classification and
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regression.  In  both  cases,  the  input  consists  of  the  k  closest  training
examples in the feature space.

K- Nearest Neighbors is one of the most basic yet essential classification algorithms

in Machine Learning. It belongs to the supervised learning domain and finds intense

application in pattern recognition, data mining and intrusion detection.

It  is  widely  disposable  in  real-life  scenarios  since  it  is  non-parametric,
meaning,  it  does  not  make  any  underlying  assumptions  about  the
distribution of data (as opposed to other algorithms such as  GM  M, which
assume a Gaussian distribution of the given data).

We are given some prior data (also called training data), which classifies
coordinates into groups identified by an attribute.

As an example, consider the following table of data points containing two features:
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Now, given another set of data points (also called testing data), allocate
these  points  a  group  by  analyzing  the  training  set.  Note  that  the
unclassified points are marked as ‘yellow’
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Intuition

If we plot these points on a graph, we may be able to locate some clusters, or groups. Now, given an unclassified
point, we can assign it to a group by observing what group its nearest neighbours belong to. This means, a point
close to a cluster of points classified as ‘Red’ has a higher probability of getting classified as ‘Red’.

Intuitively, we can see that the first point (2.5, 7) should be classified as ‘Blue’ and the second point (5.5, 4.5)
should be classified as ‘Red’.

Algorithm

Let m be the number of training data samples. Let p be an unknown point.

1. Store the training samples in an array of data points arr[]. This means each element of this array 
represents a tuple (x, y).

2. for i=0 to m: 

3. Calculate Euclidean distance d(arr[i], p). 

4. Make set S of K smallest  distances obtained. Each of these distances correspond to an already
classified data point. Return the majority label among

3.4Fuzzy Clustering

Fuzzy clustering (also referred to as soft clustering) is a form of clustering in which each data point can belong 
to more than one cluster.

Clustering or Cluster Analysis involves assigning data points to clusters such that items in the same cluster are as
similar as possible, while items belonging to different clusters are as dissimilar as possible. Clusters are identified
via similarity measures. These similarity measures include distance, connectivity, and intensity. Different similarity
measures may be chosen based on the data or the application.

Comparison to hard clustering

In non-fuzzy clustering (also known as hard clustering), data is divided into distinct clusters, where each data point
can only belong to exactly one cluster. In fuzzy clustering, data points can potentially belong to multiple clusters.

Membership



Membership grades are assigned to each of the data points(tags). These membership grades indicate the degree to
which data points belong to each cluster. Thus, points on the edge of a cluster, with lower membership grades, may
be in the cluster to a lesser degree than points in the center of cluster.

Fuzzy C-means clustering

One of the most widely used fuzzy clustering algorithms is the Fuzzy C-means clustering (FCM) Algorithm..

General description

The fuzzy c-means algorithm is very similar to the k-means algorithm:

 Choose a number of clusters.

 Assign coefficients randomly to each data point for being in the clusters.

 Repeat until the algorithm has converged (that is, the coefficients' change between two iterations is no more
than , the given sensitivity threshold) :

 Compute the centroid for each cluster (shown below).

 For each data point, compute its coefficients of being in the clusters.

Centroid

Any point x has a set of coefficients giving the degree of being in the kth cluster wk(x). With fuzzy c-means, the
centroid of a cluster is the mean of all points, weighted by their degree of belonging to the cluster:

Algorithm

The FCM algorithm attempts to partition a finite collection of n elements   into a collection of c
fuzzy clusters with respect to some given criterion.

Given a finite set of data, the algorithm returns a list of C cluster centres  and a partition matrix

, where each element, wij , tells the degree to which element, xi,
belongs to cluster cj.

The FCM aims to minimize an objective function:

where:

https://en.wikipedia.org/wiki/Determining_the_number_of_clusters_in_a_data_set
https://en.wikipedia.org/wiki/K-means_clustering


Comparison to K-means clustering

K-means clustering also attempts to minimize the objective function shown above. This method differs from the k-
means  objective  function  by  the  addition  of  the  membership  values wij and  the  fuzzifier,  ,  with .  The
fuzzifier  determines the level  of cluster  fuzziness.  A large  results  in smaller  membership values, ,  and hence,
fuzzier clusters. In the limit , the memberships,  , converge to 0 or 1, which implies a crisp partitioning. In the
absence of experimentation or domain knowledge,  is commonly set to 2. The algorithm minimizes intra-cluster
variance as well, but has the same problems as k-means; the minimum is a local minimum, and the results depend
on the initial choice of weights.

Clustering  generalizes  partition  clustering  methods  (such  as  k-means  and  medoid)  by  allowing  an
individual to be partially classified into more than one cluster. In regular clustering, each individual is a member of
only one cluster. Suppose we have K clusters and we define a set of variables mi1 mi2 miK , ,, that represent the
probability that object i is classified into cluster k. In partition clustering algorithms, one of these values will be
one and the rest will be zero. This represents the fact that these algorithms classify an individual into one and only
one cluster. In fuzzy clustering, the membership is spread among all clusters. The mik can now be between zero
and one,  with  the  stipulation  that  the  sum of  their  values  is  one.  We call  this  a  fuzzification  of  the  cluster
configuration. It has the advantage that it does not force every object into a specific cluster. It has the disadvantage
that  there  is  much  more  information  to  be  interpreted.  To  understand  the  reason  that  fuzzy  clustering  was
developed,  consider  the  following  two-variable  dataset  whose  values  are  plotted  below.  The  data  have  three
obvious clusters and two outlier points (6 and 13). A regular clustering algorithm searching for three clusters will
force these two points into specific clusters. This may cause distortion in the final solution.  Fuzzy clustering,
however, will assign a probability of about 0.33 for each cluster. This equal membership probability signals that
these two points are outliers. When you only have two variables, you can plot your data and see what the clusters
are. Unfortunately, most clustering projects come with more than two variables, so plotting is not possible. Hence,
we must use techniques like fuzzy clustering to deal with the anomalies that can occur

3.5 Self Organizing Map

A self-organizing map (SOM) or self-organizing feature map (SOFM) is a type of artificial neural network (ANN)
that is trained using unsupervised learning to produce a low-dimensional (typically two-dimensional), discretized
representation of the input space of the training samples, called a map, and is therefore a Self-Organizing Map.

Self Organizing Map(SOM) by TeuvoKohonen provides a data visualization technique which helps to understand
high dimensional data by reducing the dimensions of data to a map. SOM also represents clustering concept by



grouping similar data together. Therefore it can be said that SOM reduces data dimensions and displays similarities
among data.

With SOM, clustering is performed by having several units compete for the current object. Once the data have been
entered into the system, the network of artificial neurons is trained by providing information about inputs. The
weight vector of the unit is closest to the current object becomes the winning or active unit. During the training
stage, the values for the input variables are gradually adjusted in an attempt to preserve neighborhood relationships
that exist within the input data set. As it gets closer to the input object, the weights of the winning unit are adjusted
as well as its neighbors.

TeuvoKohonen writes "The SOM is a new, effective software tool for the visualization of high-dimensional data. It
converts complex, nonlinear statistical relationsihps between high-dimensional data items into simple geometric
relationships  on  a  low-dimensional  display.  As  it  thereby compresses  information  while  preserving  the  most
important topological and metric relationships of the primary data items on the display, it may also be thought to
produce some kind of abstractions."

Reducing Data DimensionsUnlike other learning technique in neural networks, training a SOM requires no
target vector. A SOM learns to classify the training data without any external supervision.

Data  Similarity;   Getting
the Best Matching Unit is
done by running through
all  right  vectors  and
calculating  the  distance
from  each  weight  to  the
sample  vector.  The
weight  with  distance  is
the  winner.  There  are
numerous  ways  to
determine  the  distance,
however,  the  most
commonly used method is
the Euclidean
Distance and/or Cosine
Distance.SOM
Algorithm.  Each  data
from  data  set  recognizes

themselves by competing for representation. SOM mapping steps starts from initializing the weight vectors. From
there a sample vector is selected randomly and the map of weight vectors is searched to find which weight best
represents that sample. Each weight vector has neighboring weights that are close to it. The weight that is chosen is
rewarded by being able to become more like that randomly selected sample vector. The neighbours of that weight
are also rewarded by being able to become more like the chosen sample vector. From this step the number of
neighbours and how much each weight can learn decreases over time. This whole process is repeated a large
number of times, usually more than 1000 times.  In sum, learning occurs in several steps and over many iterations.



1. Each node's weights are initialized.
2. A vector is chosen at random from the set of training data.
3. Every node is examined to calculate which one's weights are most like the input vector. The winning node 

is commonly known as the Best Matching Unit (BMU).
4. Then the neighbourhood of the BMU is calculated. The amount of neighbors decreases over time.
5. The winning weight is rewarded with becoming more like the sample vector. The nighbors also become 

more like the sample vector. The closer a node is to the BMU, the more its weights get altered and the 
farther away the neighbor is from the BMU, the less it learns.

6. Repeat step 2 for N iterations.
7. Result Interpretation.An example of the result of a Self Organizing Map is shown below

If the average distance is high, then the surrounding weights are very different and a dark color is assigned to
the location of the weight. If the average distance is low, a lighter color is assigned. The resulting map shows that
black is not similar to the white parts because there are lines of black representing no similarity between white
parts. Looking at the map it clearly represents that the two not very similar by having black in between. It can be
said that the white parts represent different clusters and the black lines represent the division of the clusters.

 

3.6 Learning Vector Quantization(LVQ)
LVQ is a prototype-based supervised classification algorithm. LVQ is the supervised counterpart of vector

quantization systems.Learning Vector Quantization (LVQ), different from Vector quantization (VQ) and Kohonen
Self-Organizing Maps (KSOM), basically is a competitive network which uses supervised learning. We may define
it as a process of classifying the patterns where each output unit represents a class. As it uses supervised learning,
the network will be given a set of training patterns with known classification along with an initial distribution of
the output class. After completing the training process, LVQ will classify an input vector by assigning it to the
same class as that of the output unit.

Architecture

Following figure shows the architecture of LVQ which is quite similar to the architecture of KSOM. As we can

see, there are “n” number of input units and “m” number of output units. The layers are fully interconnected with

having weights on them.

Parameters Used

Following are the parameters used in LVQ training process as well as in the flowchart

 x = training vector (x1,...,xi,...,xn)



 T = class for training vector x

 wj = weight vector for jth output unit

 Cj = class associated with the jth output unit

Training Algorithm

Step 1 − Initialize reference vectors, which can be done as follows −

 Step 1(a) − From the given set of training vectors, take the first “m” (number of clusters) training

vectors and use them as weight vectors. The remaining vectors can be used for training.

 Step 1(b) − Assign the initial weight and classification randomly.

 Step 1(c) − Apply K-means clustering method.

Step 2 − Initialize reference vector αα

Step 3 − Continue with steps 4-9, if the condition for stopping this algorithm is not met.

Step 4 − Follow steps 5-6 for every training input vector x.

Step 5 − Calculate Square of Euclidean Distance for j = 1 to m and i = 1 to n

D(j)=∑i=1n∑j=1m(xi−wij)2D(j)=∑i=1n∑j=1m(xi−wij)2

Step 6 − Obtain the winning unit J where D(j) is minimum.

Step 7 − Calculate the new weight of the winning unit by the following relation −

if T = Cj then wj(new)=wj(old)+α[x−wj(old)]wj(new)=wj(old)+α[x−wj(old)]

if T ≠ Cj then wj(new)=wj(old)−α[x−wj(old)]wj(new)=wj(old)−α[x−wj(old)]

Step 8 − Reduce the learning rate αα.

Step 9 − Test for the stopping condition. It may be as follows −

 Maximum number of epochs reached.

 Learning rate reduced to a negligible value.



Flowchart

3.7 Relational Clustering

Overview:

• Data clustering is the task of detecting patterns in a set of data. 

• Most algorithms take non-relational data as input and are sometimes unable to find significant patterns. 



• Many data sets can include relational information, as well as independent object attributes. 

• Relational data clustering techniques can help find strong patterns in such sets. 

• Two areas of interest in relational data clustering are: clustering heterogeneous data,  and

relation selection. 

Heterogeneous Data

It can be very difficult to compare different typed objects. For example, how can actors be compared to 
directors? One possibility is an inter-cluster relation signature.

1.Cluster one set of homogeneous data. This is the reference clustering.

2. For each object, Create a vector that records the number of links from that object to each cluster discovered
in step 1. This is the inter-cluster relation signature. 

3. Cluster all objects based on the inter-cluster relation signatures. 

Relation Selection

It is intuitive that, just as some features are not helpful for clustering a data set, some relations
might  provide  little  information  for  a  relational  clustering  algorithm,  or  even  harm  the  performance  of  an
algorithm.  As  relational  clustering  algorithms  continue  to  develop,  detecting  such  graphs  will  become  more
important.

3.8 Partitioning Methods

i)K means method

– Establish k partitions for the given n tuples k<=n

– Maximize the intracluster similarity

– Minimize the intercluster similarity

– Mean value of data points in cluster à cluster similarity



– Selects k objects randomly à cluster center

– Remaining objects are assigned to nearest clusters

– Compute a new mean for the clusters

– Process gets repeated until the criteria function converges 

Algorithm k-means

Input

k number of clusters

D data set of objects

Output

set of k clusters with better quality

Method

arbitrarily choose k object from D as initial cluster centers

repeat

assign each object to the cluster to which the object is most similar

update the cluster mean

until no change in cluster mean

Strength 

–Relatively scalable

–Efficient in processing large data set

Weakness 

–Need to supply k / k mean values



–Not capable of forming the clusters with arbitrary shapes

–It is sensitive to noise, outliers

–Relatively scalable

Variations  (EM method, k-modes method)

–Differed in

• Dissimilarity calculation  Cluster mean calculation idea

ii) K – medoids method 

–Also called as representative object based technique

–Influence of outliers in k means clustering algorithm gets suppressed

–Selects a representative data object per cluster

–Remaining objects are clustered based upon its similarity 

–Minimize the dissimilarity between each object and its corresponding reference point (absolute error 
criterion)

–Process continues until every representative object is actually a medoid /most centrally located

–Quality of clusters gets estimated by the cost function 

–Four cases have to be examined for every data object p before Oj gets replaced by Orandom 

• Reassigned to Oi from Oj 

• Reassigned to Orandom from Oj 

• No change

• Reassigned to Orandom from Oi 

–Cost incurred in swapping will gets computed.

–If the new value is optimal then replacement will be allowed
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