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3 MASS TRANSFER

3.1 Introduction of Mass Transfer

When a system contains two or more components  whose concentrations vary from point 
to point, there is a natural tendency for mass to be transferred, minimizing the 
concentration differences within a system. The transport of one constituent from a region 
of higher concentration to that of a lower concentration is called mass transfer.

The transfer of mass within a fluid mixture or across a phase boundary is a process that 
plays a major role in many industrial processes. Examples of such processes are:

(i) Dispersion of gases from stacks
(ii) Removal of pollutants from plant discharge streams by absorption
(iii) Stripping of gases from waste water
(iv) Neutron diffusion within nuclear reactors
(v) Air conditioning

Many of air day-by-day experiences also involve mass transfer, for example:

(i) A lump of sugar added to a cup of coffee eventually dissolves and then 
eventually diffuses to make the concentration uniform.

(ii) Water evaporates from ponds to increase the humidity of passing-air-stream
(iii) Perfumes presents a pleasant fragrance which is imparted throughout the 

surrounding atmosphere.

The mechanism of mass transfer involves both molecular diffusion and convection.

The mole fraction for liquid and solid mixture, x A ,and for gaseous mixtures,  y A, are the 
molar concentration of species A divided by the molar density of the mixtures.

C

C
x A

A        (liquids and solids)

C

C
y A

A     (gases).

The sum of the mole fractions, by definition must equal 1;

(i.e.)                    
i

ix 1

                             
i

iy 1
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by similar way, mass fraction of A in mixture is;

                                         


 A
Aw 

1. The molar composition of a gas mixture at 273 K and 1.5 * 10 5 Pa is:

mV

n
 densitymolar

Therefore, density (or mass density) =  mM
Where M is the molecular weight of the gas.

3
5

273*8314

68.30*10*5.1
mkg

RT

PM
MDensity m  

    = 2.03 kg/m 3

Partial pressure of O 2 = [mole fraction of O 2] * total pressure

      510*5.1*
100

7


      = 0.07 * 1.5 * 10 5

      = 0.105 * 10 5 Pa

3.2 Diffusion flux

Just as momentum and energy (heat) transfer have two mechanisms for transport-
molecular and convective, so does mass transfer. However, there are convective fluxes in 
mass transfer, even on a molecular level. The reason for this is that in mass transfer, 
whenever there is a driving force, there is always a net movement of the mass of a 
particular species which results in a bulk motion of molecules. Of course, there can also 
be convective mass transport due to macroscopic fluid motion. In this chapter the focus is
on molecular mass transfer.

The mass (or molar) flux of a given species is a vector quantity denoting the amount of 
the particular species, in either mass or molar units, that passes per given increment of 
time through a unit area normal to the vector. The flux of species defined with reference 
to fixed spatial coordinates, NA is

                                     AAA CN                ---------------------- (1)

This could be written interms of diffusion velocity of A, (i.e.,   A  -  ) and average 
velocity of mixture, , as

                            AAAA CCN  )(    --------------- (2)
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By definition

                      
C

C
i

ii




 *

Therefore, equation (2) becomes

                                 
i

ii
A

AAA C
C

C
CN  )(

                                         
i

iiAAA CyC  )(

For systems containing two components A and B,

                          )()( BBAAAAAA CCyCN          
                                  )()( BAAAA NNyC  

                          NyCN AAAA  )(        ----------- (3)

The first term on the right hand side of this equation is diffusional molar flux of A, and 
the second term is flux due to bulk motion.

3.2.1 Fick’s law:

An empirical relation for the diffusional molar flux, first postulated by Fick and, 
accordingly, often referred to as Fick’s first law, defines the diffusion of component A in 
an isothermal, isobaric system. For diffusion in only the Z direction, the Fick’s rate 
equation is

                                         
Zd

Cd
DJ A

BAA 

where D AB  is diffusivity or diffusion coefficient for component A diffusing through 
component B, and dCA / dZ is the concentration gradient in the Z-direction.

A more general flux relation which is not restricted to isothermal, isobasic system could 
be written as

                        
Zd

yd
DCJ A

BAA            ----------------- (4)

using this expression, Equation (3) could be written as

                              Ny
Zd

yd
DCN A

A
BAA      --------------- (5)
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Relation among molar fluxes:

For a binary system containing A and B, from Equation (5),

                     NyJN AAA 

          or        NyNJ AAA      ----------------------- (6)

Similarly,

                       NyNJ BBB      -------------------- (7)

Addition of Equation (6) & (7) gives,

                     NyyNNJJ BABABA )(      ---------- (8)

By definition N = N A + N B and y A + y B = 1.
Therefore equation (8) becomes,
                                J A + J B = 0
                                J A  = -J B

                  
Zd

yd
DC

zd

yd
DC B

BA
A

AB      --------------- (9)

From     y A + y B = 1
              dy A  = - dy B

Therefore Equation (9) becomes,

                     D AB  = D BA    -----------------------------------   (10)

This leads to the conclusion that diffusivity of A in B is equal to diffusivity of B in A.

Diffusivity

Fick’s law proportionality, D AB, is known as mass diffusivity (simply as diffusivity) or as
the diffusion coefficient. D AB  has the dimension of L 2 / t, identical to the fundamental 
dimensions of the other transport properties: Kinematic viscosity,  = ( / ) in 
momentum transfer, and thermal diffusivity,  (= k /  C  ) in heat transfer.

Diffusivity is normally reported in cm2 / sec; the SI unit being m2 / sec.

Diffusivity depends on pressure, temperature, and composition of the system.
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In table, some values of DAB are given for a few gas, liquid, and solid systems.

Diffusivities of gases at low density are almost composition independent, incease with the
temperature and vary inversely with pressure. Liquid and solid diffusivities are strongly 
concentration dependent and increase with temperature.

General range of values of diffusivity: 

Gases :              5 X 10 –6           -------------        1 X 10-5      m2 / sec.
Liquids :             10 –6                 -------------        10-9             m2 / sec.
Solids :               5 X 10 –14         -------------        1 X 10-10      m2 / sec.
                              
In the absence of experimental data, semitheoretical expressions have been developed 
which give approximation, sometimes as valid as experimental values, due to the 
difficulties encountered in experimental measurements.

Diffusivity in Gases:

Pressure dependence of diffusivity is given by

                     
p

D AB
1

     (for moderate ranges of pressures, upto 25 atm).

And temperature dependency is according to

                        2
3

TD AB 

Diffusivity of a component in a mixture of components can be calculated using the 
diffusivities for the various binary pairs involved in the mixture. The relation given by 
Wilke is
        

                    

n

n
mixture

D

y

D

y

D

y
D



 








131

3

21

2
1

...........

1

Where D 1-mixture is the diffusivity for component 1 in the gas mixture; D 1-n is the 
diffusivity for the binary pair, component 1 diffusing through component n; and ny  is 
the mole fraction of component n in the gas mixture evaluated on a component –1 – free 
basis, that is

                                     
nyyy

y
y

.......32

2
2




Diffusivity in liquids:
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Diffusivity in liquid are exemplified by the values given in table … Most of these values 
are nearer to 10-5 cm2 / sec, and about ten thousand times shower than those in dilute 
gases. This characteristic of liquid diffusion often limits the overall rate of processes 
accruing in liquids (such as reaction between two components in liquids).

In chemistry, diffusivity limits the rate of acid-base reactions; in the chemical industry, 
diffusion is responsible for the rates of liquid-liquid extraction. Diffusion in liquids is 
important because it is slow.

Certain molecules diffuse as molecules, while others which are designated as electrolytes
ionize in solutions and diffuse as ions.  For example, sodium chloride (NaCl), diffuses in
water  as  ions Na  + and Cl-.  Though each ions  has a  different  mobility,  the electrical
neutrality of the solution indicates the ions must diffuse at the same rate; accordingly it is
possible  to  speak  of  a  diffusion  coefficient  for  molecular  electrolytes  such as  NaCl.
However,  if  several ions are present,  the diffusion rates of the individual  cations and
anions must be considered, and molecular diffusion coefficients have no meaning.

Diffusivity  varies  inversely  with  viscosity  when  the  ratio  of  solute  to  solvent  ratio
exceeds five.  In extremely high viscosity materials, diffusion becomes independent of
viscosity.

Diffusivity in solids:

Typical values for diffusivity in solids are shown in table.  One outstanding characteristic 
of these values is their small size, usually thousands of time less than those in a liquid, 
which are inturn 10,000 times less than those in a gas.

Diffusion plays a major role in catalysis and is important to the chemical engineer. For
metallurgists, diffusion of atoms within the solids is of more importance.

3.2.2 Steady State Diffusion

In this section, steady-state molecular mass transfer through simple systems in which the 
concentration and molar flux are functions of a single space coordinate will be 
considered.

In a binary system, containing A and B, this molar flux in the direction of z, as given by 
Eqn (5) is [section 3.3.1]

                       )( BAA
A

ABA NNy
zd

yd
DCN    --- (1)

Problem. Oxygen is diffusing in a mixture of oxygen-nitrogen at 1 std atm, 25C.
Concentration of oxygen at planes 2 mm apart are 10 and 20 volume % respectively.
Nitrogen is non-diffusing.
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(a) Derive the appropriate expression to calculate the flux oxygen.  Define units
of each term clearly.

(b) Calculate the flux of oxygen.  Diffusivity of oxygen in nitrogen = 1.89 * 10  –5

m 2/sec.

Solution:

Let us denote oxygen as A and nitrogen as B.  Flux of A (i.e.) N  A is made up of two
components,  namely  that  resulting  from  the  bulk  motion  of  A (i.e.),  Nx A and  that
resulting from molecular diffusion J A:

AAA JNxN    ---------------------------------- (1)

From Fick’s law of diffusion, 

zd

Cd
DJ A

ABA    ----------------------------------------- (2)

Substituting this equation (1)

zd

Cd
DNxN A

ABAA    ----------------------------- (3)

Since N = N A + N B and x A = C A / C equation (3) becomes 

 
zd

Cd
D

C

C
NNN A

AB
A

BAA    

Rearranging the terms and integrating between the planes between 1 and 2,

  


 2

1

A

A

C
C

BAAA

A

AB NNCCN

dC

cD

zd
  -------------- (4)

Since B is  non diffusing N B = 0.   Also,  the  total  concentration  C remains  constant.
Therefore, equation (4) becomes




 2

1

A

A

C
C

AAA

A

AB CNCN

dC

CD

z

     
1

2
ln

1

A

A

A CC

CC

N 




Therefore,
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1

2ln
A

AAB
A CC

CC

z

CD
N




   ---------------------------- (5)

Replacing concentration in terms of pressures using Ideal gas law, equation (5) becomes

1

2ln
At

AttAB
A PP

PP

RTz

PD
N




   --------------------------- (6)

where 
D AB = molecular diffusivity of A in B
P T = total pressure of system
R = universal gas constant
T = temperature of system in absolute scale
z = distance between two planes across the direction of diffusion 
P A1 = partial pressure of A at plane 1, and 
P A2 = partial pressure of A at plane 2

Given:
D AB = 1.89 * 10 –5 m2/sec
P t = 1 atm = 1.01325 * 10 5 N/m 2

T = 25C = 273 + 25 = 298 K
z = 2 mm = 0.002 m
P A1 = 0.2 * 1 = 0.2 atm (From Ideal gas law and additive pressure rule)
P A2 = 0.1 * 1 = 0.1 atm

Substituting these in equation (6)

   
     

















2.01

1.01
ln

002.02988314

10*01325.110*89.1 55

AN

= 4.55 * 10 –5 kmol/m 2.sec

3.3 Psuedo steady state diffusion through a stagnant film:

In many mass transfer operations, one of the boundaries may move with time. If the 
length of the diffusion path changes a small amount over a long period of time, a pseudo 
steady state diffusion model may be used. When this condition exists, the equation of 
steady state diffusion through stagnant gas’ can be used to find the flux.

If the difference in the level of liquid A over the time interval considered is only a small 
fraction of the total diffusion path, and t0 – t is relatively long period of time, at any given
instant in that period, the molar flux in the gas phase may be evaluated by

                          
lmB

AAAB
A zy

yyDC
N

,

21 )( 
     ------------------ (1)
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where z equals z 2 – z1, the length of the diffusion path at time t.

The molar flux NA  is related to the amount of A leaving the liquid by

                              
td

zd

M
N

A

LA
A

,
     -------------------------- (2)

where  
A

LA

M
,

 is the molar density of A in the liquid phase

under Psuedo steady state conditions, equations (1) & (2) can be equated to give

lmB

AAAB

A

LA

yz

yyDC

td

zd

M ,

21, )( 



         --------------- (3)

Equation. (3) may be integrated from t = 0 to t and from z = z t0 to z = zt as: 

                                 





t

t

Z

ZAAAB

AlmBLA
t

t

dzz
yyDC

My
dt

0
)( 21

,,

0



yielding

                      











 




2)(

2
0

2

21

,, tt

AAAB

AlmBLA zz

yyDC

My
t


    -------- (4)

This shall be rearranged to evaluate diffusivity DAB as,

                                











 




2)(

2
0

2

21

,, tt

AAA

lmBLA
AB

zz

tyyCM

y
D



Equimolar counter diffusion:

A physical situation which is encountered in the distillation of two constituents whose 
molar latent heats of vaporization are essentially equal, stipulates that the flux of one 
gaseous component is equal to but acting in the opposite direction from the other gaseous
component; that is, NA = - NB.

The molar flux NA, for a binary system at constant temperature and pressure is described 
by

                     )( BAA
A

ABA NNy
zd

yd
DCN 
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or                )( BAA
A

ABA NNy
zd

Cd
DN            ------- (1)

with the substitution of NB = - NA, Equation (1) becomes,

                          

                      
zd

Cd
DN A

ABA     -----------------  (2)

For steady state diffusion Equation. (2) may be integrated, using the boundary conditions:
                      at   z = z1         CA  =  CA1

                            and   z = z2        CA  =  CA2

Giving,

                        
2

1

2

1

A

A

C

C
AAB

Z

Z
A CdDzdN

from which
                       
                              

                 )( 21
12

AA
AB

A CC
zz

D
N 


         ------------------- (3)

For ideal gases,  
TR

p

V

n
C AA

A   .   Therefore Equation. (3) becomes

                               )(
)( 21

12
AA

AB
A PP

zzTR

D
N 


   ---------- (4)

This is the equation of molar flux for steady-state equimolar counter diffusion.

Concentration profile in these equimolar counter diffusion may be obtained from,

                   0)( AN
zd

d
   (Since NA is constant over the diffusion path).

And  from equation. (2)
                     

                        
zd

Cd
DN A

ABA  .

Therefore 

                           0









zd

Cd
D

zd

d A
AB .
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   or                  .0
2

2


zd

Cd A

This equation may be solved using the boundary conditions to give

                                      
21

1

2

1

1
zz

zz

CC

CC

A

A

A

A









   -------------- (5)

Problem. Methane diffuses at steady state through a tube containing helium.  At point 1
the partial pressure of methane is p A1 = 55 kPa and at point 2, 0.03 m apart P A2 = 15 KPa.
The total pressure is 101.32 kPa, and the temperature is 298 K.  At this pressure and
temperature, the value of diffusivity is 6.75 * 10 –5 m 2/sec.

i) calculate the flux of CH 4 at steady state for equimolar counter diffusion.
ii) Calculate the partial pressure at a point 0.02 m apart from point 1.

Calculation:

For steady state equimolar counter diffusion, molar flux is given by

 21 AA
AB

A pp
zTR

D
N    --------------------------- (1)

Therefore; 

 
sec.

1555
03.0*298*314.8

10*75.6
2

5

m

kmol
N A 



sec
10*633.3

2
5

m

kmol

And from (1), partial pressure at 0.02 m from point 1 is:

 Ap


 55
02.0*298*314.8

10*75.6
10*633.3

5
5

p A = 28.33 kPa

Problem. In  a  gas  mixture  of  hydrogen  and  oxygen,  steady  state  equimolar  counter
diffusion is occurring at a total  pressure of 100 kPa and temperature of 20C.  If the
partial pressures of oxygen at two planes 0.01 m apart, and perpendicular to the direction
of diffusion are 15 kPa and 5 kPa, respectively and the mass diffusion flux of oxygen in
the mixture is 1.6 * 10 –5 kmol/m 2.sec, calculate the molecular diffusivity for the system.

Solution:

12
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For equimolar counter current diffusion:

 21 AA
AB

A pp
RTz

D
N   ------------------------ (1)

where

N A = molar flux of A (1.6 * 10 –5 kmol/m 2.sec):
D AB = molecular diffusivity of A in B
R = Universal gas constant (8.314 kJ/kmol.k)
T = Temperature in absolute scale (273 + 20 = 293 K)
z = distance between two measurement planes 1 and 2 (0.01 m)
P A1 = partial pressure of A at plane 1 (15 kPa); and
P A2 = partial pressure of A at plane 2 (5 kPa)

Substituting these in equation (1)

     
 515

01.0293314.8
10*6.1 5  ABD

Therefore, D AB = 3.898 * 10 –5 m 2/sec

Problem. A tube 1 cm in inside diameter that is 20 cm long is filled with Co2 and H2 at a
total pressure of 2 atm at 0C.  The diffusion coefficient of the Co2 – H2 system under
these conditions is 0.275 cm2/sec.  If the partial pressure of Co2 is 1.5 atm at one end of
the tube and 0.5 atm at the other end, find the rate of diffusion for:

i) steady state equimolar counter diffusion (N A = - N B)
ii) steady state counter diffusion where N B = -0.75 N A, and
iii) steady state diffusion of Co2 through stagnant H2 (NB = 0)

i)  BAA
A

ABA NNy
zd

yd
DCN 

Given 
N B = - N A

Therefore 
zd

Cd
D

zd

yd
DCN A

AB
A

ABA 

(For ideal gas mixture 
TR

p
C A

A   where pA is the partial pressure of A; such that p A + p

B = P)

Therefore 
 

zd

RTpd
DN A

BAA 

13
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For isothermal system, T is constant 

Therefore 
zd

pd

RT

D
N AAB

A




(i.e.)  
2

1

2

1

A

A

P

P
A

AB
Z

Z
A pd

RT

D
zdN

 21 AA
AB

A pp
zRT

D
N    ---------------------------------- (1)

where Z = Z 2 – Z 1 

Given: D AB = 0.275 cm 2/sec = 0.275 * 10 –4 m 2 /sec ; T = 0C = 273 k

 55
4

10*01325.1*5.010*01325.1*5.1
2.0*273*8314

10*275.0




AN

sec
10*138.6

2
6

m

molk

Rate of diffusion = N A S

Where S is surface area 

Therefore rate of diffusion = 6.138 * 10-6 *  r 2 
= 6.138 * 10 –6 *  (0.5 * 10 –2) 2

= 4.821 * 10 –10 k mol/sec 
= 1.735 * 10 –3 mol/hr.

ii)  BAA
A

ABA NNy
zd

yd
DCN 

given: N B = - 0.75 N A 

Therefore  AAA
A

ABA NNy
zd

yd
DCN 75.0

AA
A

BA Ny
zd

yd
DC 25.0

zd

yd
DCNyN A

ABAAA  25.0

A

A
ABA y

yd
DCzdN

25.01


for constant N A and C

14
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



2

1

2

1
25.01

A

A

y

y A

A
AB

Z

Z
A y

yd
CDzdN

  










 xba

bxba

xd
ln

1

     2

1
25.01ln

25.0

1 A

A

y
yAABA yDCzN 







 





















1

2

25.01

25.01
ln

4

A

AAB
A y

y

z

CD
N   ---------------------------------- (2)

Given:

3
5

0893.0
273*8314

10*01325.1*2
mmolK

TR

p
C 

75.0
2

5.11
1 

P

p
y

A
A

25.0
2

5.02
2 

P

p
y A
A

Substituting these in equation (2),















75.0*25.01

25.0*25.01
ln

2.0

10*275.0*0893.0*4 4

AN

sec
10*028.7

2
6

m

kmol

Rate of diffusion = N A S = 7.028 * 10 –6 *  * (0.5 * 10 –2) 2

       = 5.52 * 10 –10 kmol/sec
       = 1.987 * 10 –3 mol/hr.

iii)  BAA
A

ABA NNy
zd

yd
CDN 

Given:N B = 0

Therefore AA
A

ABA Ny
zd

yd
CDN 





2

1

2

1
1

A

A

y

y A

A
AB

Z

Z
A y

yd
CDzdN




















1

2

1

1
ln

A

AAB

y

y

Z

CD

























75.01
25.01

ln
2.0

10*275.0*0893.0 4
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sec.
10*349.1

2
5

m

kmol

Rate of diffusion = 1.349 8 10 –5 *  * (0.5 * 10 –2) 2

     = 1.059 Kmol / sec
     = 3.814 mol/hr

3.4 Diffusion in Liquids:
Equation derived for diffusion in gases equally applies to diffusion in liquids with

some modifications. Mole fraction in liquid phases is normally written as ‘x’ (in gases as

y). The concentration term ‘C’ is replaced by average molar density, 
avM








 
.

a) For steady – state diffusion of A through non diffusivity B:
N A = constant , N B = 0

 21 AA
avBM

AB
A xx

Mxz

D
N 












where Z = Z 2 – Z 1, the length of diffusion path; and













1

2

12

ln
B

B

BB
BM

X
X

XX
X

b) For steady – state equimolar counter diffusion :
N A = - N B = const

   2121 AA
av

AB
AA

AB
A xx

MZ

D
CC

Z

D
N 












Problem. Calculate the rate of diffusion of butanol at 20C under unidirectional steady
state conditions through a 0.1 cm thick film of water when the concentrations of butanol
at the opposite sides of the film are, respectively 10% and 4% butanol by weight.  The
diffusivity of butanol in water solution is 5.9 * 10 –6 cm 2/sec.  The densities of 10% and
4%  butanol  solutions  at  20C  may  be  taken  as  0.971  and  0.992  g/cc  respectively.
Molecular weight of Butanol (C 4 H 9 OH) is 74, and that of water 18.

Calculations

For steady state unidirectional diffusion,

 
lmB

AAAB
A x

xx
C

z

D
N

,

21 


where C is the average molar density.

avgM












Conversion from weight fraction the Mole fraction:
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 
 

026.0
189.0741.0

741.0
1 


Ax

 
 

010.0
1896.07404.0

7404.0
2 


Ax

Average molecular weight at 1 & 2:

 
KmolkgM 47.19

189.0741.0

1
1 




 
KmolkgM 56.18

1896.07404.0

1
2 




 
2

2211 MM

M avg

 










2

56.18992.047.19971.0 


= 0.0517 gmol / cm 3 
= 51.7 kmol/m 3 

 
   

























1

2

12

12

12
,

1

1
ln

11

ln

A

A

AA

BB

BB
lmB

x

x

xx

xx

xx
x

(i.e.) 

   

















026.01

01.01
ln

026.0101.01
,lmBx

982.0
0163.0

016.0


Therefore 
 

lmB

AA

avg

AB
A x

xx

M

D
N

,

21

2














 
982.0

010.0026.0
*

10*1.0

7.51*10*10*9.5
2

46 






sec
10*97.4

2
7

m

kmol

..
789.1

2 hrm

gmol


..
74*789.1

2 hrm

g


..
4.132

2 hrm

g

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3.5  Diffusion in solids
In certain unit operation of chemical engineering such as in drying or in 

absorption, mass transfer takes place between a solid and a fluid phase. If the transferred 
species is distributed uniformly in the solid phase and forms a homogeneous medium, the
diffusion of the species in the solid phase is said to be structure independent. In this cases
diffusivity or diffusion coefficient is direction – independent.

At steady state, and for mass diffusion which is independent of the solid matrix
structure, the molar flux in the z direction is :

constant
zd

Cd
DN A

ABA , as given by Fick’s law.

Integrating the above equation,
 

z

CCD
N

AAAB
A

21 


which is similar to the expression obtained for diffusion in a stagnant fluid with no bulk
motion (i.e. N = 0).

In some chemical operations, such as heterogeneous catalysis, an important factor,
affecting the rate of reaction is the diffusions of the gaseous component through a porous
solid. The effective diffusivity in the solid is reduced below what it could be in a free
fluid, for two reasons. First, the tortuous nature of the path increases the distance, which a
molecule must travel to advance a given distance in the solid. Second, the free cross –
sectional area is restricted. For many catalyst pellets, the effective diffusivity of a gaseous
component is of the order of one tenth of its value in a free gas.

If the pressure is low enough and the pores are small enough, the gas molecules
will  collide  with  the  walls  more  frequently  than  with  each  other.  This  is  known as
Knudsen  flow  or  Knudsen  diffusion.  Upon  hitting  the  wall,  the  molecules  are
momentarily absorbed and then given off in random directions. The gas flux is reduced
by the wall collisions.

By use of the kinetic flux is the concentration gradient is independent of pressure ;
whereas the proportionality constant for molecular diffusion in gases (i.e. Diffusivity) is
inversely proportional to pressure.

Knudsen diffusion occurs when the size of the pore is of the order of the mean
free path of the diffusing molecule.
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