
UNIT 2 KINEMATICS OF LINKAGE MECHANISMS

ABSOLUTE AND RELATIVE VELOCITY

An absolute velocity is the velocity of a point measured from a fixed point (normally the ground

or anything rigidly attached to the ground and not moving). Relative velocity is the velocity of a

point measured relative to another that may itself be moving.

TANGENTIAL VELOCITY

Consider a link A B pinned at A and revolving about A at angular velocity . Point B moves

in a circle relative to point A but its velocity is always tangential and hence at 90o to the

link. A convenient method of denoting this tangential velocity is (vB)A meaning the velocity

of B relative to A. This method is not always suitable.

RADIAL VELOCITY

 Consider a sliding link C that can slide on link AB. The direction can only be radial relative to

point A as shown.

 If the link AB rotates about A at the same time then link C will have radial and

tangential velocities.



 Note that both the tangential and radial velocities are denoted the same so the tags radial

and tangential are added.

 The sliding link has two relative velocities, the radial and the tangential. They are normal to

each other and the true velocity relative to A is the vector sum of both added as shown.

 The t w o vectors are denoted by c1 and c2. The velocity of link C relative to point A is the

vector a c2.

Rubbing Velocity at a Pin Joint

The rubbing velocity is defined as the algebraic sum between the angular velocities

of the two links which are connected by pin joints, multiplied by the radius of the pin.

Rubbing velocity at the pin joint O

= (1 – 2) r, if the links move in the same direction

= (1 + 2) r, if the links move in the opposite direction



Slider Crank Chain Mechanism

Consider this slider crank chain mechanism, The diagram is called a space diagram.

 Every point on every link has a velocity through space. First we label the centre of rotation,

often this is the letter O. Point A can only move in a tangential direction so the velocity of A

relative to O is also its absolute velocity and the vector is normal to the crank and it is

designated (vA)O. (Note the rotation is anticlockwise).

 Now suppose that you are sat at point A and everything else moves relative to you.

Looking towards B, it would appear the B is rotating relative to you (in reality it is you that is

rotating) so it has a tangential velocity denoted (VB) A.

 The direction is not always obvious except that it is normal to the link. Consider the fixed link

OC. Since both points are fixed there is no velocity between them so (V)o = 0.

 Next consider that you at point C looking at point B. Point B is a sliding link and will move in

a straight line in the direction fixed by the slider guides and this is velocity (vB) C. It follows

that the velocity of B seen from O is the same as that seen from C so (vB) C = (vB) O.

 The absolute velocity of B is (vB) C = (vB) O and this must be the vector sum of

(VA) O and (vB) A and the three vectors must form a closed triangle as shown. The velocity of

the piston must be in the direction in which it slides (conveniently horizontal here). This is a

velocity diagram.

 First calculate the tangential velocity (vA)O from v =  x radius =  x OA

 Draw the vector o - a in the correct direction (note lower case letters).



 We know that the velocity of B relative to A is to be added so the next vector ab starts at point a.

At point a draw a line in the direction normal to the connecting rod but of unknown length.

 We know that the velocity of B relative and absolute to O is horizontal so the vector ob must

start at a. Draw a horizontal line (in this case) through o to intersect with the other line. This is

point b. The vectors ab and ob may be measured or calculated. Usually it is the velocity of

the slider that is required.

 In a design problem, this velocity would be evaluated for many different positions of the crank

shaft and the velocity of the piston determined for each position.

 Remember that the slider direction is not always horizontal and the direction of o - b must be

the direction of sliding.

EXAMPLE No.1

The mechanism shown has a crank 50 mm radius which rotates at 2000 rpm. Determine

the velocity of the piston for the position shown. Also determine the angular velocity of link

AB about A.

SOLUTION

 Suitable scale for example 1 cm = 1 m/s.

 This is important so that the direction at 90o to the link AB can be transferred to the
velocity diagram.

 Angular speed of the crank = 2N/60 = 2x 2000/60 = 209.4 rad/s

 (vA)O =  x radius = 209.4 x 0.05 = 10.47 m/s. First draw vector oa. (Diagram a)

 Next add a line in the direction ab (diagram b)



 Finally add the line in the direction of ob to find point b and measure ob to get the
velocity. (Diagram C).

Figure a Figure b Figure c

Diagrams are not drawn to scale.

 The velocity of B relative to O is 7 m/s.

 The tangential velocity of B relative to A is the vector ab and this gives 9.2 m/s.

 The angular velocity of B about A is found by dividing by the radius (length of AB).

  for AB is then 9.2/0.09 = 102.2 rad/s. (note this is relative to A and not an absolute angular

velocity)

Four Bar Chain Mechanism

 The input link rotates at a constant angular velocity 1. The relative velocity of each point

relative to the other end of the link is shown.

 Each velocity vector is at right angles to the link. The output angular velocity is 2 and this will

not be constant. The points A and D are fixed so they will appear as the same point on

the velocity diagram.

 The methodology is the same as before and best shown with another example.



EXAMPLE No. 2

Find the angular velocity of the output link when the input rotates at a constant speed of

500 rev/min. The diagram is not to scale.

SOLUTION

First calculate 1.

1 = 2ʌ x 500/60 = 52.36 rad/s.

Next calculate the velocity of point B relative to A. (VB)A = 1 x AB = 52.36 x 1 = 52.36 m/s.

Draw this as a vector to an appropriate scale.

Figure a

Next draw the direction of velocity C relative to B at right angles to the link BC

passing through point b on the velocity diagram.

Figure b Figure c

 Next draw the direction of the velocity of C relative to D at right angles to link DC passing

through point a (which is the same as point d). Point c is where the two lines intersect,

 Determine velocity cd by measurement or any other method. The velocity of point C

relative to D and is 43.5 m/s.

 Convert this into angular velocity by dividing the length of the link DC into it.

2 = 43.5/0.7 = 62 rad/s.
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4. ACCELERATION DIAGRAMS

 It is important to determine the acceleration of links because acceleration produces inertia

forces in the link which stress the component parts of the mechanism.

 Accelerations may be relative or absolute in the same way as described for velocity.

 We shall consider two forms of acceleration, tangential and radial. Centripetal acceleration is

an example of radial.

CENTRIPETAL ACCELERATION

v A point rotating about a centre at radius R has a tangential velocity  v and angular velocity

 and it is continually accelerating towards the centre even though it never moves

any closer. This is centripetal acceleration and it is caused by the constant change in

direction.

v It follows that the end of any rotating link will have a centripetal acceleration towards the

opposite end.

The relevant equations are: v = R a = 2 R or a = v2/R.

v The construction of the vector for radial acceleration causes confusion so the rules must be

strictly followed. Consider the link AB. The velocity of B relative to A is tangential (VB)A.

The centripetal acceleration of B relative to A is in a radial direction so a suitable

notation might be aR. It is calculated using aR =  x AB or aR = v2/AB.

Note the direction is towards the centre of rotation but the vector starts at a and ends at

b1. It is very important to get this the right way round otherwise the complete diagram will be

wrong.



TANGENTIAL ACCELERATION

Tangential acceleration only occurs if the link has an angular acceleration α rad/s2.

Consider a link AB with an angular acceleration about A.

 Point B will have both radial and tangential acceleration relative to point A. The true

acceleration of point B relative to A is the vector sum of them. This will require an extra point.

We will use b1 and b on the vector diagram as shown.

 Point B is accelerating around a circular path and its direction is tangential (at right

angles to the link). It is designated aT and calculated using aT =αx AB.

 The vector starts at b1 and ends at b. The choice of letters and notation are arbitrary but

must be logical to aid and relate to the construction of the diagram.



EXAMPLE No.3

A piston, connecting rod and crank mechanism is shown in the diagram. The crank rotates at

a constant velocity of 300 rad/s. Find the acceleration of the piston and the

angular acceleration of the link BC. The diagram is not drawn to scale.

Solution

First calculate the tangential velocity of B relative to A.

(vB)A =  x radius = 300 x 0.05 = 15 m/s.

Next draw the velocity diagram and determine the velocity of C relative to B.

Figure 19

From the velocity diagram (vC)B = 7.8 m/s

v Next calculate all accelerations possible and construct the acceleration diagram to find the

acceleration of the piston.

v The tangential acceleration of B relative to A is zero in this case since the link has no angular

acceleration (α = 0).

v The centripetal acceleration of B relative to A

aR = 2x AB = 3002 x 0.05 = 4500 m/s2. The tangential acceleration of C

relative to B is unknown.



The centripetal acceleration of C to B

aR = v2/BC = 7.82 /0.17 = 357.9 m/s2.

The stage by stage construction of the acceleration diagram is as follows.

Figure a Figure b Figure c

v First draw the centripetal acceleration of link AB (Fig.a). There is no tangential acceleration so

designate it ab. Note the direction is the same as the direction of the link towards the centre of

rotation but is starts at a and ends at b.

v Next add the centripetal acceleration of link BC (Figure b). Since there are two accelerations for

point C designate the point c1. Note the direction is the same as the direction of the link towards

the centre of rotation.

v Next add the tangential acceleration of point C relative to B (Figure c). Designate it c1 c. Note the

direction is at right angles to the previous vector and the length is unknown. Call the line a c line.

v Next draw the acceleration of the piston (figure d) which is constrained to be in the horizontal

direction. This vector starts at a and must intersect the c line. Designate this point c.

Figure d

v The acceleration of the piston is vector ac so (aC) B = 1505 m/s2. The tangential acceleration of C

relative to B is c1 c = 4000 m/s2.

v At the position shown the connecting rod has an angular velocity and acceleration

about its end even though the crank moves at constant speed.

v The angular acceleration of BC is the tangential acceleration divided by the length

BC. α(BC) = 4000 / 0.17 = 23529 rad/s2.



EXAMPLE No.4

The diagrams shows a “rocking lever” mechanism in which steady rotation of the wheel

produces an oscillating motion of the lever OA. Both the wheel and the lever are mounted in fixed

centers. The wheel rotates clockwise at a uniform angular velocity () of 100 rad/s. For the

configuration shown, determine the following.

(i) The angular velocity of the link AB and the absolute velocity of point A. (ii) The centrifugal

accelerations of BC, AB and OA.

(iii)The magnitude and direction of the acceleration of point A. The lengths of the links are as follows.

BC = 25 mm AB = 100 mm OA = 50 mm OC = 90 mm

SOLUTION

The solution is best done graphically. First draw a line diagram of the mechanism to scale. It should

look like this.

Figure 22

Next calculate the velocity of point B relative to C and construct the velocity diagram.



(vB)C =  x radius = 100 x 0.025 = 2.5 m/s

Scale the following velocities from the diagram.

(vA)O = 1.85 m/s {answer (i)} (vA)B = 3.75 m/s

Angular velocity = tangential velocity/radius

For link AB, Ȧ = 3.75/0.1 = 37.5 rad/s. {answer (i)} Next calculate all the accelerations possible.

v Radial acceleration of BC = Ȧ2 x BC = 1002 x 0.025 = 250 m/s2.

v Radial acceleration of AB = v2/AB = 3.752/0.1 = 140.6 m/ s2.

v Check same answer from Ȧ2 x AB = 37.52 x 0.1 = 140.6 m/ s2.

v Radial Acceleration of OA is v2/OA = 1.852/0.05 = 68.45 m/ s2. Construction of the acceleration

diagram gives the result shown.

The acceleration of point A is the vector o- a shown as a dotted line.

Scaling this we get 560 m/s2.



EXAMPLE No. 5

Find the angular acceleration of the link CD for the case shown.

SOLUTION

First calculate or scale the length CB and find it to be 136 mm.

Next find the velocities and construct the velocity diagram. Start with link AB as this has a known

constant angular velocity.

(vB)A =  x radius = 480 x 0.08 = 38.4 m/s

1. Next calculate all the accelerations possible.

2. The centripetal acceleration of B to A is 38.42/0.08 = 18 432 m/s2

3. The centripetal acceleration of C to D is 152/0.16 = 1406 m/s2

4. The centripetal acceleration of C to B is 312/0.136 = 7066 m/s2.

5. We cannot calculate any tangential acceleration at this stage.

6. The stage by stage construction of the acceleration diagram follows.

7. First draw the centripetal acceleration of B to A (Figure a).

Figure a Figure b Figure c



8. Next add the centripetal acceleration of C to B (figure b)

9. Next draw the direction of the tangential acceleration of C to B of unknown length at right

angles to the previous vector (figure c). Designate it as a c line.

10. We cannot proceed from this point unless we realize that points a and d are the same (there

is no velocity or acceleration of D relative to A). Add the centripetal acceleration of C to

D (figure d). This is 1406 m/s2 in the direction of link CD. Designate it d c2.

Figure d Figure e

Finally draw the tangential acceleration of C to D at right angles to the previous vector to

intersect the c line (figure e).

From the diagram determine c2 c to be 24 000 m/s2. This is the tangential acceleration of

C to D. The angular acceleration of the link DC is then:

α(CD) = 24000/0.16 = 150 000 rad/s2 in a clockwise direction.

Note that although the link AB rotates at constant speed, the link CD has angular

acceleration.

EXAMPLE No. 6

The same arrangement exists as shown for example 5 except that the link AB is decelerating at 8000

rad/s2 (i.e. in an anticlockwise direction). Determine the acceleration of the link CD.

SOLUTION

The problem is essentially the same as example 5 except that a tangential acceleration now exists

for point B relative to point A. This is found from

a
T

=α x AB = 80000 x 0.08 = 6400 m/s2
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v The direction is for an anticlockwise tangent. This is vector b1 b which is at right angles to a b1 in the

appropriate direction. The new acceleration diagram looks like this.

Scaling off the tangential acceleration c2 c we get 19 300 m/s2. Converting this into the angular

acceleration we get

α = 19 300/0.16 = 120 625 rad/s2 in a clockwise direction.

MECHANICAL ADVANTAGE

Mechanical advantage is a measure of the force amplification achieved by using a tool, mechanical

device or machine system. Ideally, the device preserves the input power and simply trades off forces

against movement to obtain a desired amplification in the output force. The model for this is the law of

the lever. Machine components designed to manage forces and movement in this way are

called mechanisms. An ideal mechanism transmits power without adding to or subtracting from it. This

means the ideal mechanism does not include a power source, and is frictionless and constructed from

rigid bodies that do not deflect or wear. The performance of a real system relative to this ideal is

expressed in terms of efficiency factors that take into account friction, deformation and wear.

CORIOLIS COMPONENT OF ACCELERATION

When a point on one link is sliding along another rotating link, such as in quick return motion mechanism,

then the coriolis component of the acceleration must be calculated.

In non-vector terms: at a given rate of rotation of the observer, the magnitude of the Coriolis acceleration

of the object is proportional to the velocity of the object and also to the sine of the angle between the

direction of movement of the object and the axis of rotation. The vector formula for the magnitude and

direction of the Coriolis acceleration is

where (here and below) is the acceleration of the particle in the rotating system, is the velocity of

the particle with respect to the rotating system, and Ω is the angular velocity vector which has magnitude

equal to the rotation rate ω and is directed along the axis of rotation of the rotating reference frame, and

the × symbol represents the cross product operator.
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1. What are the components of acceleration?

2. What is expression for Cariolis component of acceleration?

3. What are the expressions for radial and tangential component of  acceleration?
4. How can we represent the direction of linear velocity of any point on a link with respect

to another point on the same line?
5. What is the objective of Kinematic analysis?

PROBLEMS

1. The crank of a slider crank mechanism rotates clockwise at a constant speed of 300
r.p.m. The crank is 150 mm and the connecting rod is 600 mm long. Determine : 1. Linear
velocity and acceleration of the midpoint of the connecting rod, and 2. angular velocity and
angular acceleration of the connecting rod, at a crank angle of 45° from inner dead centre
position.

2. The engine mechanism  has crank OB = 50 mm and length of connecting rod AB = 225
mm. The centre of gravity of the rod is at G which is 75 mm from B. The engine speed is 200
r.p.m. For the position shown, in which OB is turned 45° from OA, Find 1. the velocity of G and
the angular velocity of AB, and 2. the acceleration of G and angular acceleration of AB.

3. In a pin jointed four bar mechanism ABCD, the lengths of various links are as follows:
AB = 25 mm ; BC = 87.5 mm ; CD = 50 mm and AD = 80 mm. The link AD is fixed and the angle
BAD = 135°. If the velocity of B is 1.8 m/s in the clockwise direction, find 1. velocity and
acceleration of the mid point of BC, and 2. angular velocity and angular acceleration of link CB
and CD.

4. In a four bar chain ABCD , link AD is fixed and the crank AB rotates at 10 radians per
second clockwise. Lengths of the links are AB = 60 mm ; BC = CD = 70 mm ; DA = 120 mm.
When angle DAB = 60° and both B and C lie on the same side of AD, find 1. angular velocities
(magnitude and direction) of BC and CD ; and 2. angular acceleration of BC and CD.

5. The dimensions of the various links of a mechanism, as shown in Figure, are as follows:
OA = 80 mm ; AC = CB = CD = 120 mm If the crank OA rotates at 150 r.p.m. in the
anticlockwise direction, find, for the given configuration: 1. velocity and acceleration of B and D ;
2. rubbing velocity on the pin at C, if its diameter is 20 mm ; and 3. angular acceleration of the
links AB and CD.
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