
SCSX1056 – ORACLE & SQL
UNIT III - DATA BASE OBJECTS

Synonym – Sequences – View- Index – OODBMS Vs DBMS – Concepts of Object oriented
programming – Features of OOPS – Advantages of Object orientation – Abstract data
types – Object views – Varying arrays – Nested tables – Object tables – Object views
with REFs.

Create Synonym
Purpose

Use the CREATE SYNONYM statement to create a synonym, which is an alternative
name for a table, view, sequence, procedure, stored function, package, materialized
view, Java class schema object, user-defined object type, or another synonym.

Synonyms provide both data independence and location transparency. Synonyms
permit applications to function without modification regardless of which user owns the
table or view and regardless of which database holds the table or view. However,
synonyms are not a substitute for privileges on database objects. Appropriate privileges
must be granted to a user before the user can use the synonym.

You can refer to synonyms in the following DML statements:

SELECT, INSERT, UPDATE, DELETE, FLASHBACK TABLE, EXPLAIN PLAN,
and LOCK TABLE.

You can refer to synonyms in the following DDL
statements: AUDIT, NOAUDIT, GRANT, REVOKE, and COMMENT.

Prerequisites

To create a private synonym in your own schema, you must have
the CREATE SYNONYM system privilege.

To create a private synonym in another user's schema, you must
havethe CREATE ANY SYNONYM system privilege.

To create a PUBLIC synonym, you must have the CREATE PUBLIC SYNONYM system
privilege.

Syntax

create_synonym::=

Semantics

OR REPLACE

Specify OR REPLACE to re-create the synonym if it already exists. Use this clause to
change the definition of an existing synonym without first dropping it.

Restriction on Replacing a Synonym You cannot use the OR REPLACE clause for a
type synonym that has any dependent tables or dependent valid user-defined object
types.

PUBLIC

Specify PUBLIC to create a public synonym. Public synonyms are accessible to all users.
However, each user must have appropriate privileges on the underlying object in order
to use the synonym.

When resolving references to an object, Oracle Database uses a public synonym only if
the object is not prefaced by a schema and is not followed by a database link.

If you omit this clause, then the synonym is private and is accessible only within its
schema. A private synonym name must be unique in its schema.

Notes on Public Synonyms The following notes apply to public synonyms:

 If you create a public synonym and it subsequently has dependent tables or
dependent valid user-defined object types, then you cannot create another
database object of the same name as the synonym in the same schema as the
dependent objects.

 Take care not to create a public synonym with the same name as an existing
schema. If you do so, then all PL/SQL units that use that name will be invalidated.

schema

Specify the schema to contain the synonym. If you omit schema, then Oracle Database
creates the synonym in your own schema. You cannot specify a schema for the synonym
if you have specified PUBLIC.

synonym

Specify the name of the synonym to be created.

Note:

Synonyms longer than 30 bytes can be created and dropped. However, unless they

represent a Java name they will not work in any other SQL command. Names longer

than 30 bytes are transformed into an obscure shorter string for storage in the data

dictionary.

FOR Clause

Specify the object for which the synonym is created. The schema object for which you
are creating the synonym can be of the following types:

 Table or object table
 View or object view
 Sequence
 Stored procedure, function, or package
 Materialized view
 Java class schema object
 User-defined object type
 Synonym

The schema object need not currently exist and you need not have privileges to access
the object.

Restriction on the FOR Clause The schema object cannot be contained in a package.

schema Specify the schema in which the object resides. If you do not qualify object
with schema, then the database assumes that the schema object is in your own schema.

If you are creating a synonym for a procedure or function on a remote database, then
you must specify schema in this CREATE statement. Alternatively, you can create a
local public synonym on the database where the object resides. However, the database
link must then be included in all subsequent calls to the procedure or function.

dblink You can specify a complete or partial database link to create a synonym for a
schema object on a remote database where the object is located. If you
specify dblink and omit schema, then the synonym refers to an object in the schema
specified by the database link. Oracle recommends that you specify the schema
containing the object in the remote database.

If you omit dblink, then Oracle Database assumes the object is located on the local
database.

Restriction on Database Links You cannot specify dblink for a Java class synonym.

Examples

CREATE SYNONYM: Examples To define the synonym offices for the table locations in
the schema hr, issue the following statement:

CREATE SYNONYM offices

 FOR hr.locations;

To create a PUBLIC synonym for the employees table in the schema hr on
the remote database, you could issue the following statement:

CREATE PUBLIC SYNONYM emp_table

FOR hr.employees@remote.us.oracle.com;

A synonym may have the same name as the underlying object, provided the underlying
object is contained in another schema.

Oracle Database Resolution of Synonyms: Example Oracle Database attempts to
resolve references to objects at the schema level before resolving them at
the PUBLIC synonym level. For example, the schemas oe and sh both contain tables
named customers. In the next example, user SYSTEM creates a PUBLIC synonym
named customers foroe.customers:

CREATE PUBLIC SYNONYM customers FOR oe.customers;

If the user sh then issues the following statement, then the database returns the count
of rows from sh.customers:

SELECT COUNT(*) FROM customers;

To retrieve the count of rows from oe.customers, the user sh must
preface customers with the schema name. (The user sh must have select permission
on oe.customers as well.)

SELECT COUNT(*) FROM oe.customers;

If the user hr's schema does not contain an object named customers, and if hr has
select permission on oe.customers, then hr can access thecustomers table in oe's
schema by using the public synonym customers:

SELECT COUNT(*) FROM customers;

Create Sequence
Purpose

Use the CREATE SEQUENCE statement to create a sequence, which is a database object
from which multiple users may generate unique integers. You can use sequences to
automatically generate primary key values.

When a sequence number is generated, the sequence is incremented, independent of the
transaction committing or rolling back. If two users concurrently increment the same
sequence, then the sequence numbers each user acquires may have gaps, because
sequence numbers are being generated by the other user. One user can never acquire
the sequence number generated by another user. After a sequence value is generated by
one user, that user can continue to access that value regardless of whether the sequence
is incremented by another user.

Sequence numbers are generated independently of tables, so the same sequence can be
used for one or for multiple tables. It is possible that individual sequence numbers will
appear to be skipped, because they were generated and used in a transaction that
ultimately rolled back. Additionally, a single user may not realize that other users are
drawing from the same sequence.

After a sequence is created, you can access its values in SQL statements with
the CURRVAL pseudocolumn, which returns the current value of the sequence, or
the NEXTVAL pseudocolumn, which increments the sequence and returns the new
value.

Prerequisites

To create a sequence in your own schema, you must have
the CREATE SEQUENCE system privilege.

To create a sequence in another user's schema, you must have
the CREATE ANY SEQUENCE system privilege.

Syntax

create_sequence::=

Semantics

schema

Specify the schema to contain the sequence. If you omit schema, then Oracle Database
creates the sequence in your own schema.

sequence

Specify the name of the sequence to be created.

If you specify none of the following clauses, then you create an ascending sequence that
starts with 1 and increases by 1 with no upper limit. Specifying only INCREMENT BY -1
creates a descending sequence that starts with -1 and decreases with no lower limit.

 To create a sequence that increments without bound, for ascending sequences,
omit the MAXVALUE parameter or specify NOMAXVALUE. For descending
sequences, omit the MINVALUE parameter or specify the NOMINVALUE.

 To create a sequence that stops at a predefined limit, for an ascending sequence,
specify a value for the MAXVALUE parameter. For a descending sequence,
specify a value for the MINVALUE parameter. Also specify NOCYCLE. Any
attempt to generate a sequence number once the sequence has reached its limit
results in an error.

 To create a sequence that restarts after reaching a predefined limit, specify
values for both the MAXVALUE and MINVALUE parameters. Also specify CYCLE.
If you do not specify MINVALUE, then it defaults to NOMINVALUE, which is the
value 1.

INCREMENT BY Specify the interval between sequence numbers. This integer value can
be any positive or negative integer, but it cannot be 0. This value can have 28 or fewer
digits. The absolute of this value must be less than the difference

of MAXVALUE and MINVALUE. If this value is negative, then the sequence descends. If
the value is positive, then the sequence ascends. If you omit this clause, then the interval
defaults to 1.

START WITH: Specify the first sequence number to be generated. Use this clause to
start an ascending sequence at a value greater than its minimum or to start a
descending sequence at a value less than its maximum. For ascending sequences, the
default value is the minimum value of the sequence. For descending sequences, the
default value is the maximum value of the sequence. This integer value can have 28 or
fewer digits.

Note:

This value is not necessarily the value to which an ascending cycling sequence cycles

after reaching its maximum or minimum value.

MAXVALUE Specify the maximum value the sequence can generate. This integer value
can have 28 or fewer digits. MAXVALUE must be equal to or greater
thanSTART WITH and must be greater than MINVALUE.

NOMAXVALUE: Specify NOMAXVALUE to indicate a maximum value of 1027 for an
ascending sequence or -1 for a descending sequence. This is the default.

MINVALUE Specify the minimum value of the sequence. This integer value can have 28
or fewer digits. MINVALUE must be less than or equal to START WITH and must be less
than MAXVALUE.

NOMINVALUE: Specify NOMINVALUE to indicate a minimum value of 1 for an
ascending sequence or -1026 for a descending sequence. This is the default.

CYCLE: Specify CYCLE to indicate that the sequence continues to generate values after
reaching either its maximum or minimum value. After an ascending sequence reaches
its maximum value, it generates its minimum value. After a descending sequence
reaches its minimum, it generates its maximum value.

NOCYCLE: Specify NOCYCLE to indicate that the sequence cannot generate more values
after reaching its maximum or minimum value. This is the default.

CACHE Specify how many values of the sequence the database preallocates and keeps in
memory for faster access. This integer value can have 28 or fewer digits. The minimum
value for this parameter is 2. For sequences that cycle, this value must be less than the
number of values in the cycle. You cannot cache more values than will fit in a given cycle
of sequence numbers. Therefore, the maximum value allowed for CACHE must be less
than the value determined by the following formula:

(CEIL (MAXVALUE - MINVALUE)) / ABS (INCREMENT)

If a system failure occurs, then all cached sequence values that have not been used in
committed DML statements are lost. The potential number of lost values is equal to the
value of the CACHE parameter.

Note:

Oracle recommends using the CACHE setting to enhance performance if you are using

sequences in an Oracle Real Application Clusters environment.

NOCACHE: Specify NOCACHE to indicate that values of the sequence are not
preallocated. If you omit both CACHE and NOCACHE, then the database caches 20
sequence numbers by default.

ORDER Specify ORDER to guarantee that sequence numbers are generated in order of
request. This clause is useful if you are using the sequence numbers as timestamps.
Guaranteeing order is usually not important for sequences used to generate primary
keys.

ORDER is necessary only to guarantee ordered generation if you are using Oracle Real
Application Clusters. If you are using exclusive mode, then sequence numbers are
always generated in order.

NOORDER: Specify NOORDER if you do not want to guarantee sequence numbers are
generated in order of request. This is the default.

Example

Creating a Sequence: Example The following statement creates the
sequence customers_seq in the sample schema oe. This sequence could be used to
provide customer ID numbers when rows are added to the customers table.

CREATE SEQUENCE customers_seq

 START WITH 1000

 INCREMENT BY 1

 NOCACHE

 NOCYCLE;

The first reference to customers_seq.nextval returns 1000. The second returns 1001.
Each subsequent reference will return a value 1 greater than the previous reference.

View – Index
Overview of Views

A view is a logical representation of one or more tables. In essence, a view is a stored
query. A view derives its data from the tables on which it is based, called base tables.

https://docs.oracle.com/cd/E11882_01/server.112/e40540/glossary.htm#i432872

Base tables can be tables or other views. All operations performed on a view actually
affect the base tables. You can use views in most places where tables are used.

Note:
Materialized views use a different data structure from standard views.

Views enable you to tailor the presentation of data to different types of users. Views are
often used to:

 Provide an additional level of table security by restricting access to a
predetermined set of rows or columns of a table

For example, Figure 4-6 shows how the staff view does not show
the salary or commission_pct columns of the base table employees.

 Hide data complexity

For example, a single view can be defined with a join, which is a collection of
related columns or rows in multiple tables. However, the view hides the fact that
this information actually originates from several tables. A query might also
perform extensive calculations with table information. Thus, users can query a
view without knowing how to perform a join or calculations.

 Present the data in a different perspective from that of the base table

For example, the columns of a view can be renamed without affecting the tables
on which the view is based.

 Isolate applications from changes in definitions of base tables

For example, if the defining query of a view references three columns of a four
column table, and a fifth column is added to the table, then the definition of the
view is not affected, and all applications using the view are not affected.

For an example of the use of views, consider the hr.employees table, which has several
columns and numerous rows. To allow users to see only five of these columns or only
specific rows, you could create a view as follows:

CREATE VIEW staff AS

SELECT employee_id, last_name, job_id, manager_id, department_id

FROMemployees;

As with all subqueries, the query that defines a view cannot contain the FOR
UPDATE clause. Figure 4-6 graphically illustrates the view named staff. Notice that the
view shows only five of the columns in the base table.

Figure 4-6 View

https://docs.oracle.com/cd/E11882_01/server.112/e40540/schemaob.htm#i5739
https://docs.oracle.com/cd/E11882_01/server.112/e40540/glossary.htm#CHDDCCEI
https://docs.oracle.com/cd/E11882_01/server.112/e40540/glossary.htm#CHDJDAFA
https://docs.oracle.com/cd/E11882_01/server.112/e40540/schemaob.htm#i5739

Characteristics of Views

Unlike a table, a view is not allocated storage space, nor does a view contain data.
Rather, a view is defined by a query that extracts or derives data from the base tables
referenced by the view. Because a view is based on other objects, it requires no storage
other than storage for the query that defines the view in the data dictionary.

A view has dependencies on its referenced objects, which are automatically handled by
the database. For example, if you drop and re-create a base table of a view, then the
database determines whether the new base table is acceptable to the view definition.

Data Manipulation in Views

Because views are derived from tables, they have many similarities. For example, a view
can contain up to 1000 columns, just like a table. Users can query views, and with some
restrictions they can perform DML on views. Operations performed on a view affect
data in some base table of the view and are subject to the integrity constraints and
triggers of the base tables.

The following example creates a view of the hr.employees table:

CREATE VIEW staff_dept_10 AS

SELECT employee_id, last_name, job_id,

 manager_id, department_id

FROM employees

WHERE department_id = 10

https://docs.oracle.com/cd/E11882_01/server.112/e40540/glossary.htm#CHDJJJGD

WITH CHECK OPTION CONSTRAINT staff_dept_10_cnst;

The defining query references only rows for department 10. The CHECK
OPTION creates the view with a constraint so that INSERT and UPDATEstatements
issued against the view cannot result in rows that the view cannot select. Thus, rows for
employees in department 10 can be inserted, but not rows for department 30.

How Data Is Accessed in Views

Oracle Database stores a view definition in the data dictionary as the text of the query
that defines the view. When you reference a view in a SQL statement, Oracle Database
performs the following tasks:

1. Merges a query (whenever possible) against a view with the queries that define the
view and any underlying views

Oracle Database optimizes the merged query as if you issued the query without
referencing the views. Therefore, Oracle Database can use indexes on any
referenced base table columns, whether the columns are referenced in the view
definition or in the user query against the view.

Sometimes Oracle Database cannot merge the view definition with the user query.
In such cases, Oracle Database may not use all indexes on referenced columns.

2. Parses the merged statement in a shared SQL area

Oracle Database parses a statement that references a view in a new shared SQL
area only if no existing shared SQL area contains a similar statement. Thus, views
provide the benefit of reduced memory use associated with shared SQL.

3. Executes the SQL statement

The following example illustrates data access when a view is queried. Assume that you
create employees_view based on the employees anddepartments tables:

CREATE VIEW employees_view AS

SELECT employee_id, last_name, salary, location_id

FROM employees JOIN departments USING (department_id)

WHERE department_id = 10;

A user executes the following query of employees_view:

SELECT last_name

FROM employees_view

https://docs.oracle.com/cd/E11882_01/server.112/e40540/glossary.htm#CHDFIJAF

WHERE employee_id = 200;

Oracle Database merges the view and the user query to construct the following query,
which it then executes to retrieve the data:

SELECT last_name

FROM employees, departments

WHERE employees.department_id = departments.department_id

AND departments.department_id = 10

AND employees.employee_id = 200;

Difference between OODBMS and DBMS
An object-oriented database management system (OODBMS), sometimes shortened to

ODBMS for object database management system), is a database management system

(DBMS) that supports the modelling and creation of data as objects. This includes some

kind of support for classes of objects and the inheritance of class properties and

methods by subclasses and their objects. There is currently no widely agreed-upon

standard for what constitutes an OODBMS, and OODBMS products are considered to be

still in their infancy. In the meantime, the object-relational database management

system (ORDBMS), the idea that object-oriented database concepts can be

superimposed on relational databases, is more commonly encountered in available

products. An object-oriented database interface standard is being developed by an

industry group, the Object Data Management Group (ODMG). The Object Management

Group (OMG) has already standardized an object-oriented data brokering interface

between systems in a network.

Concepts of Object oriented programming
The general concepts of OOPS comprises the following.

 1. Object

 2. Class

 3. Data abstraction

 4. Inheritance

 5. Polymorphism

 6. Dynamic Binding

 7. Message passing.

http://searchsqlserver.techtarget.com/definition/database-management-system
http://searchsoa.techtarget.com/definition/object
http://whatis.techtarget.com/definition/class
http://searchcio-midmarket.techtarget.com/definition/inheritance
http://searchcio-midmarket.techtarget.com/definition/method
http://searchsqlserver.techtarget.com/definition/relational-database
http://searchsoa.techtarget.com/definition/Object-Management-Group

1. Object

Object is an entity that can store data and, send and receive messages. They are

runtime entities; they may represent a person, a place a bank account, a table of data or

any item that the program must handle. It is an instance of a class.

They may also represent user-defined data such as vectors, time and lists. When a

program is executed, the object interacts by sending messages to one another. Each

object contain data and code to manipulate the data objects can interact without having

to know details of each other’s data or code. It is sufficient to know the type of message

accepted and the type of response returned by the objects.

2. Classes

A class is a collection of objects of similar type. Classes are user defined data

types and behave like the built in types of a programming language. For example mango,

apple and orange are members of the class fruit. Then the statement FRUIT MANGO;

will create an object mango belonging to the class fruit. The syntax used to create an

object is no different than the syntax used to create an integer object in C. If fruit has

been defined as a class, then the statement

fruit mango;

will create an object mango belonging to the class fruit.

3. Data abstraction and encapsulation:

The wrapping up of data and its functions into a single unit (class) is known as

encapsulation. The data is not accessible to the outside world and only those functions

which are wrapped in the class can assess it> these functions provide the interface

between the objects data and the program> this insulation of data from direct access by

the program is called DATA HIDING (or data abstraction). Since the classes use the

concept of data abstraction they are known as ABSTRACT DATA TYPES (ADT)

4. Inheritance:

In heritance is the process by which objects of one class acquire the properties

of objects of another class. It supports the concept of hierarchical classification. For

example the bird robin is a part of the class flying birds which again a part of bird. As

given in the diagram below each derived class shares common characteristics with the

class from which it is derived.

In OOP, the concept of inheritance provides the idea of reusability. This means that

we can add additional features to an existing class without modifying it. This is possible

by deriving a new class from the existing one. The new class will have the combined

features of both the classes. The real appeal and power of the inheritance mechanism is

that it allows the programmer to reuse a class that is almost, but not exactly, what he

wants.

5. Polymorphism:

Polymorphism means the ability to take more than one form. For example an

operation may exhibit different behavior in different instances. The behavior depends

upon the types of data used in the operation. For example consider the operation

addition. For two numbers, the operation will generate a sum . if the operands are

strings, then the operation would produce a third string by concatenation.

Here in the below given diagram a single function draw () does different operation

according to the behavior of the type derived. I.e. Draw () function works in different

form.

Polymorphism plays an important role in allowing objects having internal structures

to share the same external interface. This means that a general class of operations may

be accessed in the same manner even though specific actions associated with each

operation may differ. Polymorphism is extensively used in inheritance.

6. Dynamic Binding

 Dynamic binding means that the code associated with a given procedure call is not

known until the time of the call at run-time. It is associated with polymorphism and

inheritance. A function call is associated with a polymorphic reference depends on the

dynamic type of that reference.

7. Message Communication

An object oriented program consists of a set of objects that communicate with each

other. Objects communicate with one another by sending and receiving information

much the same way as people pass messages to one another. Objects have a life cycle.

They can be created and destroyed. Communication with an object is feasible as long as

it is alive.

Advantages of Object orientation

 The complexity of software can be managed easily.

 Data hiding concept help the programmer to build secure programs

 Through the class concept we can define the user defined data type

 The inheritance concept can be used to eliminate redundant code

 The message-passing concept helps the programmer to communicate

between different objects.

 New data and functions can be easily added whenever necessary.

 OOPS ties data elements more closely to the functions that operates

on.

Object Views

Just as a view is a virtual table, an object view is a virtual object table. Each row in the
view is an object, which is an instance of an object type. An object type is a user-
defined data type.

You can retrieve, update, insert, and delete relational data as if it was stored as an object
type. You can also define views with columns that are object data types, such as
objects, REFs, and collections (nested tables and VARRAYs).

Like relational views, object views can present only the data that you want users to see.
For example, an object view could present data about IT programmers but omit
sensitive data about salaries. The following example creates an employee_type object
and then the view it_prog_viewbased on this object:

CREATE TYPE employee_type AS OBJECT

(

 employee_id NUMBER (6),

 last_name VARCHAR2 (25),

 job_id VARCHAR2 (10)

);

/

https://docs.oracle.com/cd/E11882_01/server.112/e40540/glossary.htm#i996725

CREATE VIEW it_prog_view OF employee_type

 WITH OBJECT IDENTIFIER (employee_id) AS

SELECT e.employee_id, e.last_name, e.job_id

FROM employees e

WHERE job_id = 'IT_PROG';

Object views are useful in prototyping or transitioning to object-oriented applications
because the data in the view can be taken from relational tables and accessed as if the
table were defined as an object table. You can run object-oriented applications without
converting existing tables to a different physical structure.

Collection Types

Each collection type describes a data unit made up of an indefinite number of elements,
all of the same datatype. The collection types are array typesand table types.

Array types and table types are schema objects. The corresponding data units are
called VARRAYs and nested tables. When there is no danger of confusion, we often
refer to the collection types as VARRAYs and nested tables.

Collection types have constructor methods. The name of the constructor method is the
name of the type, and its argument is a comma separated list of the new collection's
elements. The constructor method is a function. It returns the new collection as its
value.

An expression consisting of the type name followed by empty parentheses represents a
call to the constructor method to create an empty collection of that type. An empty
collection is different from a null collection.

ARRAYs

An array is an ordered set of data elements. All elements of a given array are of the
same datatype. Each element has an index, which is a number corresponding to the
element's position in the array.

The number of elements in an array is the size of the array. Oracle allows arrays to be of
variable size, which is why they are called VARRAYs. You must specify a maximum size
when you declare the array type.

Creating an array type does not allocate space. It defines a datatype, which you can use
as:

 The datatype of a column of a relational table
 An object type attribute

 A PL/SQL variable, parameter, or function return type.

A VARRAY is normally stored in line; that is, in the same tablespace as the other data in
its row. If it is sufficiently large, however, Oracle stores it as aBLOB.

Nested Tables

A nested table is an unordered set of data elements, all of the same datatype. It has a
single column, and the type of that column is a built-in type or an object type. If an
object type, the table can also be viewed as a multicolumn table, with a column for each
attribute of the object type. If compatibility is set to Oracle9i or higher, nested tables can
contain other nested tables.

A table type definition does not allocate space. It defines a type, which you can use as:

 The datatype of a column of a relational table
 An object type attribute
 A PL/SQL variable, parameter, or function return type

When a table type appears as the type of a column in a relational table or as an attribute
of the underlying object type of an object table, Oracle stores all of the nested table data
in a single table, which it associates with the enclosing relational or object table.

A convenient way to access the elements of a nested table individually is to use a nested
cursor.

